Домой Аюрведа Интерференция световых волн. Когерентность волн

Интерференция световых волн. Когерентность волн

Когерентные волны – это волны, имеющие одинаковые частоту и постоянную во времени разность фаз.

Длительность излучения световых волн носит название времени когерентности ,а их протяженность в пространстве называется длиной когерентности,т.е. длина когерентности – есть расстояние,при прохождении которого две или несколько волн утрачивают когерентность.

Когерентность колебаний, которые совершаются в одной и той же плоскости, перпендикулярной направлению их распространения называется пространственной когерентностью.

Как связаны фазовые скорости распространения световых волн в среде и в вакууме? Дайте определение оптической длины пути, а также оптической разности хода двух световых волн.

Оптическая длина пути –это произведение геометрической длины s пути световой волны в данной среде на показатель т преломления это среды.(L =S*n)

Оптическая разность хода – величина, равная разности оптических длин проходимых волнами путей.

n – показатель преломления;

r1,r2– длины пути.

Оптические длины,проходимых волнами путей

Фазовая скорость: , c- cкорость электромагнитной волны в вакууме, v-скорость электромагнитной волны в среде,n-оптический показатель преломления среды,т.е. фазовые скорости световых волн в среде и в вакууме связаны показателем преломления n.

Опыт Юнга и расчетная формула для расстояния между интерференционными полосам и в опыте Юнга.

Источником света служит ярко освещенная щель S,от которой световая волна падает на две узкие равноудаленные щели S1 и S2 параллельные щели S. Таким образом, щели S1 и S2 играют роль когерентных источников.Интерференционная картинка наблюдаемая на экране,расположенном на некотором расстоянии параллельно S1 и S2.

Ширина интерференционной полосы или период интерференционной картины – это расстояние между соседними максимумами и минимумами.

d- расстояние между источниками;

Длина волны; l- расстояние от источника до экрана.

Полосы равного наклона. Запишите условия максимумов и минимумов интенсивности света при интерференции в тонких пленках.

Полосы равного наклона – это интерференционные полосы, которые получаются при падении света на плоскопараллельную пластинку под одинаковым углом в результате отражения от верхней и нижней границы плоскопараллельной пластинки.

– интерференционный максимум;

– интерференционный минимум;

d- длина пластинки,n-показатель преломления пластинки,r-угол преломления, – дополнительная разность хода, обусловленная отражением луча 1 от оптически более плотной среды.



Полосы равной толщины

Полосы равной толщины – это система интерференционных полос, каждая из которых возникает при отражении от мест пластинки имеющую одинаковую толщину.

На прозрачную пленку с показателем преломления n и толщиной d под углом i, падает плоская монохроматическая волна.На поверхности пленки в точке О, луч разделяется на два: частично отразится от поверхности пленки, а частично преломится. Преломленный луч, дойдя до точки С,частично преломится в воздух (n0=1) ,а частично отразится и пойдет к точке В. Таким образом возникает система интерференционных полос.

Когерентностью называется согласованное протекание нескольких колебательных или волновых процессов. Степень согласования может быть различной. Соответственно вводится понятие степени когерентности двух волн.

Пусть в данную точку пространства приходят две световые волны одинаковой частоты, которые возбуждают в этой точке колебания одинакового направления (обе волны поляризованы одинаковым образом):

Е = А 1 соs(wt + a 1),

Е = A 2 cos(wt + a 2), тогда амплитуда результирующего колебания

А 2 = А 1 2 +А 2 2 + 2А 1 А 2 соsj, (1)

где j = a 1 - a 2 = const.

Если частоты колебаний в обеих волнах w одинаковы, а разность фаз j возбуждаемых колебаний остается постоянной во времени, то такие волны называются когерентными.

Приналожении когерентных волн они дают устойчивое колебание с неизменной амплитудой А = соnst, определяемой выражением (1) и в зависимости от разности фаз колебаний лежащей в пределах

|а 1 –А 2 ê £ A £ а 1 +А 2.

Т.о., когерентные волны при интерференции друг с другом дают устойчивое колебание с амплитудой не больше суммы амплитуд интерферирующих волн.

Если j = p, тогда соsj = -1 и а 1 = А 2 , a амплитуда суммарного колебания равна нулю, и интерферирующие волны полностью гасят друг друга.

В случае некогерентных волн j непрерывно изменяется, принимая с равной вероятностью любые значения, вследствие чего среднее по времени значение t = 0. Поэтому

А 2 > = <А 1 2 > + <А 2 2 >,

откуда интенсивность, наблюдаемая при наложении некогерентных волн, равна сумме интенсивностей, создаваемых каждой из волн в отдельности:

В случае когерентных волн, соsj имеет постоянное во времени значение (но свое для каждой точки пространства), так что

I = I 1 + I 2 + 2Ö I 1 × I 2 cosj (2)

В тех точках пространства, для которых соsj >0, I> I 1 +I 2 ; в точках, для которых соsj<0, Iинтерференцией волн. Особенно отчетливо проявляется интерференция в том случае, когда интенсивности обеих интерферирующих волн одинаковы: I 1 =I 2 . Тогда согласно (2) в максимумах I = 4I 1 , в минимумах же I = 0. Для некогерентных волн при том же условии получается всюду одинаковая интенсивность I = 2I 1 .

