Домой Развитие Купцов в.и. xii

Купцов в.и. xii


История человечества – это история научных открытий, которые делали этот мир более технологичным и совершенным, улучшали качество жизни, помогали понять окружающий мир. В это обзоре 15 научных открытий, которая оказали ключевое внимание на развитие цивилизации и которыми люди пользуются до сих пор. .

1. Пенициллин


Как известно, шотландский ученый Александр Флеминг открыл пенициллин (первый антибиотик) в 1928 году. Если бы этого не случилось, то люди, вероятно, до сих пор умирали бы от таких вещей, как язва желудка, абсцесс зуба, ангина и скарлатина, стафилококковая инфекция, лептоспироз и т.д.

2. Механические часы


Стоит отметить, что до сих пор есть много противоречий относительно того, что можно считать первыми механическими часами. Однако, как правило, их изобретателем считается китайский монах и математик И-Син (723 г. н.э). Это инновационное открытие позволило людям измерять время.

3. Винтовой насос


Один из самых значительных древнегреческих ученых, Архимед, как полагают, разработал один из первых водяных насосов, который толкал воду вверх по трубке. Это полностью преобразило орошение.

4. Сила тяжести


Это хорошо известная история - известный английский математик и физик Исаак Ньютон обнаружил силу тяжести после того, как ему на голову в 1664 году упало яблоко. Его открытие объясняет, почему вещи падают на землю и почему планеты вращаются вокруг Солнца.

5. Пастеризация


Обнаруженная французским ученым Луи Пастером в 1860-х годах пастеризация представляет собой процесс термической обработки, который разрушает патогенные микроорганизмы в определенных пищевых продуктах и напитках, таких как вино, пиво и молоко. Это открытие имело огромное воздействие на здоровье населения.


Общеизвестно, что современная цивилизация выросла благодаря промышленной революции, основной причиной которой был паровой двигатель. На самом деле, этот двигатель не изобрели в одночасье, а скорее он постепенно развивался в течение примерно ста лет благодаря 3 британским изобретателям: Томасу Севери, Томасу Ньюкомену и (наиболее известному) Джеймсу Уатту.

7. Электричество


Судьбоносное открытие электричества принадлежит английскому ученому Майклу Фарадею. Он также открыл основные принципы электромагнитной индукции, диамагнетизма и электролиза. Во время своих опытов Фарадей также создал первый генератор, производящий электроэнергию.

8. ДНК


Многие люди считают, что американский биолог Джеймс Уотсон и английский физик Фрэнсис Крик открыли ДНК в 1950-х годах, но на самом деле, дезоксирибонуклеиновая кислота была впервые выявлена в конце 1860-х годов швейцарским химиком Фридрихом Мишером. Затем, в течение десятилетий после открытия Мишера, другие ученые провели множество научных исследований, которые помогли понять, как организмы передают свои гены и как они управляют работой клеток.

9. Обезболивание


Грубые формы анестезии, такие как опиум, мандрагора и алкоголь, использовались еще в 70 году нашей эры. Но только в 1847 году американский хирург Генри Бигелоу определил, что эфир и хлороформ могут быть анестетиками, тем самым сделав болезненные хирургические операции гораздо более терпимыми.

10. Теория относительности


Две взаимосвязанные теории Альберта Эйнштейна - специальная теория относительности и общая теория относительности - были опубликованы в 1905 году. Они преобразили теоретическую физику и астрономию в XX веке, заменив 200-летнюю теорию механики, созданную Ньютоном. Эта теория стала основой для большей части современной науки.

11. Рентгеновское излучение


Немецкий физик Вильгельм Конрад Рентген открыл рентгеновские лучи в 1895 году, когда он изучал явления, сопровождающие прохождение электрического тока через газ крайне низкого давления. За это новаторское открытие Рентген был удостоен первой в истории Нобелевской премии по физике в 1901 году.

12. Периодическая таблица


В 1869 году русский химик Дмитрий Менделеев, изучая атомные веса элементов, заметил, что химические элементы можно сформировать в группы с аналогичными свойствами. В итоге он сумел создать первую периодическую таблицу, что стало одним из самых важных открытий в области химии.


Инфракрасное излучение было открыто британским астрономом Уильямом Гершелем в 1800 году, когда он изучал нагревающий эффект различных цветов света с помощью призмы и термометров. В современные дни инфракрасный свет используется во многих областях, включая системы слежения, отопление, метеорологию, астрономию и т.д.


Сегодня он используется в качестве очень точного и эффективного диагностического прибора в медицине. А впервые ядерный магнитный резонанс был описан и измерен американским физиком И. Раби в 1938 году. За это открытие он был удостоен Нобелевской премии по физике в 1944 году.

15. Бумага


Хотя предшественники современной бумаги, такие как папирус и амате, существовали в Средиземноморье и доколумбовой Америки, соответственно, эти материалы не были настоящей бумагой. Впервые процесс изготовления бумаги был зафиксирован в Китае в период Восточной Хань (25-220 н.э.).

Сегодня человек делает открытия не только на земле, но и космосе. Вот только . Они действительно впечатляют!

Переход от одной парадигмы к другой, по Куну, невозможен посредством логики и ссылок на опыт.

