Домой Психосоматика Как перевести десятичное число в дробь правило. Перевод десятичных чисел в дробь и наоборот — онлайн калькулятор

Как перевести десятичное число в дробь правило. Перевод десятичных чисел в дробь и наоборот — онлайн калькулятор

Вот, казалось бы, перевод десятичной дроби в обычную — элементарная тема, но многие ученики её не понимают! Поэтому сегодня мы подробно рассмотрим сразу несколько алгоритмов, с помощью которых вы разберётесь с любыми дробями буквально за секунду.

Напомню, что существует как минимум две формы записи одной и той же дроби: обыкновенная и десятичная. Десятичные дроби — это всевозможные конструкции вида 0,75; 1,33; и даже −7,41. А вот примеры обыкновенных дробей, которые выражают те же самые числа:

Сейчас разберёмся: как от десятичной записи перейти к обычной? И самое главное: как сделать это максимально быстро?

Основной алгоритм

На самом деле существует как минимум два алгоритма. И мы сейчас рассмотрим оба. Начнём с первого — самого простого и понятного.

Чтобы перевести десятичную дробь в обыкновенную, необходимо выполнить три шага:

Важное замечание по поводу отрицательных чисел. Если в исходном примере перед десятичной дробью стоит знак «минус», то и на выходе перед обыкновенной дробью тоже должен стоять «минус». Вот ещё несколько примеров:

Примеры перехода от десятичной записи дробей к обычной

Особое внимание хотелось бы обратить на последний пример. Как видим, в дроби 0,0025 присутствует много нулей после запятой. Из-за этого приходится аж целых четыре раза умножать числитель и знаменатель на 10. Можно ли как-то упростить алгоритм в этом случае?

Конечно, можно. И сейчас мы рассмотрим альтернативный алгоритм — он чуть более сложен для восприятия, но после небольшой практики работает намного быстрее стандартного.

Более быстрый способ

В данном алгоритме также 3 шага. Чтобы получить обычную дробь из десятичной, нужно выполнить следующее:

  1. Посчитать, сколько цифр стоит после запятой. Например, у дроби 1,75 таких цифр две, а у 0,0025 — четыре. Обозначим это количество буквой $n$.
  2. Переписать исходное число в виде дроби вида $\frac{a}{{{10}^{n}}}$, где $a$ — это все цифры исходной дроби (без «стартовых» нулей слева, если они есть), а $n$ — то самое количество цифр после запятой, которое мы посчитали на первом шаге. Другими словами, необходимо разделить цифры исходной дроби на единицу с $n$ нулями.
  3. По возможности сократить полученную дробь.

Вот и всё! На первый взгляд, эта схема сложнее предыдущей. Но на самом деле он и проще, и быстрее. Судите сами:

Как видим, в дроби 0,64 после запятой стоит две цифры — 6 и 4. Поэтому $n=2$. Если убрать запятую и нули слева (в данном случае — всего один ноль), то получим число 64. Переходим ко второму шагу: ${{10}^{n}}={{10}^{2}}=100$, поэтому в знаменателе стоит именно сто. Ну а затем остаётся лишь сократить числитель и знаменатель.:)

Ещё один пример:

Здесь всё чуть сложнее. Во-первых, цифр после запятой уже 3 штуки, т.е. $n=3$, поэтому делить придётся на ${{10}^{n}}={{10}^{3}}=1000$. Во-вторых, если убрать из десятичной записи запятую, то мы получим вот это: 0,004 → 0004. Вспомним, что нули слева надо убрать, поэтому по факту у нас число 4. Дальше всё просто: делим, сокращаем и получаем ответ.

Наконец, последний пример:

Особенность этой дроби — наличие целой части. Поэтому на выходе у нас получается неправильная дробь 47/25. Можно, конечно, попытаться разделить 47 на 25 с остатком и таким образом вновь выделить целую часть. Но зачем усложнять себе жизнь, если это можно сделать ещё на этапе преобразований? Что ж, разберёмся.

Что делать с целой частью

На самом деле всё очень просто: если мы хотим получить правильную дробь, то необходимо убрать из неё целую часть на время преобразований, а затем, когда получим результат, вновь дописать её справа перед дробной чертой.