Все естественные источники света (Солнце, лампочки накаливания и т.д.) не когерентны.

Некогерентность естественных источников света обусловлена тем, что излучение светящегося тела слагается из волн, испускаемых многими атомами. Отдельные атомы излучают цуги волн длительностью порядка 10 -8 с и протяженностью около 3 м. Фаза нового цуга никак не связана с фазой предыдущего цуга. В испускаемой телом световой волне излучение одной группы атомов через время порядка 10 -8 с сменяется излучением другой группы, причем фаза результирующей волны претерпевает случайные изменения.

Некогерентными и не могущими интерферировать др. с др. являются волны, испускаемые различными естественными источниками света. А можно ли вообще для света создать условия, при которых наблюдались бы интерференционные явления? Как, пользуясь обычными некогерентными излучателями света, создать взаимно когерентные источники?

Когерентные световые волны можно получить, разделив (с помощью отражений или преломлений) волну, излучаемую одним источником света, на две части, Если заставить эти две волны пройти разные оптические пути, а потом наложить их др. на др., наблюдается интерференция. Разность оптических длин путей, проходимых интерферирующими волнами, не должна быть очень большой, так как складывающиеся колебания должны принадлежать одному и тому же результирующему цугу волн. Если эта разность ³1м, наложатся колебания, соответствующие разным цугам, и разность фаз между ними будет непрерывно изменяться хаотическим образом.

Пусть разделение на две когерентные волны происходит в точке О (рис.2).

До точки Р первая волна проходит в среде показателем преломления n 1 путь S 1 , вторая волна проходит в среде с показателем преломления n 2 путь S 2 . Если в точке О фаза колебания равна wt, то первая волна возбудит в точке Р колебание А 1 соsw(t – S 1 /V 1), а вторая волна -колебание А 2 соsw(t – S 2 /V 2), где V 1 и V 2 - фазовые скорости. Следовательно, разность фаз колебаний, возбуждаемых волнами в точке Р, будет равна

j = w(S 2 /V 2 – S 1 /V 1) = (wc)(n 2 S 2 – n 1 S 1).

Заменим w/с через 2pn/с = 2p/lо (lо - длина волны в),тогда
j = (2p/lо)D, где (3)

D= n 2 S 2 – n 1 S 1 = L 2 - L 1

есть величина, равная разности оптических длин, проходимых волнами путей, и называется оптической разностью хода.

Из (3) видно, что если оптическая разность хода равна целому числу длин волн в вакууме:

D = ±mlо (m = 0,1,2), (4)

то разность фаз оказывается кратной 2p и колебания, возбуждаемые в точке Р обеими волнами, будут происходить с одинаковой фазой. Т.о., (4) есть условие интерференционного максимума.

Если оптическая разность хода D равна полуцелому числу длин волн в вакууме:

D = ± (m + 1/2)lо (m =0, 1,2, ...), (5)

то j = ± (2m + 1)p, так что колебания в точке Р находятся в противофазе. Следовательно, (5) есть условие интерференционного минимума.

Принцип получения когерентных световых волн разделением волны на две части, проходящие различные пути, может быть практически осуществлен различными способами - с помощью экранов и щелей, зеркал и преломляющих тел.

Впервые интерференционную картину от двух источников света наблюдал в 1802 году английский ученый Юнг. В опыте Юнга (рис.3) свет от точечного источника (малое отверстие S) проходит через две равноудаленные щели (отверстия) А 1 и А 2 , являющиеся как бы двумя когерентными источниками (две цилиндрические волны). Интерференционная картина наблюдается на экране Ё, расположенном на некотором расстоянии l параллельно А 1 А 2 . Начало отсчета выбрано в точке 0, симметричной относительно щелей.


Плоская св. S O

A 2 S 2 l

Усиление и ослабление света в произвольной точке Р экрана зависит от оптической разности хода лучей D =L 2 – L 1 . Для получения различимой интерференционной картины расстояние между источниками А 1 А 2 =d должно быть значительно меньше расстояния до экрана l . Расстояние х, в пределах которого образуются интерференционные полосы, значительно меньше l . При этих условиях можно положить S 2 – S 1 » 2l . Тогда S 2 – S 1 » xd/l . Умножив на n,

D = nxd/l . (6)

Подставив (6) в (4) получим, что максимумы интенсивности будут наблюдаться при значениях х, равных

х max = ± ml l/d (m = 0, 1,2,.,.). (7)

Здесь l = l 0 /n - длина волны в среде, заполняющей пространство между источниками и экраном.

Координаты минимумов интенсивности будут:

х min = ±(m +1/2)ll/d (m = 0,1,2,...). (8)

Расстояние между двумя соседними максимумами интенсивности называется расстоянием между интерференционными полосами, а расстояние между соседними минимумами - шириной интерференционной полосы. Из (7) и (8) следует, что расстояние между полосами и ширина полосы имеют одинаковое значение, равное

Dх = l l/d. (9)

Измеряя параметры, входящие в (9), можно определить длину волны оптического излучения l. Согласно (9) Dх пропорционально 1/d, поэтому чтобы интерференционная картина была четко различима, необходимо соблюдение упоминавшегося выше условия: d<< l . Главный максимум, соответствующий m = 0, проходит через точку 0. Вверх и вниз от него на равных расстояниях друг от друга располагаются максимумы (минимумы) первого (m =1), второго (m = 2) порядков и т.д.

