Домой Игры Ускорение точек плоской фигуры термех. Теорема об ускорениях точек плоской фигуры

Ускорение точек плоской фигуры термех. Теорема об ускорениях точек плоской фигуры

Рис.40

Рис.39

Рис.38

Свойства плана скоростей.

а) Стороны треугольников на плане скоростей перпендику­лярны соответствующим прямым на плоскости тела.

Действительно, . Но на плане скоростей . Значит причём перпендикулярна АВ , по­этому и . Точно так же и .

б) Стороны плана скоростей пропорциональны соответствующим от­резкам прямых на плоскости тела.

Так как , то отсюда и следует, что стороны плана скоростей пропорциональны отрезкам прямых на плоскости тела.

Объединив оба свойства, можно сделать вывод, что план скоростей подобен соответствующей фигуре на теле и повёрнут относительно её на 90˚ по направлению вращения. Эти свойства плана скоростей позволяют определять скорости точек тела графическим способом.

Пример 10. На рисунке 39 в масштабе изображён механизм. Известна угловая скорость звена ОА .

Чтобы построить план ско­ростей должна быть известна скорость какой-нибудь одной точки и хотя бы направление вектора скорости другой. В на­шем примере можно определить скорость точки А : и направление её вектора .

Откладываем (рис. 40) из точки о в масштабе Известно направление вектора скорости ползуна В – горизонтальное. Проводим на плане скоростей из точки О прямую I по направлению скорости , на которой должна находиться точка b , определяющая скорость этой точки В . Так как стороны плана скоростей перпендикулярны соответствующим звеньям механизма, то из точки а проводим прямую перпендикулярно АВ до пересечения с прямой I . Точка пересечения определит точку b , а значит и скорость точки В : . По второму свойству плана скоростей его стороны подобны звеньям механизма. Точка С делит АВ пополам, значит и с должна делить аb пополам. Точка с определит на плане скоростей величину и направление скорости (если с соединить с точкой О ).

Скорость точки Е равна нулю, поэтому точка е на плане скоростей совпадает с точкой О .

Покажем, что ускорение любой точки М плоской фигуры (так же, как и скорость) складывается из ускорений, которые точка получает при поступательном и вращательном движениях этой фигуры. Положение точки М по отношению к осям Оxy (см.рис.30) определяется радиусом-вектором где . Тогда

В правой части этого равенства первое слагаемое есть ускорение полюса А , а второе слагаемое определяет ускорение , которое точка м получает при вращении фигуры вокруг полюса A . следовательно,

Значение , как ускорения точки вращающегося твердого тела, определяется как

где и - угловая скорость и угловое ускорение фигуры, а - угол между вектором и отрезком МА (рис.41).составляющими и пред­ставить в виде

Ускорение любой точки движущейся плоской фигуры можно определить двумя способами: 1) как геометрическую сумму ускорений этой точки в поступательном и вращательном движениях фигуры и 2) как ускорение этой точки во вращательном движении вокруг мгновенного центра ускорений, причем мгновенным центром ускорений называется такая точка Плоской фигуры, ускорение которой в данный момент равно нулю.

Если известны ускорение некоторой точки А фигуры (ускорение полюса), а также угловая скорость и угловое ускорение фигуры, то ускорение любой ее точки В определяется по формуле

Здесь вектор - ускорение точки В во вращательном движении вокруг полюса касательная и нормальная составляющие этого ускорения.

Следовательно,

при этом вектор направлен вдоль АВ (от точки В к точке А), а вектор перпендикулярен к АВ.

Угол между векторами и ВА определяется по формуле

при этом в случае ускоренного вращения фигуры векторы (вращательная скорость точки В вокруг полюса А) лежат по одну сторону от прямой АВ, в противном случае эти векторы расположены по разные стороны от этой прямой.

Если угловая скорость фигуры постоянна, т. е. , то , а следовательно, и , т. е. вектор совпадает по направлению с вектором ВА. Если же в данный момент , то и вектор перпендикулярен к вектору ВА.