В некотором смысле защитники различных парадигм живут в разных мирах. По Куну, различные парадигмы несоизмеримы. Поэтому переход от одной парадигмы к другой должен осуществляться резко, как переключение, а не постепенно посредством логики.

Научные революции

Научные революции обычно затрагивают мировоззренческие и методологические основания науки, нередко изменяя сам стиль мышления. Поэтому они по своей значимости могут выходить далеко за рамки той конкретной области, где они произошли. Поэтому можно говорить о частнонаучных и общенаучных революциях.

Возникновение квантовой механики – это яркий пример общенаучной революции, поскольку ее значение выходит далеко за пределы физики. Квантово-механические представления на уровне аналогий или метафор проникли в гуманитарное мышление. Эти представления посягают на нашу интуицию, здравый смысл, воздействуют на мировосприятие.

Дарвиновская революция по своему значению вышла далеко за пределы биологии. Она коренным образом изменила наши представления о месте человека в Природе. Она оказала сильное методологическое воздействие, повернув мышление ученых в сторону эволюционизма.

Новые методы исследования могут приводить к далеко идущим последствиям: к смене проблем, к смене стандартов научной работы, к появлению новых областей знаний. В этом случае их внедрение означает научную революцию.

Так, появление микроскопа в биологии означало научную революцию. Всю историю биологии можно разбить на два этапа, разделенные появлением и внедрением микроскопа. Целые фундаментальные разделы биологии – микробиология, цитология, гистология – обязаны своим развитием внедрению микроскопа.

Появление радиотелескопа означало революцию в астрономии. Академик Гинсбург пишет об этом так: «Астрономия после второй мировой войны вступила в период особенно блистательного развития, в период „второй астрономической революции “ (первая такая революция связывается с именем Галилея, начавшего использовать телескопы) … Содержание второй астрономической революции можно видеть в процессе превращения астрономии из оптической во всеволновую».

Иногда перед исследователем открывается новая область непознанного, мир новых объектов и явлений. Это может вызвать революционные изменения в ходе научного познания, как случилось, например, при открытии таких новых миров, как мир микроорганизмов и вирусов, мир атомов и молекул, мир электромагнитных явлений, мир элементарных частиц, при открытии явления гравитации, других галактик, мира кристаллов, явления радиоактивности и т. п.

Таким образом, в основе научной революции может быть обнаружение каких-то ранее неизвестных сфер или аспектов действительности.

Фундаментальные научные открытия

Многие крупные открытия в науке совершаются на вполне определенной теоретической базе. Пример: открытие планеты Нептун Леверье и Адамсом путем исследования возмущений в движении планеты Уран на базе небесной механики.

Фундаментальные научные открытия отличаются от других тем, что они связаны не с дедукцией из существующих принципов, а с разработкой новых основополагающих принципов.

В истории науки выделяются фундаментальные научные открытия, связанные с созданием таких фундаментальных научных теорий и концепций, как геометрия Евклида, гелиоцентрическая система Коперника, классическая механика Ньютона, геометрия Лобачевского, генетика Менделя, теория эволюции Дарвина, теория относительности Эйнштейна, квантовая механика. Эти открытия изменили представление о действительности в целом, т. е. носили мировоззренческий характер.

В истории науки есть много фактов, когда фундаментальное научное открытие делалось независимо друг от друга несколькими учеными практически в одно время. Например, неевклидова геометрия была построена практически одновременно Лобачевским, Гауссом, Больяи; Дарвин обнародовал свои идеи об эволюции практически одновременно с Уоллесом; специальная теория относительности была разработана одновременно Эйнштейном и Пуанкаре.

Из того, что фундаментальные открытия делаются почти одновременно разными учеными, следует вывод об их исторической обусловленности.

Фундаментальные открытия всегда возникают в результате решения фундаментальных проблем, т. е. проблем, имеющих глубинный, мировоззренческий, а не частный характер.

Так, Коперник увидел, что два фундаментальных мировоззренческих принципа его времени – принцип движения небесных тел по кругам и принцип простоты природы не реализуются в астрономии; решение этой фундаментальной проблемы привело его к великому открытию.

Неевклидова геометрия была построена, когда проблема пятого постулата геометрии Евклида перестала быть частной проблемой геометрии и превратилась в фундаментальную проблему математики, ее оснований.

Идеалы научного знания

В соответствии с классическими представлениями о науке она не должна содержать «никакой примеси заблуждений ». Сейчас истинность не рассматривается как необходимый атрибут всех познавательных результатов, претендующих на научность. Она является центральным регулятивом научно-познавательной деятельности.

Для классических представлений о науке характерен постоянный поиск «начал познания », «надежного фундамента », на который могла бы опираться вся система научных знаний.

Однако в современной методологии науки развивается представление о гипотетическом характере научного знания, когда опыт не является больше фундаментом познания, а выполняет в основном критическую функцию.

На смену фундаменталистской обоснованности как ведущей ценности в классических представлениях о научном познании все больше выдвигается такая ценность, как эффективность в решении проблем.

В качестве эталонов на протяжении развития науки выступали разные области научного знания.

«Начала » Евклида долгое время были притягательным эталоном буквально во всех областях знания: в философии, физике, астрономии, медицине и др.