Такая картина справедлива при освещении экрана монохроматическим светом (l 0 = const). При освещении белым светом интерференционные максимумы (и минимумы) для каждой длины волны будут, согласно формуле (9), смещены друг относительно друга и иметь вид радужных полос. Только для m = 0 максимумы для всех длин волн совпадают, и в середине экрана будет наблюдаться светлая полоса, по обе стороны от которой симметрично расположатся спектрально окрашенные полосы максимумов первого, второго порядков и т д. (ближе к центральной светлой полосе будут находиться зоны фиолетового цвета, дальше – зоны красного цвета).

Интенсивность интерференционных полос не остается постоянной, а изменяется вдоль экрана по закону квадрата косинуса.

Наблюдать интерференционную картину можно с помощью зеркала Френеля, зеркала Лойда, бипризмы Френеля и других оптических устройств, а также при отражении света от тонких прозрачных пленок.

Определение 1

Когерентность волн является необходимым условием наблюдения интерференции волн. Когерентность определяют как согласованность протекания во времени и пространстве нескольких колебаний или волновых процессов. Иногда используют понятие степени когерентности волн (степени согласованности). Когерентность подразделяют на временную и пространственную .

Временная когерентность

Этот тип когерентности характеризуют временем и длинной когерентности. Временную когерентность рассматривают тогда, когда точечный, но немонохромный. Так, например, полосы интерференции в интерферометре Майкельсона размываются с увеличением оптической разности хода волн вплоть до исчезновения. Причина этого связана с конечным временем и длиной когерентности источника света.

При рассмотрении вопроса о когерентности возможны два подхода: «фазовый» и «частотный» . Пусть частоты в формулах, которые описывают колебания в одной точке пространства, возбуждаемые двумя накладывающийся волнами:

равны между собой (${\omega }_1={\omega }_2$) и постоянны. Это фазовый подход. Интенсивность света в исследуемой точке пространства при этом определит выражение:

где $\delta \left(t\right)=\alpha_2\left(t\right)-\alpha_1\left(t\right).\ $Выражение $2\sqrt{I_1I_2}cos\delta \left(t\right)$ называют интерференционным членом . Любой прибор, который регистрирует интерференционную картину, имеет время инерции. Обозначим это время срабатывания прибора через $t_i$. Если за время $t_i$ $cos\delta \left(t\right)$ принимает значения равные от $-1$ до $+1$, то $\left\langle 2\sqrt{I_1I_2}cos\delta \left(t\right)\right\rangle =0$. При этом суммарная интенсивность в исследуемой точке будет равна:

при этом волны следует считать некогерентными. В том случае, если за время $t_i$ величина $cos\delta \left(t\right)$ почти не изменяется, то интерференцию можно обнаружить и волны следует считать когерентными. Это значит, что понятие когерентности относительно. Если инерционность прибора мала, то он может обнаружить интерференцию, тогда как прибор с большим временем инерции при тех же условиях интерференционную картину «не увидит».

Время когерентности ($t{kog}$) определяется как время, в течение которого случайное изменение фазы волны ($\alpha (t)$) примерно равно $\pi .$ За это время ($t{kog}$) колебание становится некогерентным себе. Если выполняется условие:

то прибор интерференции не фиксирует. При $t_i\ll t_{kog}$ интерференционная картина является четкой.

Расстояние, определяемое как:

называют длиной когерентности (длиной цуга ). Длиной когерентности называют такое расстояние, при перемещении по которому случайное изменение фазы примерно равно $\pi .$ При делении естественной световой волны на две части, с целью получения интерференционной картины требуется, чтобы оптическая разность хода ($\triangle $) была меньше, чем $l_{kog}.$

Время когерентности связано с интервалом частот ($\triangle \nu $) или длинами волн, которые представлены в волне света:

Соответственно:

В том случае, если разность оптического хода волн достигла значений около${\ l}_{kog},$ интерференционные полосы не различаются. Предельный порядок интерференции ($m_{pred}$) определим как:

Временная когерентность связывается с разбросом величин модуля волнового числа ($\overrightarrow{k}$).

Пространственная когерентность

В том случае, если источник света характеризуется как монохроматический, но протяженный, то говорят о пространственной когерентности. Пространственная когерентность характеризуется шириной, радиусом и углом когерентности.

Этот тип когерентности связан с вариативностью направлений $\overrightarrow{k}$. Направления вектора $\overrightarrow{k}$ характеризуют с помощью единичного вектора $\overrightarrow{e_k}$.

Расстояние ${\rho }_{kog}$ называют длинной пространственной когерентности (радиусом когерентности), его можно определить как:

где $\varphi $ -- угловой размер источника световых волн.

Замечание

Пространственная когерентность волны света около нагретого тела излучения всего несколько длин волн. С увеличением расстояния от источника света степень пространственной когерентности увеличивается.

Формула, с помощью которой устанавливаются угловые размеры протяженного источника, при которых интерференция возможна, имеет вид:

не являются когерентными.

Пример 1

Задание: Каков радиус когерентности световых волн, которые приходят от Солнца, если считать, что угловой размер данного источника равен $0,01 рад$. Длина волн света около $500 нм$.

