Домой Личность Как найти корни принадлежащие промежутке. Записи с меткой "корни тригонометрического уравнения на промежутке"

Как найти корни принадлежащие промежутке. Записи с меткой "корни тригонометрического уравнения на промежутке"

Чтобы успешно решать тригонометрические уравнения удобно пользоваться методом сведения к ранее решенным задачам. Давайте разберемся, в чем суть этого метода?

В любой предлагаемой задаче вам необходимо увидеть уже решенную ранее задачу, а затем с помощью последовательных равносильных преобразований попытаться свести данную вам задачу к более простой.

Так, при решении тригонометрических уравнений обычно составляют некоторую конечную последовательность равносильных уравнений, последним звеном которой является уравнение с очевидным решением. Только важно помнить, что если навыки решения простейших тригонометрических уравнений не сформированы, то решение более сложных уравнений будет затруднено и малоэффективно.

Кроме того, решая тригонометрические уравнения, никогда не стоит забывать о возможности существования нескольких способов решения.

Пример 1. Найти количество корней уравнения cos x = -1/2 на промежутке .

Решение:

I способ. Изобразим графики функций y = cos x и y = -1/2 и найдем количество их общих точек на промежутке (рис. 1).

Так как графики функций имеют две общие точки на промежутке , то уравнение содержит два корня на данном промежутке.

II способ. С помощью тригонометрического круга (рис. 2) выясним количество точек, принадлежащих промежутку , в которых cos x = -1/2. По рисунку видно, что уравнение имеет два корня.

III способ. Воспользовавшись формулой корней тригонометрического уравнения, решим уравнение cos x = -1/2.

x = ± arccos (-1/2) + 2πk, k – целое число (k € Z);

x = ± (π – arccos 1/2) + 2πk, k – целое число (k € Z);

x = ± (π – π/3) + 2πk, k – целое число (k € Z);

x = ± 2π/3 + 2πk, k – целое число (k € Z).

Промежутку принадлежат корни 2π/3 и -2π/3 + 2π, k – целое число. Таким образом, уравнение имеет два корня на заданном промежутке.

Ответ: 2 .

В дальнейшем тригонометрические уравнения будут решаться одним из предложенных способов, что во многих случаях не исключает применения и остальных способов.

Пример 2. Найти количество решений уравнения tg (x + π/4) = 1 на промежутке [-2π; 2π].

Решение:

Воспользовавшись формулой корней тригонометрического уравнения, получим:

x + π/4 = arctg 1 + πk, k – целое число (k € Z);

x + π/4 = π/4 + πk, k – целое число (k € Z);

x = πk, k – целое число (k € Z);

Промежутку [-2π; 2π] принадлежат числа -2π; -π; 0; π; 2π. Итак, уравнение имеет пять корней на заданном промежутке.

Ответ: 5.

Пример 3. Найти количество корней уравнения cos 2 x + sin x · cos x = 1 на промежутке [-π; π].

Решение:

Так как 1 = sin 2 x + cos 2 x (основное тригонометрическое тождество), то исходное уравнение принимает вид:

cos 2 x + sin x · cos x = sin 2 x + cos 2 x;

sin 2 x – sin x · cos x = 0;

sin x(sin x – cos x) = 0. Произведение равно нулю, а значит хотя бы один из множителей должен быть равен нулю, поэтому:

sin x = 0 или sin x – cos x = 0.

Так как значение переменной, при которых cos x = 0, не являются корнями второго уравнения (синус и косинус одного и того же числа не могут одновременно быть равными нулю), то разделим обе части второго уравнения на cos x:

sin x = 0 или sin x / cos x - 1 = 0.

Во втором уравнении воспользуемся тем, что tg x = sin x / cos x, тогда:

sin x = 0 или tg x = 1. С помощью формул имеем:

x = πk или x = π/4 + πk, k – целое число (k € Z).

Из первой серии корней промежутку [-π; π] принадлежат числа -π; 0; π. Из второй серии: (π/4 – π) и π/4.

Таким образом, пять корней исходного уравнения принадлежат промежутку [-π; π].

Ответ: 5.