Однако сейчас хорошо осознаны границы значимости математики как эталона научности, которые, например, сформулированы так: «В строгом смысле доказательства возможны только в математике, и не потому, что математики умнее других, а потому, что сами создают вселенную для своих опытов, все же остальные вынуждены экспериментировать со Вселенной, созданной не ими».

Триумф механики в XVII–XIX веках привел к тому, что ее стали рассматривать как идеал, образец научности.

Эддингтон говорил, что когда физик стремился объяснить что-либо, «его ухо изо всех сил пыталось уловить шум машины. Человек, который сумел бы сконструировать гравитацию из зубчатых колес, был бы героем викторианского века».

Начиная с Нового времени физика утверждалась как эталонная наука. Если сначала в качестве эталона выступила механика, то потом – весь комплекс физического знания. Ориентация на физический идеал в химии была ярко выражена, например, П.Бертло, в биологии – М.Шлейденом. Г.Гельмгольц утверждал, что «конечная цель » всего естествознания – «раствориться в механике ». Попытки построения «социальной механики », «социальной физики » и т. п. были многочисленны.

Физический идеал научного знания, безусловно доказал свою эвристичность, однако сегодня ясно, что реализация этого идеала часто тормозит развитие других наук – математики, биологи, социальных наук и др. Как отметил Н.К.Михайловский, абсолютизация физического идеала научности приводит к такой постановке общественных вопросов при «которой естествознание дает иудин поцелуй социологии », приводя к псевдообъективности.

В качестве образца научного знания иногда предлагаются гуманитарные науки. В центре внимания в этом случае – активная роль субъекта в познавательном процессе.

Научные революции обычно затрагивают мировоззренческие и методологические основания науки, нередко изменяя сам стиль мышления. Поэтому они по своей значимости могут выходить далеко за рамки той конкретной области, где они произошли. Поэтому можно говорить о частнонаучных и общенаучных революциях.

Возникновение квантовой механики - это яркий пример общенаучной революции, поскольку ее значение выходит далеко за пределы физики. Квантово-механические представления на уровне аналогий или метафор проникли в гуманитарное мышление. Эти представления оказывают влияние на нашу интуицию, здравый смысл, воздействуют на мировосприятие.

Дарвиновская революция по своему значению вышла далеко за пределы биологии. Она коренным образом изменила наши представления о месте человека в Природе. Она оказала сильное методологическое воздействие, повернув мышление ученых в сторону эволюционизма.

Новые методы исследования могут приводить к далеко идущим последствиям: к смене проблем, к смене стандартов научной работы, к появлению новых областей знаний. В этом случае их внедрение означает научную революцию.

Так, появление микроскопа в биологии означало научную революцию. Всю историю биологии можно разбить на два этапа, разделенные появлением и внедрением микроскопа. Целые фундаментальные разделы биологии - микробиология, цитология, гистология - обязаны своим развитием внедрению микроскопа.

Появление радиотелескопа означало революцию в астрономии. Академик Гинзбург пишет об этом так: "Астрономия после второй мировой войны вступила в период особенно блистательного развития, в период "второй астрономической революции" (первая такая революция связывается с именем Галилея, начавшего использовать телескопы) ... Содержание второй астрономической революции можно видеть в процессе превращения астрономии из оптической во всеволновую".

Иногда перед исследователем открывается новая область непознанного, мир новых объектов и явлений. Это может вызвать революционные изменения в ходе научного познания, как случилось, например, при открытии таких новых миров, как мир микроорганизмов и вирусов, мир атомов и молекул, мир электромагнитных явлений, мир элементарных частиц, при открытии явления гравитации, других галактик, мира кристаллов, явления радиоактивности и т.п.

Таким образом, в основе научной революции может быть обнаружение каких-то ранее неизвестных сфер или аспектов действительности.

Ф.Бэкон считал, что разработал метод научных открытий, в основе которого - постепенное движение от частностей к обобщениям. Он был уверен, что разработал метод открытия нового научного знания, которым может овладеть каждый. В основе этого метода открытия - индуктивное обобщение данных опыта. Бэкон построил довольно изощренную схему индуктивного метода, в которой учитываются случаи не только наличия изучаемого свойства, но и его различных степеней, а также отсутствия этого свойства в ситуациях, когда его проявление ожидалось.

Декарт считал, что метод получения нового знания опирается на интуицию и дедукцию. "Эти два пути, - писал он, - являются самыми верными путями к знанию, и ум не должен допускать их больше - все другие (например, аналогию) надо отвергать как подозрительные и ведущие к заблуждению".

В современной методологии науки осознано, что индуктивные обобщения не могут осуществить скачок от эмпирии к теории. Эйнштейн писал об этом так: "В настоящее время известно, что наука не может вырасти на основе одного только опыта и что при построении науки мы вынуждены прибегать к свободно создаваемым понятиям, пригодность которых можно a posteriori проверить опытным путем. Эти обстоятельства ускользали от предыдущих поколений, которым казалось, что теорию можно построить чисто индуктивно, не прибегая к свободному, творческому созданию понятий. В последнее время перестройка всей системы теоретической физики в целом привела к тому, что признание умозрительного характера науки стало всеобщим достоянием".

При характеристике перехода от эмпирических данных к теории важно подчеркнуть, что чистый опыт, т.е. такой, который не определялся бы теоретическими представлениями, вообще не существует.