На основании равенства (78) ускорение точки В можно найти построением многоугольника ускорений и применением затем метода проекций, спроектировав векторное равенство (78) на выбранные оси.

Если мгновенный центр ускорений Q принять за полюс, то для ускорения произвольно выбранной точки М фигуры имеем:

но , а потому

т. e. ускорение любой точки М плоской фигуры определяется как ускорение во вращательном движении вокруг мгновенного центра ускорений (рис. 108).

При этом ускорение направлено по прямой MQ от точки М к центру Q, а ускорение перпендикулярно к MQ и

Ускорение точки М равно по модулю

и составит с направлением MQ угол

(84)

Отсюда следует: 1) угол а для всех точек фигуры имеет в данный момент одно и то же значение; 2) ускорения точек плоской фигуры пропорциональны расстояниям этих точек от мгновенного центра ускорений.

Чтобы определить для данного момента положение мгновенного центра ускорений нужно:

1) найти ускорение какой-либо точки А фигуры [обычно при решении задач рассматриваемого типа ускорение одной точки фигуры (механизма) или задается, или его можно легко найти];

2) повернуть полупрямую, по которой направлен вектор , вокруг точки А на острый угол или в направлении вращения фигуры, если это вращение является ускоренным, или в противоположном направлении в противном случае;

3) на полученной после этого поворота полупрямой отложить отрезок

Отметим два частных случая:

1) пусть , тогда , следовательно, ускорение любой точки М движущейся фигуры направлено , т. е. проходит через центр Q. Поэтому мгновенный центр ускорений Q в этом случае можно найти как точку пересечения прямых, по которым направлены ускорения двух каких-либо точек фигуры;

2) пусть , тогда следовательно, ускорение любой точки М фигуры перпендикулярно к MQ. Поэтому мгновенный центр ускорений Q в этом случае можно найти как точку пересечения перпендикуляров, восставленных из двух каких-либо точек движущейся фигуры к ускорениям этих точек.

Задачи, относящиеся к этому параграфу, можно разделить на следующие четыре группы:

1) задачи, в которых заданы векторы скорости и ускорения одной точки и прямолинейная траектория второй точки плоской фигуры, ускорение которой требуется найти (задачи 566-571, 573-579);

2) задачи, в которых заданы векторы скорости и ускорения одной точки и криволинейная траектория второй точки плоской фигуры, ускорение которой требуется найти (задачи 572, 573, 575);

3) задачи, в которых требуется определить ускорение точки катящегося без скольжения колеса (задачи 556-563);

4) задачи, в которых заданы ускорения двух точек плоской фигуры, а требуется определить ускорение третьей точки этой фигуры (задачи 564, 574, 576-578).


Согласно рассмотренному ранее, движение плоской фигуры складывается из поступательного и вращательного движений. Покажем, что ускорение любой точки плоской фигуры складывается геометрически из ускорений, которые точка получает в каждом из этих движений.

Положение точки В (согласно рис. 35) можно определить по формуле:

где – радиус-вектор полюса А, – вектор, определяющий положение точки В относительно полюса А.

Согласно теореме о скоростях точек плоской фигуры:

Очевидно, что ускорение точки В будет равно:

где – ускорение полюса А. Т.к. и исходя из свойств плоской фигуры, можно утверждать, что –ускорение точки В в ее вращательном движении вокруг полюса А.

Ускорение любой точки плоской фигуры геометрически складывается из ускорения какой-нибудь другой точки, принятой за полюс, и ускорения этой точки в ее врщении вместе с фигурой вокруг полюса:

Следовательно, ускорение некоторой точки В плоской фигуры изображается диагональю векторного параллелограмма (построенного при точке В), в котором его сторонами являются и (рис. 40).

Рис. 40. Построение вектора ускорения точки В

При решении задач вектор раскладывают на составляющие:

где – касательная составляющая ускорения (и направлен в сторону вращения на рис. 41, 42);

– нормальная составляющая ускорения (всегда направлен из точки В к полюсу А).