Пример 4. Найти сумму корней уравнения tg 2 x + сtg 2 x + 3tg x + 3сtgx + 4 = 0 на промежутке [-π; 1,1π].

Решение:

Перепишем уравнение в следующем виде:

tg 2 x + сtg 2 x + 3(tg x + сtgx) + 4 = 0 и сделаем замену.

Пусть tg x + сtgx = a. Обе части равенства возведем в квадрат:

(tg x + сtg x) 2 = a 2 . Раскроем скобки:

tg 2 x + 2tg x · сtgx + сtg 2 x = a 2 .

Так как tg x · сtgx = 1, то tg 2 x + 2 + сtg 2 x = a 2 , а значит

tg 2 x + сtg 2 x = a 2 – 2.

Теперь исходное уравнение имеет вид:

a 2 – 2 + 3a + 4 = 0;

a 2 + 3a + 2 = 0. С помощью теоремы Виета получаем, что a = -1 или a = -2.

Сделаем обратную замену, имеем:

tg x + сtgx = -1 или tg x + сtgx = -2. Решим полученные уравнения.

tg x + 1/tgx = -1 или tg x + 1/tgx = -2.

По свойству двух взаимно обратных чисел определяем, что первое уравнение не имеет корней, а из второго уравнения имеем:

tg x = -1, т.е. x = -π/4 + πk, k – целое число (k € Z).

Промежутку [-π; 1,1π] принадлежат корни: -π/4; -π/4 + π. Их сумма:

-π/4 + (-π/4 + π) = -π/2 + π = π/2.

Ответ: π/2.

Пример 5. Найти среднее арифметическое корней уравнения sin 3x + sin x = sin 2x на промежутке [-π; 0,5π].

Решение:

Воспользуемся формулой sin α + sin β = 2sin ((α + β)/2) · cos ((α – β)/2), тогда

sin 3x + sin x = 2sin ((3x + x)/2) · cos ((3x – x)/2) = 2sin 2x · cos x и уравнение принимает вид

2sin 2x · cos x = sin 2x;

2sin 2x · cos x – sin 2x = 0. Вынесем общий множитель sin 2x за скобки

sin 2x(2cos x – 1) = 0. Решим полученное уравнение:

sin 2x = 0 или 2cos x – 1 = 0;

sin 2x = 0 или cos x = 1/2;

2x = πk или x = ±π/3 + 2πk, k – целое число (k € Z).

Таким образом, имеем корни

x = πk/2, x = π/3 + 2πk, x = -π/3 + 2πk, k – целое число (k € Z).

Промежутку [-π; 0,5π] принадлежат корни -π; -π/2; 0; π/2 (из первой серии корней); π/3 (из второй серии); -π/3 (из третьей серии). Их среднее арифметическое равно:

(-π – π/2 + 0 + π/2 + π/3 – π/3)/6 = -π/6.

Ответ: -π/6.

Пример 6. Найти количество корней уравнения sin x + cos x = 0 на промежутке [-1,25π; 2π].

Решение:

Данное уравнение является однородным уравнением первой степени. Разделим обе его части на cosx (значение переменной, при которых cos x = 0, не являются корнями данного уравнения, так как синус и косинус одного и того же числа не могут одновременно быть равными нулю). Исходное уравнение имеет вид:

x = -π/4 + πk, k – целое число (k € Z).

Промежутку [-1,25π; 2π] принадлежат корни -π/4; (-π/4 + π); и (-π/4 + 2π).

Таким образом, заданному промежутку принадлежат три корня уравнения.

Ответ: 3.

Научитесь делать самое главное – четко представлять план решения задачи, и тогда любое тригонометрическое уравнение будет вам по плечу.

Остались вопросы? Не знаете, как решать тригонометрические уравнения?
Чтобы получить помощь репетитора – .

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Цель урока:

  1. Повторить формулы решения простейших тригонометрических уравнений.
  2. Рассмотреть три основных способа отбора корней при решении тригонометрических уравнений:
    отбор неравенством, отбор знаменателем и отбор в промежуток.

Оборудование: Мультимедийная аппаратура.

Методический комментарий .

