Домой Практическая психология Кинетическая энергия вращения. Кинетическая энергия при вращательном движении

Кинетическая энергия вращения. Кинетическая энергия при вращательном движении

Определим кинетическую энергию твёрдого тела, вращающегося вокруг неподвижной оси. Разобьем это тело на n материальных точек. Каждая точка движется с линейной скоростью υ i =ωr i , тогда кинетическая энергия точки

или

Полная кинетическая энергия вращающегося твердого тела равна сумме кинетических энергий всех его материальных точек:

(3.22)

(J - момент инерции тела относительно оси вращения)

Если траектории всех точек лежат в параллельных плоскостях (как у цилиндра, скатывающегося с наклонной плоскости, каждая точка перемещается в своей плоскости рис), это плоское движение . В соответствии с принципом Эйлера плоское движение всегда можно бесчисленным количеством способов разложить на поступательное и вращательное движение. Если шарик падает или скользит вдоль наклонной плоскости, он двигается только поступательно; когда же шарик катится – он ещё и вращается.

Если тело совершает поступательное и вращательное движения одновременно, то его полная кинетическая энергия равна

(3.23)

Из сопоставления формул кинетической энергии для поступательно­го и вращательного движений видно, что мерой инертности при враща­тельном движении служит момент инерции тела.

§ 3.6 Работа внешних сил при вращении твёрдого тела

При вращении твёрдого тела его потенциальная энергия не изменяется, поэтому элементарная работа внешних сил равна приращению кинетической энергии тела:

dA = dE или

Учитывая, что Jβ = M, ωdr = dφ, имеем α тела на конечный угол φ равна

(3.25)

При вращении твёрдого тела вокруг неподвижной оси работа внешних сил определяется действием момента этих сил относительно данной оси. Если момент сил относительно оси равен нулю, то эти силы работы не производят.

Примеры решения задач

Пример 2.1. Маховик массой m =5кг и радиусом r = 0,2 м вращается вокруг горизонтальной оси с частотой ν 0 =720 мин -1 и при торможении останавливается за t =20 с. Найти тормозящий момент и число оборотов до остановки.

Для определения тормозящего момента применим основное уравнение динамики вращательного движения

где I=mr 2 – момент инерции диска; Δω =ω - ω 0 , причём ω =0 конечная угловая скорость, ω 0 =2πν 0 - начальная. М –тормозящий момент сил, действующих на диск.

Зная все величины, можно определить тормозящий момент

Mr 2 2πν 0 = МΔt (1)

(2)

Из кинематики вращательного движения угол поворота за время вращения диска до остановки может быть определён по формуле

(3)

где β–угловое ускорение.

По условию задачи: ω =ω 0 – βΔt, так как ω=0, ω 0 = βΔt

Тогда выражение (2) может быть записано в виде:

Пример 2.2. Два маховика в виде дисков одинаковых радиусов и масс были раскручены до скорости вращения n = 480 об/мин и предоставили самим себе. Под действием сил трения валов о подшипники первый остановился через t =80 с, а второй сделал N = 240 оборотов до остановки. У какого и маховика момент сил трения валов о подшипники был больше и во сколько раз.

Момент сил терния М 1 первого маховика найдём, воспользовавшись основным уравнением динамики вращательного движения

M 1 Δt = Iω 2 - Iω 1

где Δt – время действия момента сил трения, I=mr 2 - момент инерции маховика, ω 1 = 2πν и ω 2 = 0– начальная и конечная угловые скорости маховиков

Тогда

Момент сил трения М 2 второго маховика выразим через связь между работой А сил трения и изменением его кинетической энергии ΔE к:

где Δφ = 2πN – угол поворота, N -число оборотов маховика.


Тогда, откуда

Отношение будет равно

Момент сил трения второго маховика в 1.33 раза больше.

Пример 2.3. Масса однородного сплошного диска m, массы грузов m 1 и m 2 (рис.15). Скольжения и трения нити в оси цилиндра нет. Найти ускорение грузов и отношение натяжений нити в процессе движения.

Проскальзывания нити нет, поэтому, когда m 1 и m 2 будут совершать поступательное движение, цилиндр будет совершать вращение относительно оси, проходящей через точку О. Положим для определённости, что m 2 > m 1 .

Тогда груз m 2 опускается и цилиндр вращается по часовой стрелке. Запишем уравнения движения тел, входящих в систему

Первые два уравнения записаны для тел с массами m 1 и m 2 , совершающих поступательное движение, а третье уравнение – для вращающегося цилиндра. В третьем уравнении слева стоит суммарный момент сил, действующих на цилиндр (момент силы T 1 взят со знаком минус, так как сила T 1 стремится повернуть цилиндр против часовой стрелки). Справа I - момент инерции цилиндра относительно оси О, который равен

где R - радиус цилиндра; β - угловое ускорение цилиндра.

