Домой Тайны мира Теорема о взаимности возможных работ. Графоаналитический способ определения перемещения при изгибе

Теорема о взаимности возможных работ. Графоаналитический способ определения перемещения при изгибе

Лабораторная работа № 10

Цель работы – проверить опытным путем справедливость теоремы о взаимности перемещений и на ее основе построить упругую линию балки.

Основные сведения

Теорема о взаимности работ гласит, что работа первой силы на перемещении точки ее приложения под действием второй силы равна работе второй силы на перемещении точки ее приложения под действием первой силы, т.е.

F 1 у 12 = F 2 у 21 = W.(10.1)

Если силы равны, то теорема переходит в теорему о взаимности перемещений: перемещение первого сечения под действием силы, приложенной во втором сечении, равно перемещению второго сечения под действием той же силы, но приложенной в первом сечении.

у 12 = у 21 . (10.2)

Порядок выполнения и обработка результатов

Опыты проводятся на настольной установке СМ-4, представляющей собой двухопорную балку описанную в лабораторной работе № 9 .

Проверка теоремы о взаимности перемещений (рис. 10.1) выполняется следующим образом.

Рис. 10.1. Проверка теоремы о взаимности перемещений

В двух произвольных сечениях балки устанавливаются стрелочные индикаторы и гиревые подвесы (сечения 1 и 2 рис. 10.1, а). На индикаторе сечения 2 снимается начальный отсчет, балка нагружается в сечении 1 нагрузкой F и снимается отсчет индикатора, установленного в сечении 2 (см. рис. 10.1, б). Разность данного и начального отсчетов равна величине прогиба у 21 в сечении 2. Затем балка разгружается.

Данные по F и у 21 заносятся в журнал испытаний. Далее на индикаторе, установленном в сечении 1, снимается начальный отсчет, балка нагружается в сечении 2 той же нагрузкой F и по разности отсчетов индикатора 1 определяется величина прогиба у 12 (см. рис. 10.1, в).

Балка разгружается и данные по у 12 заносятся в журнал испытаний. Сопоставлением полученных данных по равенству (10.2) проверяется теорема о взаимности перемещений. Если равенство (10.2) не соблюдается, определяют процент погрешности

и делают выводы.

Используя теорему о взаимности перемещений, можно с помощью одного индикатора, закрепленного стационарно в сечении приложения нагрузки заданной расчетной схемы (рис. 10.2), определить экспериментально перемещения балки в любом сечении и построить упругую линию балки.

Рис. 10.2. Построение упругой линии балки

Индикатор линейных перемещений устанавливается в том сечении балки, в котором по расчетной схеме прикладывается заданная нагрузка. Один гиревой подвес размещается на консоли, второй – внутри пролета.

Определяются перемещения сечения, в котором установлен индикатор, при последовательном приложении заданной нагрузки F в расчетные точки 1 … 10 (см. рис. 10.2). Эта операция включает в себя установку гиревого подвеса в расчетную точку, снятие начального отсчета по индикатору, приложение заданной нагрузки F к гиревому подвесу, снятие отсчета индикатора и определение приращения отсчетов, равного определяемому перемещению. Для приложения нагрузки в сечениях, расположенных на консоли, используется второй гиревой подвес.

Согласно теореме о взаимности перемещений, эти перемещения будут равны перемещениям расчетных точек при приложении нагрузки F в сечении установки индикатора.

Полученные значения перемещений заносятся в журнал испытаний.

Для сравнения экспериментальных перемещений с теоретическими последние просчитываются для заданной

На основании теоремы о взаимности работ (9) имеем F 1 δ 12 =F 2 δ 21 , но если принять, чтоF 1 =F 2 = 1, тогда получаемδ 12 =δ 21 , или в общем виде

δ ij = δ ji . (10)

«Перемещение точки приложения первой единичной силы по ее направлению, вызванное второй единичной силой, равно перемещению точки приложения второй единичной силы по ее направлению, вызванному первой единичной силой».

Л е к ц и я 9

Определение перемещений. Интеграл мора

Рассмотрим два состояния (рис. 1). Составим выражение работы W 21 , то есть работы силыF 2 = 1 на перемещении Δ 21:

W 21 = F 2 Δ 21 = Δ 21 . (1)

Согласно формулы (7) лекции 8 получаем

W 12 = W W 11 – W 22 , (2)

(3)

M , N , Q – это моменты, нормальные и поперечные силы от суммарного действия силF 1 иF 2 (рис. 7 лекции 8), т.е.

M = M 1 + M 2 , N = N 1 + N 2 , Q = Q 1 + Q 2 . (4)

Значения (4) подставляем в формулу (3), а результат и выражения для W 11 иW 22 – в формулу (2). В итоге получим

а с учетом равенства (1) имеем

где черточки показывают, что эти значения возникают от единичных сил.

Формулу (6) можно записать в общем виде:

Выражение (7) – это формула для определения перемещений в конкретном сечении конструкции или интеграл Мора (формула Мора ).

При расчете балок и рам учитывают влияние только изгибающих моментов M , а влияниемN иQ пренебрегают.