Модуль полного ускорения определяют по формуле:

Рис. 41. К доказательству теоремы об ускорениях точек плоской фигуры (случай ускоренного вращения)Рис. 42. К доказательству теоремы об ускорениях точек плоской фигуры (случай замедленного вращения)

При графическом определении ускорения точки В удобно пользоваться углом, тангенс которого находят из выражения:

Если известны траектории полюса A и точки B, ускорение которой надо найти, то ускорения этих точек для удобства вычисления раскладывают на нормальные и касательные составляющие. Тогда теорема об ускорениях точек плоской фигуры примет развернутый вид:

Таким образом, для определения ускорения произвольной точки В необходимо знать ускорение какой-либо точки плоской фигуры А, принимаемой за полюс, угловую скорость  плоской фигуры и ее угловое ускорение  в данный момент времени.

Модуль ускорения точки В (или любой другой точки плоской фигуры) можно найти следующими способами:

  • графически;
  • аналитически (способом проекций): ,

где аВх, аВу – проекции ускорения точки В на заранее выбранные оси х и у прямоугольной системы координат.

Учебное пособие для студентов технических вузов

У нас самая большая информационная база в рунете, поэтому Вы всегда можете найти походите запросы

Рабочая программа. Наименование учебного предмета: Математика 1 класс

Количество часов по учебному плану всего: 132 часа в год; в неделю 4 часа. Рабочая программа составлена в соответствии с требованиями Федерального государственного образовательного стандарта НОО Программа разработана на основе Федерального государственного образовательного стандарта начального общего образования

Гражданское право

Готовые ответы по гражданском праву. ГК РФ - гражданский кодекс Российской Федерации. Вопросы юридический и физических лиц. Сделки договоры и договоренности, какие сделки считаются действительными, а какие недействительными; их регулирование законом.

Рабочая программа учебной дисциплины «Административное право»

Рабочая программа предназначена для преподавания дисциплины базовой (общепрофессиональной) части профессионального цикла студентам очной формы обучения по направлению подготовки «Юриспруденция»

Коммерческая деятельность в рыночной экономике

Коммерческая деятельность в рыночной экономике осуществляют не только отдельные предприниматели и их объединения, но и государство в лице своих органов и специализированных предприятий, которые имеют статус юридического лица.

Глобальные проблемы человечества

Глобальные проблемы человечества – это совокупность социально-природных проблем, от решения которых зависит социальный прогресс человечества и сохранение цивилизации. Глобальные проблемы угрожают существованию человечества

Покажем, что ускорение любой точки М плоской фигуры (так же, как и скорость) складывается из ускорений, которые точка получает при поступательном и вращательном движениях этой фигуры. Положение точки М по отношению к осям Оxy (см.рис.30) определяется радиусом-вектором где . Тогда

В правой части этого равенства первое слагаемое есть ускорение полюса А , а второе слагаемое определяет ускорение , которое точка м получает при вращении фигуры вокруг полюса A . следовательно,

Значение , как ускорения точки вращающегося твердого тела, определяется как

где и - угловая скорость и угловое ускорение фигуры, а - угол между вектором и отрезком МА (рис.41).

Таким образом, ускорение любой точки М плоской фигуры геометрически складывается из ускорения какой-нибудь другой точки А , принятой за полюс, и ускорения, которое точка М получает при вращении фигуры вокруг этого полюса. Модуль и направление ускорения , находятся построением соответствующего параллелограмма (рис.23).

Однако вычисление с помощью параллелограмма, изображен­ного на рис.23, усложняет расчет, так как предварительно надо бу­дет находить значение угла , а затем - угла между векторами и , Поэтому при решении задач удобнее вектор заменять его касательной и нормальной составляющими и пред­ставить в виде

При этом вектор направлен перпендикулярно АМ в сторону вращения, если оно ускоренное, и против вращения, если оно замедленное; вектор всегда направлен от точки М к полюсу А (рис.42). Численно же

Если полюс А движется не прямолинейно, то его ускорение мо­жно тоже представить как сумму касательной и нормальной составляющих, тогда

Рис.41 Рис.42

Наконец, когда точка М движется криволинейно и ее траекто­рия известна, то можно заменить суммой .