Решение:

Для оценки радиуса когерентности применим формулу:

\[{\rho }_{kog}\sim \frac{\lambda }{\varphi }\left(1.1\right).\]

Проведем вычисления:

\[{\rho }_{kog}\sim \frac{500\cdot {10}^{-9}}{0,01}=5\cdot {10}^{-5}\left(м\right).\]

При данном радиусе когерентности невозможно наблюдать интерференцию солнечных лучей без специальных ухищрений. Это не позволяет сделать разрешающая способность глаза человека.

Ответ: ${\rho }_{kog}\sim 50\ мкм$.

Пример 2

Задание: Объясните, почему некогерентны волны, которые испускаются двумя несвязанными источниками света.

Решение:

Некогерентность естественных источников света можно понять, исследуя механизм возникновения излучения света атомами. В двух независимых источниках света атомы испускают волны независимо друг от друга. Каждый атом излучает конечное время примерно около ${10}^{-8}секунд$. За такой период времени возбужденный атом переходит в нормальное состояние, излучение им волны заканчивается. Возбужденный атом испускает свет уже с иной начальной фазой. При этом разности фаз излучений двух подобных атомов является переменной. Значит волны, которые спонтанно испускают атомы источника света, не когерентны. Только в интервале времени, примерно равном ${10}^{-8}с$ волны, которые излучают атомы, имеют почти неизменные амплитуды и фазы. Такая модель излучения справедлива для любого источника света, который имеет конечные размеры.

Нас окружают предметы определенных размеров; мы точно знаем, где кончается наше тело, и уверены, что на одном стуле комфортно сидеть только одному. Однако в мире очень маленьких вещей, или в микроквантовом мире, всё не так прозаично: стул и стол, уменьшенные примерно в десять миллиардов раз, до размеров атомов, потеряют свои четкие границы и даже могут занять одно место в пространстве, ничуть не мешая друг другу. Причина в том, что объекты квантового мира больше похожи на волны, проникающие друг в друга, чем на ограниченные в пространстве предметы. Поэтому в микроквантовом мире можно сидеть на одном стуле и втроем, и вдесятером.

Вещи как волны

Чтобы волновые свойства можно было почувствовать экспериментально, объекты нужно сделать не только маленькими, но и очень холодными, то есть с сильно пониженной скоростью хаотического движения атомов. Так, атомы требуется охладить до миллиардной доли градуса Кельвина, а волновые свойства стола и стула из макромира должны быть заметны при немыслимо маленьких температурах - холоднее, чем 10 –40 К.

Примечательное свойство волн - их способность когерентно складываться. Когерентно - значит согласованно, упорядоченно во времени или в пространстве. Пример когерентных во времени звуковых волн - музыка. Каждый звук мелодии, его высота, продолжительность и сила находятся в строго определенном соответствии друг с другом.

Дирижер симфонического оркестра пристально следит за когерентностью звукового потока из сотен, а то и тысяч звуков. Ослабление когерентности мы воспримем как фальшивое звучание, а ее полную потерю - как шум. Собственно, когерентность и отличает мелодию от бессвязного набора звуков. Точно так же и в квантовом мире когерентность волновых свойств объектов способна придать им совершенно новые качества, которые не только очень необычны, но и важны для создания новых материалов, способных радикально изменить существующие технологии. Не случайно почти половина Нобелевских премий по физике, присужденных за последние десять лет, связана с когерентными явлениями: в лазерном излучении (2005), в холодных атомах (1997, 2001), в жидком гелии (1996) и в сверхпроводниках (2003).

Большинство отечественных нобелевских лауреатов по физике получило свои премии за когерентные явления: Петр Капица (1978), Лев Ландау (1962), Николай Басов и Александр Прохоров (1964), Алексей Абрикосов и Виталий Гинзбург (2003).

Когерентность света

Понятие когерентности сформировалось в начале XIX века после опытов английского ученого Томаса Юнга. В них две световые волны от разных источников падали на экран и складывались. Свет от двух обычных лампочек, которые дают некогерентное излучение, складывается просто: освещенность экрана равна сумме освещенностей от каждой лампы. Механизм тут такой. У световых волн от лампочек разность фаз хаотически меняется с течением времени. Если в одну точку экрана сейчас пришли два максимума волны, то в следующий момент от одной лампы может прийти минимум, а от другой - максимум. Результат сложения волн даст «рябь на воде» - неустойчивую интерференционную картину. Рябь световых волн столь быстра, что глаза не успевают за ней и видят равномерно освещенный экран. По аналогии из мира звуков - это шум.

Результат будет совсем другим, если на экране складываются две когерентные волны (рис. 1). Такие волны проще всего получить из одного лазерного пучка, расщепив его на две части, а потом их сложив. Тогда на экране возникнут полосы. Яркие - это области экрана, куда максимумы световых волн всегда приходят одновременно (в фазе). Замечательный оптический эффект состоит в том, что освещенность возрастет не в два раза, как в случае некогерентных волн, а в четыре. Это происходит потому, что в яркой полосе все время складываются максимумы волн, то есть их амплитуды, а освещенность пропорциональна квадрату суммы амплитуд волн. В тусклых полосах когерентные волны от разных источников гасят друг друга.