  1. Обратить внимание учащихся на важность темы урока.
  2. Тригонометрические уравнения, в которых требуется провести отбор корней, часто встречаются в тематических тестах ЕГЭ;
    решение таких задач позволяет закрепить и углубить ранее полученные знания учащихся.

Ход урока

Повторение. Полезно вспомнить формулы решения простейших тригонометрических уравнений (экран).

Значения Уравнение Формулы решения уравнений
sinx=a
sinx=a уравнение решений не имеет
а=0 sinx=0
а=1 sinx= 1
а= -1 sinx= -1
cosx=a
cosx=a уравнение решений не имеет
а=0 cosx=0
а=1 cosx= 1
а= -1 cosx= -1
tgx=a
ctgx=a

При отборе корней в тригонометрических уравнениях запись решений уравнений sinx=a, сosx=a в виде совокупности более оправдана. В этом мы убедимся при решении задач.

Решение уравнений.

Задача . Решить уравнение

Решение. Данное уравнение равносильно следующей системе

Рассмотрим окружность. Отметим на ней корни каждой системы и отметим дугой ту часть окружности, где выполняется неравенство (рис. 1 )

Рис. 1

Получаем, что не может быть решением исходного уравнения.

Ответ:

В этой задаче мы провели отбор корней неравенством.

В следующей задаче проведем отбор знаменателем. Для этого выберем корни числителя, но такие, что они не будут являться корнями знаменателя.

Задача 2. Решить уравнение.

Решение . Запишем решение уравнения, используя последовательные равносильные переходы.

Решая уравнение и неравенство системы, в решении ставим разные буквы, которые обозначают целые числа. Иллюстрируя на рисунке, отметим на окружности корни уравнения кружочками, а корни знаменателя крестиками (рис.2.)

Рис. 2

Из рисунка хорошо видно, что – решение исходного уравнения.

Обратим внимание учащихся на то, что отбор корней проще было проводить, используя систему c нанесением соответствующих точек на окружности.

Ответ:

Задача 3. Решить уравнение

3sin2x = 10 cos 2 x – 2 /

Найти все корни уравнения, принадлежащие отрезку .

Решение. В этой задаче производится отбор корней в промежуток, который задается условием задачи. Отбор корней в промежуток можно выполнять двумя способами: перебирая значения переменной для целых чисел или решая неравенство.

В данном уравнении отбор корней проведем первым способом, а в следующей задаче – путем решения неравенства.

Воспользуемся основным тригонометрическим тождеством и формулой двойного угла для синуса. Получим уравнение

6sinxcosx = 10cos 2 x – sin 2 x – cos 2 x, т.е. sin 2 x – 9cos 2 x+ 6sinxcosx = 0

Т.к. в противном случае sinx = 0 , что не может быть, так как не существует углов, для которых одновременно синус и косинус равные нулю в виду sin 2 x+ cos 2 x = 0.

Разделим обе части уравнения на cos 2 x. Получим tg 2 x+ 6tgx – 9 = 0 /

Пусть tgx = t , тогда t 2 + 6t – 9 = 0, t 1 = 2,t 2 = –8.

tgx = 2 или tg = –8;

Рассмотрим каждую серию отдельно, находя точки внутри промежутка , и по одной точке слева и справа от него.

Если к=0 , то x=arctg2 . Этот корень принадлежит рассматриваемому промежутку.

Если к=1 , то x=arctg2+. Этот корень тоже принадлежит рассматриваемому промежутку.

Если к=2 , то . Ясно, что данный корень не принадлежит нашему промежутку.

Мы рассмотрели одну точку справа от данного промежутка, поэтому к=3,4,… не рассматриваются.

Если к = –1, получим – не принадлежит промежутку .

Значения к = –2, –3,… не рассматриваются.

Таким образом, из данной серии два корня принадлежат промежутку

Аналогично предыдущему случаю убедимся, что при п = 0 и п = 2, а, следовательно, при п = –1, –2,…п = 3,4,… мы получим корни, не принадлежащие промежутку . Лишь при п=1 получим , принадлежащий этому промежутку.