Например, рассмотрим то же самое число: 1,88. Забьём на единицу (целую часть) и посмотрим на дробь 0,88. Она легко преобразуется:

Затем вспоминаем про «утерянную» единицу и дописываем её спереди:

\[\frac{22}{25}\to 1\frac{22}{25}\]

Вот и всё! Ответ получился тем же самым, что и после выделения целой части в прошлый раз. Ещё парочка примеров:

\[\begin{align}& 2,15\to 0,15=\frac{15}{100}=\frac{3}{20}\to 2\frac{3}{20}; \\& 13,8\to 0,8=\frac{8}{10}=\frac{4}{5}\to 13\frac{4}{5}. \\\end{align}\]

В этом и состоит прелесть математики: каким бы путём вы не пошли, если все вычисления выполнены правильно, ответ всегда будет одним и тем же.:)

В заключение хотел бы рассмотреть ещё один приём, который многим помогает.

Преобразования «на слух»

Давайте задумаемся о том, что вообще такое десятичная дробь. Точнее, как мы её читаем. Например, число 0,64 — мы читаем его как «ноль целых, 64 сотых», правильно? Ну, или просто «64 сотых». Ключевое слово здесь — «сотых», т.е. число 100.

А что насчёт 0,004? Это же «ноль целых, 4 тысячных» или просто «четыре тысячных». Так или иначе, ключевое слово — «тысячных», т.е. 1000.

Ну и что в этом такого? А то, что именно эти числа в итоге «всплывают» в знаменателях на втором этапе алгоритма. Т.е. 0,004 — это «четыре тысячных» или «4 разделить на 1000»:

Попробуйте потренироваться сами — это очень просто. Главное — правильно прочесть исходную дробь. Например, 2,5 — это «2 целых, 5 десятых», поэтому

А какое-нибудь 1,125 — это «1 целая, 125 тысячных», поэтому

В последнем примере, конечно, кто-то возразит, мол, не всякому ученику очевидно, что 1000 делится на 125. Но здесь нужно помнить, что 1000 = 10 3 , а 10 = 2 ∙ 5, поэтому

\[\begin{align}& 1000=10\cdot 10\cdot 10=2\cdot 5\cdot 2\cdot 5\cdot 2\cdot 5= \\& =2\cdot 2\cdot 2\cdot 5\cdot 5\cdot 5=8\cdot 125\end{align}\]

Таким образом, любая степень десятки раскладывается лишь на множители 2 и 5 — именно эти множители нужно искать и в числителе, чтобы в итоге всё сократилось.

На этом урок окончен. Переходим к более сложной обратной операции — см. «

Любую десятичную дробь можно представить в виде обыкновенной дроби. Для этого надо просто записать её со знаменателем.

Главное правило в переводе десятичной дроби в обыкновенную - как читается десятичная дробь, так и пишется обыкновенная. Например:

2,3 - две целых три десятых

Так как дробь имеет целую часть, то перевести её мы можем или в смешанное число или в неправильную дробь:

Перевод обыкновенной дроби в десятичную

Не любую обыкновенную дробь можно перевести в десятичную, так как чтобы записать обыкновенную дробь в виде десятичной, надо привести её к знаменателю, представляющему собой единицу с одним или несколькими нулями, например: 10, 100, 1000 и т. д. Если разложить такой знаменатель на простые множители , то получится одинаковое количество двоек и пятёрок:

100 = 10 · 10 = 2 · 5 · 2 · 5

1000 = 10 · 10 · 10 = 2 · 5 · 2 · 5 · 2 · 5

Никаких других простых множителей эти разложения не содержат, следовательно:

Обыкновенную дробь можно представить в виде десятичной только в том случае, если её знаменатель не содержит никаких других множителей, кроме 2 и 5.