По этому поводу К. Поппер писал так: "Представление о том, что наука развивается от наблюдения к теории, все еще широко распространено. Однако вера в то, что мы можем начать научные исследования, не имея чего-то похожего на теорию, является абсурдной. Двадцать пять лет тому назад я пытался внушить эту мысль группе студентов-физиков в Вене, начав свою лекцию следующими словами: "Возьмите карандаш и бумагу, внимательно наблюдайте и описывайте ваши наблюдения!" Они спросили, конечно, что именно они должны наблюдать. Ясно, что простая инструкция "Наблюдайте!" является абсурдной. Наблюдение всегда носит избирательный характер. Нужно избрать объект, определенную задачу, иметь некоторый интерес, точку зрения, проблему...".

Роль теории в развитии научного знания ярко проявляется в том, что фундаментальные теоретические результаты могут быть получены без непосредственного обращения к эмпирическим данным.

Классический пример построения фундаментальной теории без непосредственного обращения к эмпирическим данным - это создание Эйнштейном общей теории относительности. Частная теория относительности тоже была создана в результате рассмотрения чисто теоретической проблемы (опыт Майкельсона не имел для Эйнштейна существенного значения).

Новые явления могут быть открыты в науке и путем эмпирических, и путем теоретических исследований. Классический пример открытия нового явления на уровне теории - это открытие позитрона П.Дираком, принципы геометрии Лобачевского и основания квантовой механики, теории относительности, космологии Большого взрыва и т.д.

Попытки построения различного рода логик открытия прекратились еще в прошлом веке как полностью несостоятельные. Стало очевидным, что никакой логики открытия, никакого алгоритма открытий в принципе не существует. В то же время, безусловно, существует логика научного исследования. Как выразился профессор Кембриджского университета лорд Эктон, "Нет ничего более необходимого для человека науки, чем ее история и логика научного исследования...- способы обнаружения ошибок, использования гипотез и воображения, методы проверок".

Многие крупные открытия в науке совершаются на вполне определенной теоретической базе. Пример - открытие планеты Нептун Леверье и Адамсом на базе небесной механики путем исследования возмущений в движении планеты Уран.

Фундаментальные научные открытия отличаются от других тем, что они связаны не с дедукцией из существующих принципов, а с разработкой новых основополагающих принципов. В истории науки выделяются фундаментальные научные открытия, связанные с созданием таких фундаментальных научных теорий и концепций, как геометрия Евклида, гелиоцентрическая система Коперника, классическая механика Ньютона, геометрия Лобачевского, генетика Менделя, теория эволюции Дарвина, теория относительности Эйнштейна, квантовая механика. Эти открытия изменили представление о действительности в целом, т.е. носили мировоззренческий характер.

Как упоминалось выше, в истории науки есть много фактов, когда фундаментальное научное открытие делалось независимо друг от друга несколькими учеными практически в одно время. Например, неевклидова геометрия была построена практически одновременно Лобачевским, Гауссом и Больяни; Дарвин обнародовал свои идеи об эволюции практически одновременно с Уоллесом; специальная теория относительности была разработана одновременно Эйнштейном и Пуанкаре.

Из того, что фундаментальные открытия делаются почти одновременно разными учеными, следует вывод об их исторической обусловленности. Фундаментальные открытия всегда возникают в результате решения фундаментальных проблем, т.е. проблем, имеющих глубинный, мировоззренческий, а не частный характер. Так, Коперник увидел, что два фундаментальных мировоззренческих принципа его времени - принцип движения небесных тел по кругам и принцип простоты природы не реализуются в астрономии; решение этой фундаментальной проблемы привело его к величайшему открытию - гелиоцентрической модели мира.

Неевклидова геометрия была построена, когда проблема пятого постулата Евклида перестала быть частной проблемой геометрии и превратилась в фундаментальную проблему математики, ее оснований.

Интенсивное развитие науки в XIX - XX вв. привело к узловым проблемам естествознания, которые должны быть разрешены в ближайшие годы, ибо для этого накоплен достаточный арсенал теоретических знаний и экспериментальной техники. В первую очередь, речь идет о причинах и механизмах возникновения жизни на Земле. Если существующие теории и могут объяснить появление простейших органических веществ и аминокислот в результате существования специфического химического состава земной поверхности и воздействия на него солнечного излучения, то появление молекул, образующих двойную спираль и несущих наследственный код, остается необъяснимым по причине ничтожной вероятности самопроизвольного синтеза подобных молекул, даже принимая во внимание значительный временной период, в котором этот процесс мог бы реализоваться. Подобный же вопрос возникает при изучении, например, механизма зрения высоко организованных живых существ. Можно предположить, что цепочка преобразования света в электрический сигнал и цепочка передачи нервного импульса формируются независимо в эволюционном процессе, хотя трудно предположить их независимое формирование, так как не может формироваться какая-то функция организма, если в ней нет непосредственной необходимости. Но еще труднее понять, как эти две цепочки "нашли" друг друга. Вопросы космологии, происхождения мира, его границ, множественности, начала и конца также требуют своего решения, в том числе для понимания места и роли человечества в мире.