Ответ:

Задача 4. Решить уравнение 6sin 2 x+2sin 2 2x=5 и указать корни, принадлежащие промежутку .

Решение. Приведем уравнение 6sin 2 x+2sin 2 2x=5 к квадратному уравнению относительно cos2x.

Откуда cos2x

Здесь применим способ отбора в промежуток при помощи двойного неравенства

Так как к принимает только целые значения, то возможно лишь к=2,к=3 .

При к=2 получим , при к=3 получим .

Ответ:

Методический комментарий. Приведенные четыре задачи рекомендуется решать учителю у доски с привлечением учащихся. Для решения следующей задачи лучше вызвать к дочке сильного учащегося, предоставив ему максимальную самостоятельность в рассуждениях.

Задача 5. Решить уравнение

Решение. Преобразовывая числитель, приведем уравнение к более простому виду

Полученное уравнение равносильно совокупности двух систем:

Отбор корней на промежутке (0; 5) проведем двумя способами. Первый способ -для первой системы совокупности, второй способ – для второй системы совокупности.

, 0.

Так как к – целое число, то к=1 . Тогда х = – решение исходного уравнения.

Рассмотрим вторую систему совокупности

Если n=0 , то . При п = -1; -2;… решений не будет.

Если п=1,– решение системы и, следовательно, исходного уравнения.

Если п=2 , то

При решений не будет.

По вашим просьбам!

13. Решите уравнение 3-4cos 2 x=0. Найдите сумму его корней, принадлежащих промежутку .

Понизим степень косинуса по формуле: 1+cos2α=2cos 2 α. Получаем равносильное уравнение:

3-2(1+cos2x)=0 ⇒ 3-2-2cos2x=0 ⇒ -2cos2x=-1. Делим обе части равенства на (-2) и получаем простейшее тригонометрическое уравнение:

14. Найдите b 5 геометрической прогрессии, если b 4 =25 и b 6 =16.

Каждый член геометрической прогрессии, начиная со второго, равен среднему арифметическому соседних с ним членов:

(b n) 2 =b n-1 ∙b n+1 . У нас (b 5) 2 =b 4 ∙b 6 ⇒ (b 5) 2 =25·16 ⇒ b 5 =±5·4 ⇒ b 5 =±20.

15. Найдите производную функции: f(x)=tgx-ctgx.

16. Найдите наибольшее и наименьшее значения функции y(x)=x 2 -12x+27

на отрезке .

Чтобы найти наибольшее и наименьшее значения функции y=f(x) на отрезке , нужно найти значения этой функции на концах отрезка и в тех критических точках, которые принадлежат данному отрезку, а затем из всех полученных значений выбрать наибольшее и наименьшее.

Найдем значения функции при х=3 и при х=7, т.е. на концах отрезка.

y(3)=3 2 -12∙3+27 =9-36+27=0;

y(7)=7 2 -12∙7+27 =49-84+27=-84+76=-8.

Находим производную данной функции: y’(x)=(x 2 -12x+27)’ =2x-12=2(x-6); критическая точка х=6 принадлежит данному промежутку . Найдем значение функции при х=6.

y(6)=6 2 -12∙6+27 =36-72+27=-72+63=-9. А теперь выбираем из трех полученных значений: 0; -8 и -9 наибольшее и наименьшее: у наиб. =0; у наим. =-9.

17. Найдите общий вид первообразных для функции:

Данный промежуток – это область определения данной функции. Ответы должны начинаться с F(x), а не с f(x) – ведь мы ищем первообразную. По определению функция F(x) является первообразной для функции f(x), если выполняется равенство: F’(x)=f(x). Так что можно просто находить производные предложенных ответов, пока не получится данная функция. Строгое решение – это вычисление интеграла от данной функции. Применяем формулы:

19. Составьте уравнение прямой, содержащей медиану BD треугольника АВС, если его вершины А(-6; 2), В(6; 6) С(2; -6).

Для составления уравнения прямой нужно знать координаты 2-х точек этой прямой, а нам известны координаты только точки В. Так как медиана BD делит противолежащую сторону пополам, то точка D является серединой отрезка АС. Координаты середины отрезка есть полусуммы соответственных координат концов отрезка. Найдем координаты точки D.