Возьмём дробь:

Если домножить его на две пятёрки, чтобы уравнять количество пятёрок с двойками, то получится один из нужных знаменателей - 100. Чтобы получить дробь равную данной, то числитель тоже надо будет умножить на произведение двух пятёрок:

Рассмотрим ещё одну дробь:

Множитель 7 будет присутствовать в знаменателе, на какие бы целые числа его ни умножали, поэтому произведение, содержащее только двойки и пятёрки никогда не получится. Значит данную дробь нельзя привести ни к одному из нужных знаменателей: 10, 100, 1000 и так далее. То есть её нельзя представить в виде десятичной.

Обыкновенную несократимую дробь нельзя представить в виде десятичной, если её знаменатель содержит хотя бы один простой множитель, отличный от 2 и 5.

Обратите внимание, что в правиле написано только о несократимых дробях, потому что некоторые дроби после сокращения, можно представить в виде десятичных. Рассмотрим две дроби:

Теперь осталось только умножить оба члена дроби на 5, чтобы получить 10 в знаменателе, и можно будет переводить дробь в десятичную.

Все дроби делятся на два вида: обыкновенные и десятичные. Обыкновенными называются дроби такого вида: 9/8,3/4,1/2,1 3/4 . В них выделяют верхнее число (числитель) и нижнее число (знаменатель). Когда числитель меньше, чем знаменатель, то дробь называется правильной, в противоположном случае дробь – неправильная. Такие дроби, как 1 7/8 состоят из целой части (1) и дробной части (7/8) и называются смешанными.

Итак, дроби бывают:

  1. Обыкновенными
    1. Правильными
    2. Неправильными
    3. Смешанными
  2. Десятичными

Как из обыкновенной дроби сделать десятичную

Как перевести обыкновенную дробь в десятичную, учит курс математики основной школы. Все предельно просто: нужно числитель поделить на знаменатель «вручную» или, если совсем лень, то на микрокалькуляторе. Вот пример: 2/5=0,4;3/4=0,75; 1/2=0,5. Не намного сложнее перевести в десятичную неправильную дробь. Пример: 1 3/4= 7/4= 1,75. Последний результат можно получить и без деления, если учесть, что 3/4=0,75 и прибавить единицу:1+0,75=1,75.

Однако далеко не со всеми обыкновенными дробями все так просто. Например, попробуем перевести 1/3 из обыкновенных дробей в десятичные. Даже тот, кто имел по математике тройку (по пяти бальной системе) заметит, что, сколько бы ни продолжалось деление, после нуля и запятой будет бесконечное количество троек 1/3=0,3333…. . Принято читать так: ноль целых, три в периоде. Записывается соответственно так: 1/3=0,(3). Аналогичная ситуация будет, если попытаться перевести в десятичную дробь 5/6: 5/6=0,8(3). Такие дроби называются бесконечными периодическими. Вот пример для дроби 3/7: 3/7= 0,42857142857142857142857142857143… , то есть 3/7=0,(428571).

Итак, в результате превращения обыкновенной дроби в десятичную может получаться:

  1. непериодическая десятичная дробь;
  2. периодическая десятичная дробь.

Следует отметить, что существуют и бесконечные непериодические дроби, которые получаются при выполнении таких действий: взятие корня n-ой степени, логарифмирование, потенцирование. Например, √3= 1,732050807568877… . Знаменитое число π≈ 3,1415926535897932384626433832795…. .

Давайте теперь умножим 3 на 0,(3): 3×0,(3)=0,(9)=1. Получается, что 0,(9) – это иная форма записи единицы. Точно так же 9=9/9,16=16,0, и т.д.

Правомерен и вопрос, противоположный к приведенному в заголовке этой статьи: «как десятичную дробь перевести в обычную». Ответ на данный вопрос дает пример: 0,5= 5/10=1/2. В последнем примере мы сократили числитель и знаменатель дроби 5/10 на 5. То есть для превращения десятичной дроби в обыкновенную нужно представить ее в виде дроби со знаменателем 10.

О том, что такое дроби вообще интересно будет посмотреть видео:

О том как перевести десятичную дробь в обыкновенную смотрите тут:

Переводим обычную дробь в десятичную — правила и примеры.

Одним из основных элементов математики являются числа. Они обозначаются десятью арабскими цифрами и делятся на целые числа и дробные. Дробью является одна или несколько частей целого числа «1».