В соответствии с классическими представлениями о науке она не должна содержать "никакой примеси заблуждений". Сейчас истинность не рассматривается как необходимый атрибут всех познавательных результатов, претендующих на научность. Она является центральным регулятором научно-познавательной деятельности.

Для классических представлений о науке характерен постоянный поиск "начал познания", "надежного фундамента", на который могла бы опираться вся система научных знаний.

Однако в современной методологии науки развивается представление о гипотетическом характере научного знания, когда опыт не является больше фундаментом познания, а выполняет в основном критическую функцию.

На смену фундаменталистской обоснованности как ведущей ценности в классических представлениях о научном познании все больше выдвигается такая ценность, как эффективность в решении проблем.

В качестве эталонов на протяжении развития науки выступали разные области научного знания. "Начала" Евклида долгое время были притягательным эталоном буквально во всех областях знания: в философии, физике, астрономии, медицине и др. Однако сейчас хорошо осознаны границы значимости математики как эталона научности, которые, например, сформулированы так: "В строгом смысле доказательства возможны только в математике, и не потому, что математики умнее других, а потому, что сами создают вселенную для своих опытов, все же остальные вынуждены экспериментировать с Вселенной, созданной не ими".

Триумф механики в XVII - начале XIX веках привел к тому, что ее стали рассматривать как идеал, образец научности. Эддингтон говорил, что когда физик стремился объяснить что-либо, "его ухо изо всех сил пыталось уловить шум машины. Человек, который сумел бы сконструировать гравитацию из зубчатых колес, был бы героем викторианского века".

Начиная с Нового времени, физика утверждалась как эталонная наука. Если сначала в качестве эталона выступила механика, то потом - весь комплекс физического знания. Ориентация на физический идеал в химии была ярко выражена, например, П. Бертло, в биологии - М. Шлейденом. Г. Гельмгольц утверждал, что "конечная цель" всего естествознания - "раствориться в механике". Попытки построения "социальной механики", "социальной физики" и т.п. были многочисленны.

Физический идеал научного знания, безусловно доказал свою эвристичность, однако, сегодня ясно, что реализация этого идеала часто тормозит развитие других наук: математики, биологи, социальных наук и др.

Помимо социокультурной обусловленности, всякое научное познание, в том числе и гуманитарное, должно характеризоваться внутренней, предметной обусловленностью. Поэтому гуманитарный идеал не может быть реализован даже в своей предметной области, а тем более в естествознании. Гуманитарный идеал научности иногда рассматривается как переходная ступень к некоторым новым представлениям о науке, выходящим за пределы классических представлений.

Вообще, для классических представлений о науке характерно стремление выделить "эталон научности", к которому должны "подтянуться" все другие области познания.

Если в соответствии с классическими представлениями о науке ее выводы должны определяться только самой изучаемой реальностью, то для современной методологии науки характерно принятие и развитие тезиса о социально-культурной обусловленности научного познания.

Социальные (социально-экономические, культурно-исторические, мировоззренческие, социально-психологические) факторы развития науки не оказывают прямого влияния на научное знание, которое развивается по своей внутренней логике.

В методологии науки выделяются такие функции науки, как описание, объяснение, предвидение, понимание. Однако такое понимание функций науки сформировалось в результате противоборства различных точек зрения в этом вопросе.

Кант основной функцией науки считал предвидение. Он писал: "Истинное положительное мышление заключается преимущественно в способности знать, чтобы предвидеть, изучать то, что есть, и отсюда заключать о том, что должно произойти согласно общему положению о неизменности естественных законов". Другая точка зрения развивалась известным философом и физиком Э. Махом. Он отмечал: "Дает ли описание все, что может требовать научный исследователь? Я думаю, что да!". Объяснение и предвидение Мах сводил к описанию. Теория, с его точки зрения, - это как бы спрессованная эмпирия, то есть общее описание массива экспериментальных данных, и между теорией и простым наблюдением нет никакой существенной разницы ни в отношении происхождения, ни в отношении конечного результата. В результате он сделал вывод, что атомно-молекулярная теория есть ничто иное как "мифология природы". Аналогичную позицию занимал в первый период своей научной деятельности и известный химик В. Оствальд. Интересно отметить, что научная деятельность обоих ученых протекала в конце XIX - начале XX века. По этому поводу А. Эйнштейн писал: "Предубеждение этих ученых против атомной теории можно, несомненно, отнести за счет их позитивистской философской установки. Это - интересный пример того, как философские предубеждения мешают правильной интерпретации фактов даже ученым со смелым мышлением и тонкой интуицией. Предрассудок, который сохранился до сих пор, заключается в убеждении, будто факты сами по себе, без свободного теоретического построения, могут и должны привести к научному познанию". Философ Нового времени В. Дильтей, известный своими работами о сущности гуманитарных и естественных наук, считал, что познавательная основная функция наук о природе - это объяснение природы и природных явлений. Однако на самом деле науки о природе также выполняют функцию понимания. Объяснение связано с пониманием, поскольку объяснение аргументировано демонстрирует нам осмысленность существования объекта, а значит, позволяет понять его.

Этические нормы не только регулируют применение научных результатов, но и содержатся в самой научной деятельности.