20. Вычислить:

24. Площадь правильного треугольника, лежащего в основании прямой призмы, равна

Эта задача — обратная к задаче № 24 из варианта 0021.

25. Найдите закономерность и вставьте недостающее число: 1; 4; 9; 16; …

Очевидно, что это число 25 , так как нам дана последовательность квадратов натуральных чисел:

1 2 ; 2 2 ; 3 2 ; 4 2 ; 5 2 ; …

Всем удачи и успехов!

Чтобы успешно решать тригонометрические уравнения удобно пользоваться методом сведения к ранее решенным задачам. Давайте разберемся, в чем суть этого метода?

В любой предлагаемой задаче вам необходимо увидеть уже решенную ранее задачу, а затем с помощью последовательных равносильных преобразований попытаться свести данную вам задачу к более простой.

Так, при решении тригонометрических уравнений обычно составляют некоторую конечную последовательность равносильных уравнений, последним звеном которой является уравнение с очевидным решением. Только важно помнить, что если навыки решения простейших тригонометрических уравнений не сформированы, то решение более сложных уравнений будет затруднено и малоэффективно.

Кроме того, решая тригонометрические уравнения, никогда не стоит забывать о возможности существования нескольких способов решения.

Пример 1. Найти количество корней уравнения cos x = -1/2 на промежутке .

Решение:

I способ. Изобразим графики функций y = cos x и y = -1/2 и найдем количество их общих точек на промежутке (рис. 1).

Так как графики функций имеют две общие точки на промежутке , то уравнение содержит два корня на данном промежутке.

II способ. С помощью тригонометрического круга (рис. 2) выясним количество точек, принадлежащих промежутку , в которых cos x = -1/2. По рисунку видно, что уравнение имеет два корня.

III способ. Воспользовавшись формулой корней тригонометрического уравнения, решим уравнение cos x = -1/2.

x = ± arccos (-1/2) + 2πk, k – целое число (k € Z);

x = ± (π – arccos 1/2) + 2πk, k – целое число (k € Z);

x = ± (π – π/3) + 2πk, k – целое число (k € Z);

x = ± 2π/3 + 2πk, k – целое число (k € Z).

Промежутку принадлежат корни 2π/3 и -2π/3 + 2π, k – целое число. Таким образом, уравнение имеет два корня на заданном промежутке.

Ответ: 2 .

В дальнейшем тригонометрические уравнения будут решаться одним из предложенных способов, что во многих случаях не исключает применения и остальных способов.

Пример 2. Найти количество решений уравнения tg (x + π/4) = 1 на промежутке [-2π; 2π].

Решение:

Воспользовавшись формулой корней тригонометрического уравнения, получим:

x + π/4 = arctg 1 + πk, k – целое число (k € Z);

x + π/4 = π/4 + πk, k – целое число (k € Z);

x = πk, k – целое число (k € Z);

Промежутку [-2π; 2π] принадлежат числа -2π; -π; 0; π; 2π. Итак, уравнение имеет пять корней на заданном промежутке.

Ответ: 5.

Пример 3. Найти количество корней уравнения cos 2 x + sin x · cos x = 1 на промежутке [-π; π].

Решение:

Так как 1 = sin 2 x + cos 2 x (основное тригонометрическое тождество), то исходное уравнение принимает вид:

cos 2 x + sin x · cos x = sin 2 x + cos 2 x;

sin 2 x – sin x · cos x = 0;

sin x(sin x – cos x) = 0. Произведение равно нулю, а значит хотя бы один из множителей должен быть равен нулю, поэтому:

sin x = 0 или sin x – cos x = 0.

Так как значение переменной, при которых cos x = 0, не являются корнями второго уравнения (синус и косинус одного и того же числа не могут одновременно быть равными нулю), то разделим обе части второго уравнения на cos x:

sin x = 0 или sin x / cos x - 1 = 0.

Во втором уравнении воспользуемся тем, что tg x = sin x / cos x, тогда:

sin x = 0 или tg x = 1. С помощью формул имеем:

x = πk или x = π/4 + πk, k – целое число (k € Z).