Теперь представим себе много когерентных волн, приходящих в некоторую точку в фазе. Например, тысячу волн. Тогда освещенность яркой области вырастет в миллион раз! Когерентное излучение огромного, около 10 22 , числа атомов дает луч лазера. Изобретение принципов его работы принесло в 1964 году Нобелевскую премию по физике американцу Чарльзу Таунсу и двум советским физикам Николаю Басову и Александру Прохорову. За 40 лет лазер проник в нашу повседневную жизнь, с его помощью мы, например, сохраняем информацию на компактных дисках и передаем ее по оптическому волокну на огромные расстояния.

Когерентные волны материи

Наш мир устроен таким образом, что каждая частица вещества может проявлять свойства волны. Такие волны называют волнами материи, или волнами де Бройля. Замечательный французский физик Луи де Бройль в 1923 году предложил очень простую формулу, связывающую длину волны λ (расстояние между максимумами) с массой частицы m и ее скоростью v: λ = h/mv, где h - постоянная Планка.

Фундаментальное свойство волн любой природы - способность интерферировать. Однако чтобы в результате получить не равномерный шум, а, как и в случае со светом, яркую полосу, нужно обеспечить когерентность волн де Бройля. Этому мешает тепловое движение - атомы с разными скоростями различаются своими длинами волн. При охлаждении атомов, согласно формуле де Бройля, растет длина волны λ (рис. 2). И как только ее значение превысит расстояние между частицами, волны де Бройля разных частиц дадут устойчивую интерференционную картину, так как максимумы волн, отвечающие положению частиц, будут перекрываться.

В оптический микроскоп интерференционную картину волн де Бройля можно увидеть, если их длины будут около 1 мкм. Для этого, как следует из формулы де Бройля, скорость атома должна быть примерно 1 см/с, что соответствует чрезвычайно низким температурам - менее одного микрокельвина. Такой охлажденный газ из атомов щелочных металлов удалось приготовить, и сегодня это интереснейший объект исследований. (Как охладить атомы до низких температур и сделать на их основе сверхточные часы, было рассказано в «Химии и жизни», 2001, № 10. - Примеч. ред. ) Отметим, что советские физики из Института спектроскопии АН СССР во главе с Владиленом Летоховым в 1979 году выдвинули и реализовали ключевые идеи, на основе которых сейчас охлаждают атомы до сверхнизких температур.

Что представляют собой интерферирующие частицы вещества? Мы привыкли, что вещество можно представить в виде твердых маленьких шариков, которые не проникают друг в друга. А волны, напротив, могут складываться и проникать друг в друга. По аналогии с интерференцией света мы должны получить «яркую точку на экране» - малую область в пространстве, где максимумы волн материи складываются в фазе. Неожиданно то, что когерентные волны многих и многих атомов могут занять одну область в пространстве, образуя как бы сверхатом - набор огромного числа волн де Бройля. На языке квантовой механики это означает, что вероятность обнаружить когерентные атомы в «яркой точке» максимальна. Это удивительное состояние вещества называют конденсатом Бозе-Эйнштейна. Альберт Эйнштейн предсказал его в 1925 году на основании работ индийского физика Шатьендраната Бозе. В конденсате все атомы находятся в одном квантовом состоянии и ведут себя как одна большая волна.

Экспериментально наблюдать бозе-эйнштейновский конденсат (БЭК) удалось только спустя 70 лет: сообщение об этом в 1995 году опубликовали две группы американских ученых. В их экспериментах в конденсат выпадали атомы из облачка паров натрия или рубидия, запертого в магнитную ловушку. Эти пионерские работы были удостоены Нобелевской премии по физике 2001 года, присужденной Эрику Корнеллу, Вольфгангу Кеттерле и Карлу Вьеману. Яркое образное представление поведения сверххолодных атомов, выпадающих в БЭК, было показано на обложке декабрьского журнала Science за 1995 год: в центре марширует группа одинаковых синих киборгов - это атомы БЭК с нулевой температурой, а вокруг них хаотично двигаются киборги более теплых цветов - надкондесатные чуть-чуть разогретые атомы. Когерентность атомов, выпавших в БЭК, была продемонстрирована в блестящем эксперименте 1997 года В. Кеттерле с коллегами из Массачусетсского технологического института. Для этого магнитную ловушку разделили на две части перегородкой из света (рис. 3а). Из облачков атомов натрия приготовили два конденсата, а затем ловушку и перегородку отключили: облачка стали расширяться и перекрываться. В месте их перекрытия возникала четкая интерференционная картина (рис. 3б), подобная интерференции когерентных лазерных пучков (см. рис. 1). Ее наблюдали по тени, отбрасываемой облачком атомов на экран, - «зебра» на рис. 3б и есть тень интерферирующих волн материи; темные области соответствуют максимумам волн атомов. Удивительно, что когда мы складываем атомы из разных конденсатов, то их сумма может дать ноль - «вещество исчезает» в области, отвечающей светлой полосе «зебры». Разумеется, на самом деле атомы не исчезают - они просто концентрируются в областях, отбрасывающих тень.

Можно ли наблюдать проявление волновых свойств для более массивных объектов, чем атомы? Оказывается, можно. Группе Антона Цайлингера из Вены в 2003 году удалось наблюдать интерференцию фуллеренов и биомолекул, содержащих около ста атомов. Для сколь больших частиц вещества удастся наблюдать волновые свойства - вопрос на сегодня открытый.