Норвежский философ Г. Скирбекк отмечает: "Будучи деятельностью, направленной на поиск истины, наука регулируется нормами: "ищи истину", "избегай бессмыслицы", "выражайся ясно", "старайся проверять свои гипотезы как можно более основательно" - примерно так выглядят формулировки этих внутренних норм науки". В этом смысле этика содержится в самой науке, и отношения между наукой и этикой не ограничиваются вопросом о хорошем или плохом применении научных результатов.

Наличие определенных ценностей и норм, воспроизводящихся от поколения к поколению ученых и являющихся обязательными для человека науки, т.е. определенной научной этики, очень важно для самоорганизации научного сообщества (при этом нормативно-ценностная структура науки не является жесткой). Отдельные нарушения этических норм науки в общем скорее чреваты большими неприятностями для самого нарушителя, чем для науки в целом. Однако если такие нарушения приобретают массовый характер, под угрозой уже оказывается сама наука. К этическим нормам, которые, безусловно, должны выполняться, следует отнести: признание приоритета ученого, открывшего то или иное явление или закономерность, опубликование достоверных экспериментальных результатов, ознакомление широкой научной общественности с деталями эксперимента, используя научные публикации и конференции, полное цитирование предшествующих работ, выполненных по той же проблеме, указание слабых сторон исследования, открытость условий и деталей эксперимента для желающих ознакомиться с ними.

Этическая оценка науки сейчас должна быть дифференцированной, относящейся не к науке в целом, а к отдельным направлениям и областям научного знания. Такие морально-этические суждения играют очень конструктивную роль.

Современная наука включает в себя человеческие и социальные взаимодействия, в которые вступают люди по поводу научных знаний. "Чистое" изучение наукой познаваемого объекта - это методологическая абстракция, благодаря которой можно получить упрощенную картину науки. На самом деле объективная логика развития науки реализуется не вне ученого, а в его деятельности. В последнее время социальная ответственность ученого является неотъемлемым компонентом научной деятельности. Эта ответственность оказывается одним из факторов, определяющих тенденции развития науки, отдельных дисциплин и исследовательских направлений.

В 70-е годы XX века ученые впервые объявили мораторий на опасные исследования. В связи с результатами и перспективами биомедицинских и генетических исследований группа молекулярных биологов и генетиков во главе с П. Бергом (США) добровольно объявили мораторий на такие эксперименты в области генной инженерии, которые могут представлять опасность для генетической конституции живущих ныне организмов. Тогда впервые ученые по собственной инициативе решили приостановить исследования, сулившие им большие успехи. Социальная ответственность ученых стала органической составляющей научной деятельности, ощутимо влияющей на проблематику и направления исследований.

Прогресс науки расширяет диапазон проблемных ситуаций, для решения которых недостаточен весь накопленный человечеством нравственный опыт. Большое число таких ситуаций возникает в медицине. Например, в связи с успехами экспериментов по пересадке сердца и других органов остро встал вопрос об определении момента смерти донора. Этот же вопрос возникает и тогда, когда у необратимо коматозного пациента с помощью технических средств поддерживается дыхание и сердцебиение. Нельзя считать, что этические проблемы являются достоянием лишь некоторых областей науки. Ценностные и этические основания всегда были необходимы для научной деятельности. В современной науке они становятся весьма заметной и неотъемлемой стороной деятельности, что является следствием развития науки как социального института и роста ее роли в жизни общества.

Наука обычно представляется как сфера почти непрерывного творчества, постоянного стремления к новому. Однако в современной методологии науки четко осознано, что научная деятельность может быть традиционной.

Основателем учения о научных традициях является Т.Кун. Традиционная наука называется в его концепции "нормальной наукой", которая представляет собой "исследование, прочно опирающееся на одно или несколько прошлых достижений, которые в течение некоторого времени признаются определенным научным сообществом как основа для развития его дальнейшей практической деятельности".

Т.Кун показал, что традиция является не тормозом, а наоборот, необходимым условием быстрого накопления научных знаний. "Нормальная наука" развивается не вопреки традициям, а именно в силу своей традиционности. Традиция организует научное сообщество, порождает "индустрию" производства знаний.

Т.Кун пишет: "Под парадигмами я подразумеваю признанные всеми научные достижения, которые в течение определенного времени дают модель постановки проблем и их решений научному сообществу".

Достаточно общепринятые теоретические концепции типа системы Коперника, механики Ньютона, кислородной теории Лавуазье, теории относительности Эйнштейна и т.п. определяют парадигмы научной деятельности. Познавательный потенциал, заложенный в таких концепциях, определяющих видение реальности и способов ее постижения, выявляется в периоды "нормальной науки", когда ученые в своих исследованиях не выходят за границы, определяемые парадигмой.

Т.Кун так описывает кризисные явления в развитии нормальной науки: "Увеличение конкурирующих вариантов, готовность опробовать что-либо еще, выражение явного недовольства, обращение за помощью к философии и обсуждение фундаментальных положений - все это симптомы перехода от нормального исследования к экстраординарному".

Кризисная ситуация в развитии "нормальной науки" разрешается тем, что возникает новая парадигма. Тем самым происходит научная революция, и вновь складываются условия для функционирования "нормальной науки".

Т.Кун пишет: "Решение отказаться от парадигмы всегда одновременно есть решение принять другую парадигму, а приговор, приводящий к такому решению, включает как сопоставление обеих парадигм с природой, так и сравнение парадигм друг с другом".