Дроби бывают двух видов: обыкновенные (или простые) и десятичные. Обыкновенные дроби чаще всего применяются в точных расчетах, а десятичными пользуются в повседневной жизни.

В качестве примера попробуем разобраться с видами дробей и перевести обычную дробь в десятичную.

Виды дробей

  • Обыкновенные дроби имеют вид а/b, где а – это число выбранных частей (числитель), а b – общее количество частей (знаменатель).
  • Десятичные дроби имеют вид a, bc, где a – целое число, а bc – десятичная часть.

Перевод дробей

Для перевода обыкновенной дроби в десятичную вам понадобится калькулятор или лист бумаги и ручка.

  • Замените знак «/» знаком деления. Пример: ¼ = 1:4
  • Вычислите полученный пример, записав результат после запятой: 1:4=0,25

Если числитель больше знаменателя, то сперва необходимо найти целую часть.

  • Разделите числитель на знаменатель и запишите целое число и оставшуюся дробь. Пример: 25/4=25:4=6 ¼
  • Вычислите дробную часть, как рассказано в примере выше: ¼=1:4=0,25.
  • Запишите целую часть до запятой, дробную – после: 25/4=6,25

Если дробь состоит из целого числа и дробной части, то целая часть остается без изменения: 6 ¼=6,25

Достаточное количество людей задаются вопросами о том, как перевести обыкновенную дробь в дробь десятичную. Способов существует несколько. Выбор конкретного способа зависит от вида дроби, которую нужно перевести в другой вид, а точнее, от числа в её знаменателе. Однако необходимо для надёжности указать, что обыкновенная дробь – это дробь, которая записывается с числителем и знаменателем, например, 1/2. Чаще черту между числителем и знаменателем проводят горизонтально, а не наклонно. Десятичная дробь пишется обыкновенным числом с запятой: например, 1,25; 0,35 и т.д.

Итак, для того, чтобы перевести обыкновенную дробь в десятичную без калькулятора необходимо:

Обратить внимание на знаменатель обыкновенной дроби. Если знаменатель можно легко множить до 10 на одинаковое с числителем число, то следует воспользоваться именно этим способом, как наиболее простым. К примеру, обыкновенная дробь 1/2 легко умножается в числителе и знаменателе на 5, в результате получается число 5/10, которое уже можно записать дробью десятичной: 0,5. Данное правило основано на том, что десятичная дробь всегда имеет в знаменателе круглое число: 10, 100, 1000 и подобные. Следовательно, если помножить числитель и знаменатель дроби, то необходимо добиваться получения в знаменателе именно такого числа в результате умножения независимо от того, что получается в числителе.

Существуют обыкновенные дроби, подсчёт которых после умножения представляет определённые сложности. Например, достаточно трудно определить, на сколько следует помножить дробь 5/16, чтобы получить в знаменателе одно из приведённых выше чисел. В этом случае следует воспользоваться обычным делением, которое производится столбиком. В ответе должна получиться десятичная дробь, которая и ознаменует окончание операции перевода. В вышеприведенном примере получается число, равное 0,3125. Если вычисления столбиком представляют затруднения, то без помощи калькулятора уже не обойтись.

Наконец, бывают обыкновенные дроби, которые в десятичные не переводятся. Например, при переводе обыкновенной дроби 4/3 получается результат 1,33333, где тройка повторяется до бесконечности. Калькулятор также не избавит от повторяющейся тройки. Таких дробей существует несколько, их необходимо просто знать. Выходом из приведённой ситуации может быть округление, если условия решаемого примера или задачи позволяют округлять. Если же условия этого не позволяют, а ответ необходимо записать именно в виде десятичной дроби, значит, пример или задача решены неправильно, и следует вернуться на несколько этапов назад, чтобы обнаружить ошибку.

Таким образом, перевести обыкновенную дробь в десятичную довольно таки несложно, с это задачей нетрудно справиться без помощи калькулятора. Ещё проще выглядит перевод десятичных дробей в обыкновенные, выполняя действия обратные описанным в способе 1.

Видео: 6 класс. Перевод обыкновенной дроби в десятичную дробь.

Новое на сайте

>

Самое популярное