Атомный лазер

С точки зрения квантовой физики атомы и фотоны похожи тем, что большое число этих частиц может одновременно находиться в одном квантовом состоянии, то есть быть когерентными. Например, в лазерном излучении все фотоны когерентны: у них одинаковый цвет, направление распространения и поляризация. Поэтому возможно получить мощные когерентные лазерные пучки, состоящие из огромного числа фотонов в одном состоянии.

А как получить когерентные атомные пучки? Идея проста: надо аккуратно вывести запертые в ловушку когерентные атомы из БЭК, подобно тому, как излучение лазера выводится из его резонатора с помощью полупрозрачного зеркала. Такое устройство назвали атомным лазером. Первый атомный лазер в 1997 году создал все тот же В. Кеттерле. В таком лазере магнитная ловушка из двух катушек удерживает атомы натрия, образующие БЭК. Импульсы радиополя, прикладываемые с периодом 5 миллисекунд, разворачивают спины атомов, и они не могут больше удерживаться в ловушке. Сгусток освободившихся атомов - излучение атомного лазера - свободно падает под действием гравитации, что визуализируют с помощью приемов театра теней, описанных выше. Сегодня мощность атомных лазеров невелика: они излучают 10 6 атомов в секунду, что несравненно меньше мощности оптических лазеров. Так, например, обычный лазер-указка излучает за одну секунду примерно в 10 9 раз больше фотонов.

В отличие от невесомых фотонов, атомы обладают массой покоя. А значит, тяготение гораздо сильнее действует на них - интерференция когерентных волн материи будет сильно зависеть от гравитационного поля, отклоняющего пучки атомов. Пусть два когерентных атомных пучка интерферируют в области их пересечения аналогично лазерным пучкам (см. рис. 1). Предположим, что гравитационное поле на пути одного из атомных пучков изменилось. Тогда длина пути этого пучка до встречи с другим пучком также изменится. В результате максимумы волн материи двух атомных пучков встретятся в другом месте, что приведет к смещению интерференционной картины. Измеряя такое смещение, можно определить изменение гравитационного поля. На основе этой идеи уже созданы датчики гравитационного поля, способные обнаружить разницу в величине ускорения свободного падения менее 10 –6 %. Они могут пригодиться как для фундаментальных исследований (проверка физических теорий, измерение констант), так и для важных прикладных разработок в навигации (создание прецизионных гироскопов), геологии (зондированием полезных ископаемых) и для других наук. У писателей-фантастов, например, можно найти сюжет, когда с помощью прибора для измерения малейших изменений силы тяжести археологи читают надписи, выбитые на погребенных в толще земли обелисках.

Когерентное вещество

Особенно интересные эффекты возникают, когда свойства когерентных волн материи удается наблюдать как макроскопические свойства конденсированного вещества, то есть твердого тела или жидкости. Один из ярких примеров таких свойств - сверхтекучесть в жидком гелии при охлаждении ниже 2,2 К. Советские физики выполнили пионерские исследования сверхтекучести: это явление открыл Петр Капица в 1938 году, а объяснил Лев Ландау. Сверхтекучий гелий может вытекать через маленькие отверстия с огромной скоростью: по крайней мере, в 108 раз быстрее воды. Если бы нам удалось наполнить обычную ванну сверхтекучим гелием, то он вытек бы из нее менее чем за одну секунду через дырочку размером с крохотное игольное ушко. В 2004 году американцы Юн Сён Ким и Мозес Чан сообщили об обнаружении сверхтекучести в твердом гелии. Их тонкий эксперимент состоял в следующем: твердый охлажденный гелий, находящийся под давлением при температуре около 0,2 К, помещали на крутильный маятник. Если часть гелия переходит в сверхтекучее состояние, то частота крутильных колебаний должна вырастать, так как сверхтекучая компонента остается неподвижной, облегчая колебания маятника. По данным Кима и Чана, в сверхтекучее состояние переходило около 1% твердого гелия. Эти эксперименты демонстрируют, что атомы могут свободно перемещаться по сверхтекучему твердому телу, следовательно, оно способно пропускать массу вещества сквозь себя беспрепятственно: перспектива проходить сквозь стены в таком мире кажется вполне реальной!

Это удивительное явление могут объяснить волновые свойства атомов. Волны, в отличие от частиц, обходят препятствия на своем пути. Поясним это на примере интерференции двух пучков света на экране. Вырежем в экране отверстия в области светлых полос «зебры» (интерференционной картины). Такое препятствие когерентный свет не почувствует: экран ведь сохранился только в неосвещенных частях «зебры». Если же пучки не когерентны, то равномерно освещенный экран с отверстиями неизбежно задержит часть света. Отсюда можно уяснить, как когерентные волны материи преодолевают препятствия без потерь.