Из первой серии корней промежутку [-π; π] принадлежат числа -π; 0; π. Из второй серии: (π/4 – π) и π/4.

Таким образом, пять корней исходного уравнения принадлежат промежутку [-π; π].

Ответ: 5.

Пример 4. Найти сумму корней уравнения tg 2 x + сtg 2 x + 3tg x + 3сtgx + 4 = 0 на промежутке [-π; 1,1π].

Решение:

Перепишем уравнение в следующем виде:

tg 2 x + сtg 2 x + 3(tg x + сtgx) + 4 = 0 и сделаем замену.

Пусть tg x + сtgx = a. Обе части равенства возведем в квадрат:

(tg x + сtg x) 2 = a 2 . Раскроем скобки:

tg 2 x + 2tg x · сtgx + сtg 2 x = a 2 .

Так как tg x · сtgx = 1, то tg 2 x + 2 + сtg 2 x = a 2 , а значит

tg 2 x + сtg 2 x = a 2 – 2.

Теперь исходное уравнение имеет вид:

a 2 – 2 + 3a + 4 = 0;

a 2 + 3a + 2 = 0. С помощью теоремы Виета получаем, что a = -1 или a = -2.

Сделаем обратную замену, имеем:

tg x + сtgx = -1 или tg x + сtgx = -2. Решим полученные уравнения.

tg x + 1/tgx = -1 или tg x + 1/tgx = -2.

По свойству двух взаимно обратных чисел определяем, что первое уравнение не имеет корней, а из второго уравнения имеем:

tg x = -1, т.е. x = -π/4 + πk, k – целое число (k € Z).

Промежутку [-π; 1,1π] принадлежат корни: -π/4; -π/4 + π. Их сумма:

-π/4 + (-π/4 + π) = -π/2 + π = π/2.

Ответ: π/2.

Пример 5. Найти среднее арифметическое корней уравнения sin 3x + sin x = sin 2x на промежутке [-π; 0,5π].

Решение:

Воспользуемся формулой sin α + sin β = 2sin ((α + β)/2) · cos ((α – β)/2), тогда

sin 3x + sin x = 2sin ((3x + x)/2) · cos ((3x – x)/2) = 2sin 2x · cos x и уравнение принимает вид

2sin 2x · cos x = sin 2x;

2sin 2x · cos x – sin 2x = 0. Вынесем общий множитель sin 2x за скобки

sin 2x(2cos x – 1) = 0. Решим полученное уравнение:

sin 2x = 0 или 2cos x – 1 = 0;

sin 2x = 0 или cos x = 1/2;

2x = πk или x = ±π/3 + 2πk, k – целое число (k € Z).

Таким образом, имеем корни

x = πk/2, x = π/3 + 2πk, x = -π/3 + 2πk, k – целое число (k € Z).

Промежутку [-π; 0,5π] принадлежат корни -π; -π/2; 0; π/2 (из первой серии корней); π/3 (из второй серии); -π/3 (из третьей серии). Их среднее арифметическое равно:

(-π – π/2 + 0 + π/2 + π/3 – π/3)/6 = -π/6.

Ответ: -π/6.

Пример 6. Найти количество корней уравнения sin x + cos x = 0 на промежутке [-1,25π; 2π].

Решение:

Данное уравнение является однородным уравнением первой степени. Разделим обе его части на cosx (значение переменной, при которых cos x = 0, не являются корнями данного уравнения, так как синус и косинус одного и того же числа не могут одновременно быть равными нулю). Исходное уравнение имеет вид:

x = -π/4 + πk, k – целое число (k € Z).

Промежутку [-1,25π; 2π] принадлежат корни -π/4; (-π/4 + π); и (-π/4 + 2π).

Таким образом, заданному промежутку принадлежат три корня уравнения.

Ответ: 3.

Научитесь делать самое главное – четко представлять план решения задачи, и тогда любое тригонометрическое уравнение будет вам по плечу.

Остались вопросы? Не знаете, как решать тригонометрические уравнения?
Чтобы получить помощь репетитора – зарегистрируйтесь .

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Новое на сайте

>

Самое популярное