Вопросы для самопроверки

Какое движение твердого тела называется плоским? Приведите примеры звеньев механизмов, совершающих плоское движение.

Из каких простых движений складывается плоское движение твердого тела?



Как определяется скорость произвольной точки тела при плоском движении?

Какое движение твердого тела называется плоскопараллельным?

Сложное движение точки

В данной лекции рассматриваются следующие вопросы:

1. Сложное движение точки.

2. Относительное, переносное и абсолютное движения.

3. Теорема сложения скоростей.

4. Теорема сложения ускорений. Ускорение Кориолиса.

5. Сложное движение твердого тела.

6. Цилиндрические зубчатые передачи.

7. Сложение поступательного и вращательного движений.

8. Винтовое движение.

Изучение данных вопросов необходимо в дальнейшем для динамики плоского движения твердого тела, динамики относительного движения материальной точки, для решения задач в дисциплинах «Теория машин и механизмов» и «Детали машин».

Ускорение произвольной точки твёрдого тела, участвующего в плоском движении, можно найти как геометрическую сумму ускорения полюса и ускорения данной точки во вращательном движении вокруг полюса.

Для доказательства этого положения используем теорему сложения ускорений течки в составном движении. Примем за полюс точку . Подвижную систему координат будем перемещать поступательно вместе с полюсом (рис.1.15 а). Тогда относительным движением будет вращение вокруг полюса. Известно, что кориолисово ускорение в случае переносного поступательного движения равно нулю, поэтому

Т.к. в поступательном движении ускорения всех точек одинаковы и равны ускорению полюса, имеем .

Ускорение точки при движении по окружности удобно представить в виде суммы центростремительной и вращательной составляющих:

.

Следовательно

Направления составляющих ускорения показаны на рис.1.15 а.

Нормальная (центростремительная) составляющая относительного ускорения определяется формулой

Величина его равна Вектор направлен вдоль отрезка АВ к полюсу А (центром вращения вокруг является ).

Рис. 1. 15. Теорема о сложении ускорений (а) ее следствия (б)

Касательная (вращательная) составляющая относительного ускорения определяется формулой

.

Модуль этого ускорения находится через угловое ускорение . Вектор направлен перпендикулярно к АВ в сторону углового ускорения (в сторону угловой скорости, если движение ускоренное и в противоположную сторону вращения, если движение замедленное).

Величина полного относительного ускорения определяется по теореме Пифагора:

.

Вектор относительного ускорения любой точки плоской фигуры отклонён от прямой, соединяющей рассматриваемую точку с полюсом на угол , определяемый формулой



На рис.1.15 б показано, что этот угол одинаков для всех точек тела.

Следствие из теоремы об ускорениях.

Концы векторов ускорений точек прямолинейного отрезка на плоской фигуре лежат на одной прямой и делят её на части, пропорциональные расстояниям между точками.

Доказательство этого утверждения следует из рисунка:

.

Методы определения ускорений точек тела при плоском его движении идентичны соответствующим методам определения скоростей.

Мгновенный центр ускорений

В любой момент времени в плоскости движущейся фигуры существует одна единственная точка, ускорение которой равно нулю. Эта точка называется мгновенным центром ускорений (МЦУ).

Доказательство следует из способа определения положения этой точки. Примем за полюс точку А, предполагая известным её ускорение. Раскладываем движение плоской фигуры на поступательное и вращательное. Пользуясь теоремой сложения ускорений, записываем ускорение искомой точки и приравниваем его нулю.

Отсюда следует, что , т. е. относительное ускорение точки Q равно ускорению полюса А по величине и направлено в противоположную сторону. Это возможно только в том случае, если углы наклона относительного ускорения и ускорения полюса А к прямой, соединяющей точку Q, с полюсом А одинаковы.

, , .