Еще одно необычное макроскопическое квантовое явление, аналогичное сверхтекучести, - сверхпроводимость, открытая голландцем Хейке Камерлингом-Онессом в 1911 году в ртути при ее охлаждении до температуры жидкого гелия (Нобелевская премия 1913 года). Сверхпроводящие электроны двигаются без сопротивления, обходя препятствия, в роли которых выступает тепловое движение атомов. Например, ток в кольце из сверхпроводника может течь неограниченно долго, поскольку ему ничто не мешает. Можно сказать, что сверхпроводимость есть сверхтекучесть электронной жидкости. Для такой сверхтекучести нужно, чтобы большое число зарядов находилось в одном квантовом состоянии, как, например, фотоны в лазерном пучке. Это требование наталкивается на ограничение, установленное выдающимся швейцарским физиком Вольфгангом Паули в 1924 году: если спиновое число частицы равно 1/2, как у электрона, то в одном квантовом состоянии может находиться лишь одна частица. Такие частицы называют фермионами. При целом значении спина в одном квантовом состоянии можно сконденсировать сколь угодно большое число частиц. Такие частицы называют бозонами. Поэтому для сверхпроводящего тока нужны частицы электрического заряда с целым спином. Если бы пара электронов (фермионов) смогла сформировать составную частицу, то спин пары оказался бы целым числом. И тогда составные частицы станут бозонами, способными образовать БЭК и дать сверхпроводящий ток.

Однако связанные пары электронов действительно могут возникать в проводниках, несмотря на то что кулоновские силы отталкивают электроны друг от друга - эта идея легла в основу теории, объясняющей сверхпроводимость в простых металлах (Джон Бардин, Леон Купер, Джон Шриффер, Нобелевская премия по физике за 1972 год).

Сверхтекучесть БЭК

Итак, во второй половине XX века физики пришли к пониманию, что БЭК может обладать свойствами сверхтекучести. Естественно, что после получения газового БЭК ученых захватила идея об экспериментах, демонстрирующих в нем сверхтекучесть. В 2005 году группа В. Кеттерле представила окончательное доказательство сверхтекучести газового БЭК. Идея эксперимента основана на том, что сверхтекучая жидкость ведет себя при вращении необычно. Если бы нам удалось размешать сверхтекучую жидкость ложкой, будто кофе в чашке, то она стала бы вращаться не целиком, а распалась бы на множество маленьких вихрей. Более того, они расположились бы в строгом порядке, образуя так называемую решетку вихрей Абрикосова. Схема этого филигранного эксперимента следующая (рис. 4). Газовый конденсат, захваченный лазерным пучком и магнитным полем, начинали вращать дополнительными лазерными пучками; они раскручивали конденсат, как ложечка - кофе. Затем ловушку, то есть пучки и катушку, отключали, и конденсат был предоставлен сам себе. Он расширялся и давал тень, которая напоминала швейцарский сыр (рис. 4б). «Дырочки в сыре» отвечают сверхтекучим вихрям. Важнейшая особенность этих экспериментов состоит в том, что они проделаны не только в газе бозонов (атомов натрия), но и в газе фермионов (атомов лития). Сверхтекучесть в литиевом газе наблюдали только тогда, когда атомы лития образовывали молекулы или слабые пары. Это было первое наблюдение сверхтекучести газа фермионов. Оно подвело прочный экспериментальный фундамент под теорию сверхпроводимости, основанную на идее конденсации Бозе-Эйнштейна.

Спаривать атомы лития физикам удается с помощью так называемого резонанса Фешбаха, который возникает в ловушке при одновременном действии полей магнитных катушек и лазерных пучков. Магнитное поле подстраивают в области резонанса Фешбаха так, что оно сильно изменяет силы взаимодействия между атомами газа. Можно заставить атомы притягиваться друг к другу или - отталкиваться. Физики придумали и другие способы управления свойствами сверххолодного атомного газа. Один из самых изящных - поместить атомы в интерферирующее поле лазерных пучков - своеобразную оптическую решетку. В ней каждый атом окажется в центре одной из полос интерференционной картины (см. рис. 1), так что волны света будут удерживать волны вещества, подобно форме для хранения яиц. Атомы в оптической решетке служат отличной моделью кристалла, где с помощью параметров лазерных пучков меняют расстояние между атомами, а с помощью резонанса Фешбаха - регулируют взаимодействие между ними. В результате физики реализовали давнюю мечту - получать образец вещества с управляемыми параметрами. Ученые полагают, что сверххолодный газ - модель не только кристалла, но и более экзотических форм материи, таких, как нейтронные звезды и кварк-глюонная плазма ранней Вселенной. Поэтому некоторые исследователи не без основания полагают, что сверххолодный газ поможет понять ранние этапы эволюции Вселенной.

Когерентное будущее

Явления сверхтекучести и сверхпроводимости показывают, что когерентность волн де Бройля большого числа частиц дает неожиданные и важные свойства. Эти явления не были предсказаны, более того, на объяснение сверхпроводимости в простых металлах потребовалось почти 50 лет. А явление высокотемпературной сверхпроводимости, обнаруженное в 1986 году в металло-оксидных керамиках при 35 градусах Кельвина немцем Йоханесом Беднорцем и швейцарцем Карлом Мюллером (Нобелевская премия 1987 года), до сих пор не получило общепринятого объяснения, несмотря на огромные усилия физиков во всем мире.

Еще одна область исследований, в которой без когерентных квантовых состояний не обойтись, - квантовые компьютеры: только в таком состоянии есть возможность проводить высокопроизводительные квантовые вычисления, недоступные самым современным суперкомпьютерам.