Правило Верещагина

«Интеграл произвед ения двух функций, из которых одна линейная, а другая – произвольная, равен площади произвольной функции, умноженной на ординату из прямоугольной функции, лежащей под центром тяжести площади произвольной функции».

Например, имеем две эпюры моментов М F и
(рис. 2), тогда по формуле (7) получаем при использовании правила Верещагина:

(8)

Запишем еще три положения, вытекающие из правила Верещагина:

1. Ордината у С должна быть взята из прямолинейной эпюры. Если обе эпюры – прямолинейные, то ординатуу С можно брать из любой.

2. Перемножаемые эпюры не должны иметь изломов. При их наличии эпюры необходимо перемножать по участкам.

3. Для перемножения двух прямолинейных эпюр (рис. 3) можно использовать формулу:

Пример. Пусть дана балка, загруженная равномерно распределенной нагрузкойq (рис. 4). Вычислим прогиб балки в точкеС при ее изгибной жесткостиEI =const. При расчете учитываем только влияние изгибающих моментов, поэтому принимаем интеграл Мора в виде (8):

(9)

где



Вычисляем перемещение Δ С при помощи интеграла Мора (9):

Вычисляем перемещение Δ С при помощи интеграла Мора (9), но с использованием правила перемножения эпюр Верещагина:

Л е к ц и я 10

Определение перемещения сечения стержня плоской статически определимой стержневой системы при действии внешней нагрузки

Данную тему рассмотрим на конкретных примерах.

Пример 1 . Определим прогиб конца консоли (рис. 1). Построим грузовую эпюру моментов и эпюру изгибающих моментов от единичной силы, приложенной на конце консоли (рис. 1). Используя правило Верещагина, имеем:

Пример 2. Определим горизонтальное смещение точкиС рамы, изображенной на рис. 2.

A MF

Построим эпюры изгибающих моментов от внешней нагрузки (М F ) и от силыР = 1, приложенной в точкеС по направлению искомого горизонтального смещения (
), тогда

Знак (–) в ответе означает, что горизонтальное смещение точки С и направление единичной силыР = 1 не совпадают.

Пример 3. Определим горизонтальное перемещение точкиВ от действия сосредоточенной силыF (рис. 3).

Для криволинейного бруса изгибающий момент в произвольной точке С можно записать в виде:

Если приложить единичную силу в точке В по направлению действия внешней сосредоточенной силыF (в направлении искомого перемещения), то

и тогда горизонтальное перемещение точки В при учете только изгибающего момента будет

Найдем горизонтальное перемещение точки В при учете только нормальных силN F , в этом случае


Учтем влияние поперечной силы Q F на величину горизонтального смещения этой же точкиВ :

Горизонтальное перемещение точки В при учете изгибающего момента, нормальных и поперечных внутренних сил будет

Если учесть, что для прямоугольного поперечного сечения I z =bh 3 /12,А = bh , а также, чтоG = 0,5Е /(1 +ν ), то

Таким образом, если (R / h ) > 1, то при определении горизонтального перемещения влиянием нормальных и поперечных сил можно пренебречь.

Рассмотрим два состояния упругой системы, находящейся в равновесии. В каждом из этих состояний на систему действует некоторая статическая нагрузка (рис.23,а). Обозначим перемещения по направлениям сил F 1 и F 2 через, где индекс “i” показывает направление перемещения, а индекс “j” – вызвавшую его причину.

Рис. 23

Обозначим работу нагрузки первого состояния (сила F 1) на перемещениях первого состояния через А 11 , а работу силы F 2 на вызванных ею перемещениях – А 22:

.

Используя (2.9), работы А 11 и А 22 можно выразить через внутренние силовые факторы:

(2.10)

Рассмотрим случай статического нагружения той же системы (рис.23,а) в такой последовательности. Сначала к системе прикладывается статически возрастающая сила F 1 (рис.23,б); когда процесс ее статического нарастания закончен, деформация системы и действующие в ней внутренние усилия становятся такими же, как и первом состоянии (рис.23,а). Работа силы F 1 составит:

Затем на систему начинает действовать статически нарастающая сила F 2 (рис.23,б). В результате этого система получает дополнительные деформации и в ней возникают дополнительные внутренние усилия, такие же, как и во втором состоянии (рис.23,а). В процессе нарастания силы F 2 от нуля до ее конечного значения сила F 1 , оставаясь неизменной, перемещается вниз на величину дополнительного прогиба
и, следовательно, совершает дополнительную работу:

Сила F 2 при этом совершает работу:

Полная работа А при последовательном нагружении системы силами F 1 , F 2 равна:

С другой стороны, в соответствии с (2.4) полную работу можно определить в виде:

(2.12)

Приравнивая друг к другу выражения (2.11) и (2.12), получим:

(2.13)

А 12 =А 21 (2.14)

Равенство (2.14) носит название теоремы о взаимности работ, илитеоремы Бетти: работа сил первого состояния на перемещениях по их направлениям, вызванных силами второго состояния, равна работе сил второго состояния на перемещениях по их направлениям, вызванных силами первого состояния.