Примеры нахождения МЦУ.

Рассмотрим способы нахождения положения МЦУ.

Пример №1: известны , , (рис.1.16 а).

Определяем угол . Откладываем угол в направлении углового ускорения (т. е. в сторону вращения при ускоренном вращении и против - при замедленном), от направления известного ускорения точки и строим луч. На построенном луче откладываем отрезок длиной AQ.

Рис. 1. 16. Примеры нахождения МЦУ: пример №1 (а), пример№2 (б)

Пример № 2. Известны ускорения двух точек А и В: и (рис.1.16 б).

Одну из точек с известным ускорением принимаем за полюс и определяем относительное ускорение другой точки путём геометрических построений. Измерением находим угол и под этим углом проводим лучи от известных ускорений. Точка пересечения этих лучей является МЦУ. Угол откладывается от векторов ускорений в ту же сторону, в какую идёт угол от вектора относительного ускорения к прямой ВА.

Следует отметить, что МЦУ и МЦС разные точки тела, причём ускорение МЦС не равно нулю и скорость МЦУ не равна нулю (рис 1.17).

Рис. 1. 17. Положение МЦС и МЦУ в случае качения катка без скольжения

В тех случаях, когда ускорения точек параллельны друг другу возможны следующие частныйслучаи нахождения МЦУ (рис.1.17)

Рис. 1. 18. Частные случаи нахождения МЦУ:
а) ускорения двух точек параллельны и равны; б) ускорения двух точек антипараллельны; в) ускорения двух точек параллельны, но не равны


СТАТИКА

ВВЕДЕНИЕ В СТАТИКУ

Основные понятия статики, область их применения

Статика - раздел механики, изучающий условия равновесия материальных тел и включающий в себя учение о силах.

Говоря о равновесии, надо помнить, что “всякий покой, всякое равновесие относительны, они имеют смысл только по отношению к той или иной определенной форме движения”. Например, тела, покоящиеся на Земле, движутся вместе с ней вокруг Солнца. Более точно и правильно следует говорить об относительном равновесии. Условия равновесия различны для твердых, жидких и газообразных, деформируемых тел.

Большинство инженерных сооружений можно считать малодеформируемыми или жесткими. Абстрагированием можно ввести понятие абсолютно твердого тела: расстояния, между точками которого не изменяются с течением времени.

В статике абсолютно твердого тела решатся две задачи:

· сложение сил и приведение системы сил к простейшему виду;

· определение условий равновесия.

Силы имеют различную физическую природу, часто неясную до конца и в настоящее время. Вслед за Ньютоном, будем понимать силу как количественную модель, меру взаимодействия материальных тел.

Модель силы по Ньютону определяется тремя главными характеристиками: величиной, направлением действия и точкой ее приложения. Опытным путем установлено, что введенная таким путем величина имеет векторные свойства. Более подробно они рассматриваются в аксиомах статики. В международной системе единиц СИ, используемой в соответствии с ГОСТом, единицей измерения силы является ньютон (Н). Изображение и обозначение сил показано на рис.2.1 а

Совокупность сил, действующих на какое-либо тело (или систему тел) называется системой сил.

Тело, не скрепленное с другими телами, которому можно сообщить движение в любом направлении, называется свободным.

Система сил, полностью заменяющая другую систему сил, действующую на свободное тело, не изменяя при этом состояния движения или покоя, называется эквивалентной.

Рис. 2. 1. Основные понятия о силах

Система сил, под действием которой тело может находиться в состоянии покоя, называется эквивалентной нулю или уравновешенной.

Одна сила, эквивалентная системе сил, называется ее равнодействующей. Равнодействующая существует не всегда, например, в случае изображенном на рисунке ее не существует.

Одна сила, равная по величине равнодействующей, но противоположно ей направленная, называется уравновешивающей для исходной системы сил (рис.2.1 б).

Силы, действующие между частицами одного тела, называются внутренними, а действующие со стороны других тел - внешними.

Аксиомы статики

Новое на сайте

>

Самое популярное