Итак, когерентность означает сохранение разности фаз между складывающимися волнами. Сами волны могут быть различной природы: и световыми, и волнами де Бройля. На примере газового БЭК мы видим, что когерентное вещество фактически представляет собой новую форму материи, ранее недоступную человеку. Возникает вопрос: всегда ли наблюдение когерентных квантовых процессов в веществе требует очень низких температур? Не всегда. По крайней мере, есть один очень удачный пример - лазер. Окружающая температура для работы лазера обычно не существенна, так как лазер работает в условиях, далеких от теплового равновесия. Лазер - сильно неравновесная система, поскольку к нему подводится поток энергии.

По-видимому, мы находимся еще в самом начале исследований когерентных квантовых процессов с участием огромного числа частиц. Один из волнующих вопросов, на который пока нет определенного ответа, - встречаются ли макроскопические когерентные квантовые процессы в живой природе? Может быть, саму жизнь можно характеризовать как особое состояние вещества с повышенной когерентностью.


Интерференция (см. главу 5). Устойчивая интерференционная картина возникает только при наложении таких волн, которые имеют постоянную во времени разность фаз в каждой точке пространства. Волны, удовлетворяющие этим условиям, и источники, создающие такие волны, называются когерентными. Условию когерентности удовлетворяют монохроматические волны, имеющие одинаковые частоты и постоянные разности начальных фаз. Монохроматическая волна характеризуется определенной длиной волны и связанной с ней частотой , где c– скорость света в вакууме.

Способы получения когерентных волн.

Получение когерентных волн для реализации интерференции в оптике осуществляется двумя способами:

инструментальное получение из данного источника двух когерентных;

деление фронта волны.

Схемы получения когерентных волн в первом случае основаны на получении двух источников, которые являются двумя изображениями данного единого излучающего центра (метод Юнга, бипризма Френеля, зеркала Френеля). Во втором случае получение когерентных волн происходит делением волны в пределах цуга на две волны (интерферометр Майкельсона, тонкие пленки, клин, кольца Ньютона).

6. Интерференция волн - наложение волн, при котором происходит их взаимное усиление в одних точках пространства и ослабление – в других. Результат интерференции зависит от разности фаз накладывающихся волн.

Интерферировать могут только волны, имеющие одинаковую частоту, в которых колебания совершаются вдоль одного и того же направления (т. е. когерентные волны). Интерференция бывает стационарной и нестационарной. Стационарную интерференционную картину могут давать только когерентные волны. Например, две сферические волны на поверхности воды, распространяющиеся от двух когерентных точечных источников, при интерференции дадут результирующую волну. Фронтом результирующей волны будет сфера.

При интерференции волн не происходит сложения их энергий. Интерференция волн приводит к перераспределению энергии колебаний между различными близко расположенными частицами среды. Это не противоречит закону сохранения энергии потому, что в среднем, для большой области пространства, энергия результирующей волны равна сумме энергий интерферирующих волн.

При наложении некогерентных волн средняя величина квадрата амплитуды результирующей волны равна сумме квадратов амплитуд накладывающихся волн. Энергия результирующих колебаний каждой точки среды равна сумме энергий ее колебаний, обусловленных всеми некогерентными волнами в отдельности.

7. В волновой оптике разработаны методы расчета интерференционной картины. Для расчетов используется величина произведения геометрического пути s световой волны (светового луча) в данной среде на показатель преломления n этой среды. Эта величина L = s · n получила название оптический путь волны (луча). Разность оптических путей двух волн ∆L = L1 – L2 = = s1n1 –s2 n2 получила название оптическая разность хода двух волн. Для расчета оптической разности хода удобнее рисовать лучи, а не волны.Условие максимумапри интерференции.

Если оптическая разность хода равна целому числу длин волн в вакууме: то колебания, возбуждаемые в данной точке среды обеими волнами, будут происходить в одинаковой фазе, а, значит, будут усУсловие минимума при интерференции.

Если оптическая разность хода равна полуцелому числу длин волн в вакууме: то колебания, возбуждаемые в данной точке среды обеими волнами, будут происходить в противофазе, а, значит, будут ослаблять друг друга.

8. В природе часто можно наблюдать радужное окрашивание тонких пленок (масляные пленки на воде, мыльные пузыри, оксидные пленка на металлах), возникающее в результате интерференции света, отраженного двумя поверхностями пленки.

Пусть на плоскопараллельную прозрачную пленку с показателем преломления п и толщиной d под углом i (рис. 249) падает плоская монохроматическая волна (для простоты рассмотрим один луч). На поверхности пленки в точке О луч разделится на два: частично отразится от верхней поверхности пленки, а частично преломится. Преломленный луч, дойдя до точки С, частично преломится в воздух (п0=1), а частично отразится и пойдет к точке В. Здесь он опять частично отразится (этот ход луча в дальнейшем из-за малой интенсивности не рассматриваем) и преломится, выходя в воздух под углом i. Вышедшие из пленки лучи 1 и 2 когерентны, если оптическая разность их хода мала по сравнению с длиной когерентности падающей волны. Если на их пути поставить собирающую линзу, то они сойдутся в одной из точек Р фокальной плоскости линзы. В результате возникает интерференционная картина, которая определяется оптической разностью хода между интерферирующими лучами.

Новое на сайте

>

Самое популярное