Опуская промежуточные выкладки, выразим работу А 12 через изгибающие моменты, продольные и поперечные силы, возникающие в первом и втором состояниях:

Каждое подинтегральное выражение в правой части этого равенства можно рассматривать как произведение внутреннего усилия, возникающего в сечении стержня от сил первого состояния, на деформацию элемента dz, вызванную силами второго состояния.

2.4 Теорема о взаимности перемещений

Пусть в первом состоянии к системе приложена сила
, а во втором -
(рис.24). Обозначим перемещения, вызванные единичными силами (или единичными моментами
) символом. Тогда перемещение рассматриваемой системы по направлению единичной силыв первом состоянии (то есть вызванное силой
) -
, а перемещение по направлению силы
во втором состоянии -
.

На основании теоремы о взаимности работ:

, но
, поэтому
, или в общем случае действия любых единичных сил:

(2.16)

Рис. 24

Полученное равенство (2.16) носит название теоремы о взаимности перемещений (илитеоремы Максвелла): для двух единичных состояний упругой системы перемещение по направлению первой единичной силы, вызванное второй единичной силой, равно перемещению по направлению второй силы, вызванному первой силой.

Доказательство теоремы о взаимности работ

Наметим на балке две точки 1 и 2 (рис. 15.4, а).

Приложим статически в точке 1 силу . Она вызовет в этой точке прогиб , а в точке 2 – .

Для обозначения перемещений мы используем два индекса. Первый индекс означает место перемещения, а второй – причину, вызывающую это перемещение. То есть, почти как на конверте письма, где мы указываем: куда и от кого.

Так, например, означает прогиб балки в точке 2 от нагрузки .

После того, как закончен рост силы . приложим в точке 2 к деформированному состоянию балки статическую силу (15.4, б). Балка получит дополнительные прогибы: в точке 1 и в точке 2.

Составим выражение для работы, которую совершают эти силы на соответствующих им перемещениях: .

Здесь первое и третье слагаемые представляют собой упругие работы сил и . Согласно теореме Клапейрона, они имеют коэффициент . У второго слагаемого этого коэффициента нет, поскольку сила своего значения не изменяет и совершает возможную работу на перемещении , вызванном другой силой .

Формулировка теоремы о взаимности работ (теоремы Бетти) , доказанная в 1872 г Э. Бетти: возможная работа сил первого состояния на соответствующих перемещениях, вызванных силами второго состояния, равна возможной работе сил второго состояния на соответствующих перемещениях, вызванных силами первого состояния.

24. Теорема о взаимности перемещений (Максвелла)

Пусть и.Теорема о взаимности перемещений с учетом принятого обозначения перемещения от единичной силы имеет вид: .Теорема о взаимности перемещений была доказана Максвеллом.Формулировка теоремы о взаимности перемещений : перемещение точки приложения первой единичной силы, вызванное действием второй силы, равно перемещению точки приложения второй единичной силы, вызванному действием первой единичной силы

25. теорема Релея о взаимноти реакций.

26. теорема Гвоздева о взаимности перемещений и реакций.

27. Определение перемещений от нагрузки. Формула Мора.

Формула мора


28. Определение перемещений от температурного воздействия и от смещения.

Температурное воздействие.


Осадка


29. Правило Верещагина. Формула перемножения трапеций, формула Симпсона.

Формула умножения трапеций.

Формула умножения криволинейных трапеций

31. Свойства статически неопределимых систем.

    Для определения усилий и реакций уравнений статики недостаточно, надо привлекать уравнения неразрывности деформации и перемещений.

    Усилия и реакции зависят от соотношения жесткостей отдельных элементов.

    Изменение температуры и осадка опоры вызывают появление внутренних усилий.

    При отсутствии нагрузки возможно состояние самонапряжения.

32. Определение степени статической неопределимости, принципы выбора основной системы метода сил.

Для статически неопределимых систем W<0

Число лишних связей определяется по формуле:

Л = - W + 3К ,

где W– число независимых геометрических параметров, определяющих положение конструкции на плоскости без учета деформации конструкции (число степеней свободы), К – число замкнутых контуров (контуры, в которых нет шарнира).

W = 3Д – 2Ш – Со

формула Чебышева для определения степени свободы, где Д – число дисков, Ш – число шарниров, Со – число опорных стержней.

    ОСМС должна быть геометрически неизменяемой.

    Должна быть статически определима (удаляем Л лишних связей).

    Эта система должна быть простой для расчета.

    Если исходная система была симметричной, то и ОСМС по возможности выбирают симметричной.

33. Канонические уравнения метода сил, их физический смысл.

Канонические уравнения:

Физический смысл:

Суммарное перемещение по направлению каждой удаленной связи должно быть = 0

34. Вычисление коэффициентов канонических уравнений, их физический смысл, проверка правильности найденных коэффициентов.

Перемещение по направлению итой удаленной связи, вызванной джитой единичной силой.

Перемещение по направлению итой удаленной связи, вызванной внешней нагрузкой.

Для того, чтобы проверить правильность найденных коэффициентов, нужно подставить их в систему канонических уравнений и найти Х1 и Х2.

Новое на сайте

>

Самое популярное