Переход от одной парадигмы к другой, по Куну, невозможен посредством логики и ссылок на опыт.

В некотором смысле защитники различных парадигм живут в разных мирах. По Куну, различные парадигмы несоизмеримы. Поэтому переход от одной парадигмы к другой должен осуществляться резко, как переключение, а не постепенно посредством логики.

Научные революции

Научные революции обычно затрагивают мировоззренческие и методологические основания науки, нередко изменяя сам стиль мышления. Поэтому они по своей значимости могут выходить далеко за рамки той конкретной области, где они произошли. Поэтому можно говорить о частнонаучных и общенаучных революциях.

Возникновение квантовой механики - это яркий пример общенаучной революции, поскольку ее значение выходит далеко за пределы физики. Квантово-механические представления на уровне аналогий или метафор проникли в гуманитарное мышление. Эти представления посягают на нашу интуицию, здравый смысл, воздействуют на мировосприятие.

Дарвиновская революция по своему значению вышла далеко за пределы биологии. Она коренным образом изменила наши представления о месте человека в Природе. Она оказала сильное методологическое воздействие, повернув мышление ученых в сторону эволюционизма.

Новые методы исследования могут приводить к далеко идущим последствиям: к смене проблем, к смене стандартов научной работы, к появлению новых областей знаний. В этом случае их внедрение означает научную революцию.

Так, появление микроскопа в биологии означало научную революцию. Всю историю биологии можно разбить на два этапа, разделенные появлением и внедрением микроскопа. Целые фундаментальные разделы биологии - микробиология, цитология, гистология - обязаны своим развитием внедрению микроскопа.

Появление радиотелескопа означало революцию в астрономии. Академик Гинсбург пишет об этом так: "Астрономия после второй мировой войны вступила в период особенно блистательного развития, в период "второй астрономической революции" (первая такая революция связывается с именем Галилея, начавшего использовать телескопы) ... Содержание второй астрономической революции можно видеть в процессе превращения астрономии из оптической во всеволновую".

Иногда перед исследователем открывается новая область непознанного, мир новых объектов и явлений. Это может вызвать революционные изменения в ходе научного познания, как случилось, например, при открытии таких новых миров, как мир микроорганизмов и вирусов, мир атомов и молекул, мир электромагнитных явлений, мир элементарных частиц, при открытии явления гравитации, других галактик, мира кристаллов, явления радиоактивности и т.п.

Таким образом, в основе научной революции может быть обнаружение каких-то ранее неизвестных сфер или аспектов действительности.

Фундаментальные научные открытия

Многие крупные открытия в науке совершаются на вполне определенной теоретической базе. Пример: открытие планеты Нептун Леверье и Адамсом путем исследования возмущений в движении планеты Уран на базе небесной механики.

Фундаментальные научные открытия отличаются от других тем, что они связаны не с дедукцией из существующих принципов, а с разработкой новых основополагающих принципов.

В истории науки выделяются фундаментальные научные открытия, связанные с созданием таких фундаментальных научных теорий и концепций, как геометрия Евклида, гелиоцентрическая система Коперника, классическая механика Ньютона, геометрия Лобачевского, генетика Менделя, теория эволюции Дарвина, теория относительности Эйнштейна, квантовая механика. Эти открытия изменили представление о действительности в целом, т.е. носили мировоззренческий характер.

В истории науки есть много фактов, когда фундаментальное научное открытие делалось независимо друг от друга несколькими учеными практически в одно время. Например, неевклидова геометрия была построена практически одновременно Лобачевским, Гауссом, Больяи; Дарвин обнародовал свои идеи об эволюции практически одновременно с Уоллесом; специальная теория относительности была разработана одновременно Эйнштейном и Пуанкаре.

Из того, что фундаментальные открытия делаются почти одновременно разными учеными, следует вывод об их исторической обусловленности.

Фундаментальные открытия всегда возникают в результате решения фундаментальных проблем, т.е. проблем, имеющих глубинный, мировоззренческий, а не частный характер.

Так, Коперник увидел, что два фундаментальных мировоззренческих принципа его времени - принцип движения небесных тел по кругам и принцип простоты природы не реализуются в астрономии; решение этой фундаментальной проблемы привело его к великому открытию.

Неевклидова геометрия была построена, когда проблема пятого постулата геометрии Евклида перестала быть частной проблемой геометрии и превратилась в фундаментальную проблему математики, ее оснований.

Среди многообразных видов научных открытий особое место занимают фундаментальные открытия, изменяющие наши представления о действительности в целом, т.е. носящие мировоззренческий характер.

ДВА РОДА ОТКРЫТИЙ

А. Эйнштейн в свое время писал, что физик‑теоретик «в качестве фундамента нуждается в некоторых общих предположениях, так называемых принципах, исходя из которых он может вывести следствия. Его деятельность, таким образом, разбивается на два этапа. Во‑первых, ему необходимо отыскать эти принципы, во‑вторых, – развивать вытекающие из этих принципов следствия. Для выполнения второй задачи он основательно вооружен еще со школы. Следовательно, если для некоторой области и, соответственно, совокупности взаимосвязей первая задача решена, то следствия не заставят себя ждать. Совершенно иного рода первая из названных задач, т.е. установление принципов, могущих служить основой для дедукции. Здесь не существует метода, который можно было бы выучить и систематически применять для достижения цели».

Мы будем заниматься главным образом обсуждением проблем, связанных с решением задач первого рода, но для начала уточним наши представления о том, как решаются задачи второго рода.

Представим себе следующую задачу. Имеется окружность, через центр которой проведены два взаимно перпендикулярных диаметра. Через точку А, находящуюся на одном из диаметров на расстоянии 2/3 от центра окружности О, проведем прямую, параллельную другому диаметру, а из точки В – пересечения этой прямой с окружностью опустим перпендикуляр на второй диаметр, обозначив их точку пересечения через К. Нам необходимо выразить длину отрезка АК через функцию от радиуса.

Как мы будем решать эту школьную задачу?

Обратившись для этого к определенным принципам геометрии, восстановим цепочку теорем. При этом мы пытаемся использовать все имеющиеся у нас данные. Заметим, что, раз проведенные диаметры взаимно перпендикулярны, треугольник ОАК является прямоугольным. Величина ОА = 2/3r. Постараемся теперь найти длину второго катета, чтобы затем применить теорему Пифагора и определить длину гипотенузы АК. Можно попробовать использовать и какие‑то другие методы. Но вдруг, внимательно посмотрев на рисунок, мы обнаруживаем, что ОАВК – это прямоугольник, у которого, как известно, диагонали равны, т.е. АК = ОВ. ОВ же равно радиусу окружности, следовательно, без всяких вычислений ясно, что АК = r.

Вот оно – красивое и психологически интересное решение задачи.

В приведенном примере важно следующее.

– Во‑первых, задачи подобного рода обычно относятся к четко определенной предметной области. Решая их, мы ясно представляем себе, где, собственно, надо искать решение. В данном случае мы не задумываемся над тем, правильны ли основания евклидовой геометрии, не нужно ли придумать какую‑то другую геометрию, какие‑то особые принципы, чтобы решить задачу. Мы сразу истолковываем ее как относящуюся к области евклидовой геометрии.

– Во‑вторых, эти задачи – необязательно стандартные, алгоритмические. В принципе их решение требует глубокого понимания специфики рассматриваемых объектов, развитой профессиональной интуиции. Здесь, следовательно, нужна некоторая профессиональная тренированность. В процессе решения задач такого рода мы открываем новый путь. Мы замечаем «вдруг», что изучаемый объект можно рассматривать как прямоугольник и вовсе не нужно выделять в качестве элементарного объекта для формирования правильного пути решения задачи прямоугольный треугольник.

Конечно, приведенная выше задача очень проста. Она нужна лишь для того, чтобы в целом очертить тип задач второго рода. Но среди таких задач существуют и неизмеримо более сложные, решение которых имеет большое значение для развития науки.

Рассмотрим, например, открытие новой планеты У.Леверье и Дж.Адамсом. Конечно, это открытие – большое событие в науке, тем более если учесть, как оно было сделано:

– сначала были обсчитаны траектории планет;

– потом было обнаружено, что они не совпадают с наблюдаемыми;

– затем было высказано предположение о существовании новой планеты;

– потом навели телескоп в соответствующую точку пространства и... обнаружили там планету.

Но почему это большое открытие можно отнести только к открытиям второго рода?

Все дело в том, что оно было совершено на четком фундаменте уже разработанной небесной механики.

Хотя задачи второго рода, конечно, можно подразделять на подклассы различной сложности, А.Эйнштейн был прав, отделяя их от фундаментальных проблем.

Ведь последние требуют открытия новых фундаментальных принципов, которые не могут быть получены какой‑либо дедукцией из существующих принципов.

Конечно, между задачами первого и второго рода существуют промежуточные инстанции, но мы не будем их здесь рассматривать, а перейдем сразу к задачам первого рода.

Таких проблем возникало перед человечеством в общем‑то не так уж много, но решения их всякий раз означали громадный прогресс в развитии науки и культуры в целом. Они связаны с созданием таких фундаментальных научных теорий и концепций, как

геометрия Евклида?

гелиоцентрическая теория Коперника,

классическая механика Ньютона,

геометрия Лобачевского,

генетика Менделя,

теория эволюции Дарвина,

теория относительности Эйнштейна,

квантовая механика,

структурная лингвистика.

Все они характеризуются тем, что интеллектуальная база, на которой они создавались, в отличие от области открытий второго рода, никогда не являлась строго ограниченной.

Если говорить о психологическом контексте открытий разных классов, то, вероятно, он одинаков.

– В самом поверхностном виде его можно охарактеризовать как непосредственное видение, открытие в полном смысле этого слова. Человек, как считал Р. Декарт, «вдруг» видит, что проблему нужно рассматривать именно так, а не иначе.

– Далее, следует заметить, что открытие никогда не бывает одноактным, а носит, так сказать, «челночный» характер. Сначала присутствует некое ощущение идеи; потом она проясняется путем выведения из нее определенных следствий, которые, как правило, уточняют идею; затем из новой модификации выводятся новые следствия и т.д.

Но в гносеологическом плане открытия первого и второго родов различаются радикальнейшим образом.


Похожая информация.


Новое на сайте

>

Самое популярное