Так как проскальзывания нити нет, то
. С учётом выражений для I и β получим:

Складывая уравнения системы, приходим к уравнению

Отсюда находим ускорение a грузов

Из полученного уравнения видно, что натяжения нитей будут одинаковы, т.е. =1, если масса цилиндра будет гораздо меньше массы грузов.

Пример 2.4. Полый шар массой m = 0,5 кг имеет внешний радиус R = 0,08м и внутренний r = 0,06м. Шар вращается вокруг оси, проходящей через его центр. В определённый момент на шар начинает действовать сила, в результате чего угол поворота шара изменяется по закону
. Определить момент приложенной силы.

Решаем задачу, используя основное уравнение динамики вращательного движения
. Основная трудность – определить момент инерции полого шара, а угловое ускорение β находим как
. Момент инерции I полого шара равен разности моментов инерции шара радиуса R и шара радиуса r:

где ρ - плотность материала шара. Находим плотность, зная массу полого шара

Отсюда определим плотность материала шара

Для момента силы M получаем следующее выражение:

Пример 2.5. Тонкий стержень массой 300г и длиной 50см вращается с угловой скоростью 10с -1 в горизонтальной плоскости вокруг вертикальной оси, проходящей через середину стержня. Найдите угловую скорость, если в процессе вращения в той же плоскости стержень переместится так, что ось вращения пройдёт через конец стержня.

Используем закон сохранения момента импульса

(1)

(J i -момент инерции стержня относительно оси вращения).

Для изолированной системы тел векторная сумма моментов импульса остаётся постоянной. Вследствие того, что распределение массы стержня относительно оси вращения изменяется момент инерции стержня также изменяется в соответствии с (1):

J 0 ω 1 = J 2 ω 2 . (2)

Известно, что момент инерции стержня относительно оси, проходящей через центр масс и перпендикулярной стержню, равен

J 0 = mℓ 2 /12. (3)

По теореме Штейнера

J =J 0 +mа 2

(J-момент инерции стержня относительно произвольной оси вращения; J 0 – момент инерции относительно параллельной оси, проходящей через центр масс; а - расстояние от центра масс до выбранной оси вращения).

Найдём момент инерции относительно оси, проходящей через его конец и перпендикулярной стержню:

J 2 =J 0 +mа 2 , J 2 = mℓ 2 /12 +m(ℓ/2) 2 = mℓ 2 /3. (4)

Подставим формулы (3) и (4) в (2):

mℓ 2 ω 1 /12 = mℓ 2 ω 2 /3

ω 2 = ω 1 /4 ω 2 =10с-1/4=2,5с -1

Пример 2.6 . Человек массой m =60кг, стоящий на краю платформы массой М=120кг, вращающейся по инерции вокруг неподвижной вертикальной оси с частотой ν 1 =12мин -1 , переходит к её центру. Считая платформу круглым однородным диском, а человека – точечной массой, определите, с какой частотой ν 2 будет тогда вращаться платформа.

Дано: m=60кг, М=120кг, ν 1 =12мин -1 = 0,2с -1 .

Найти: ν 1

Решение: Согласно условию задачи, платформа с человеком вращается по инерции, т.е. результирующий момент всех сил, приложенных к вращающейся системе, равен нулю. Поэтому для системы «платформа-человек» выполняется закон сохранения момента импульса

I 1 ω 1 = I 2 ω 2

где
- момент инерции системы, когда человек стоит на краю платформы (учли, что момент инерции платформы, равен(R – радиус п
латформы), момент инерции человека на краю платформы равенmR 2).

- момент инерции системы, когда человек стоит в центре платформы (учли, что момент человека, стоящего в центре платформы, равен нулю). Угловая скорость ω 1 = 2π ν 1 и ω 1 = 2π ν 2 .

Подставив записанные выражения в формулу (1), получаем

откуда искомая частота вращения

Ответ : ν 2 =24мин -1 .

Рассмотрим абсолютно твердое тело, вращающееся относительно неподвижной оси. Мысленно разобьем это тело на бесконечно малые кусочки с бесконечно малыми размерами и массами m v т., т 3 , ..., находящиеся на расстояниях R v R 0 , R 3 ,... от оси. Кинетическую энергию вращающегося тела найдем как сумму кинетических энергий его малых частей:

- момент инерции твердого тела относительно данной оси 00,. Из сопоставления формул кинетической энергии поступательного и вращательного движений очевидно, что момент инерции во вращательном движении является аналогом массы в поступательном движении. Формула (4.14) удобна для расчета момента инерции систем, состоящих из отдельных материальных точек. Для расчета момента инерции сплошных тел, воспользовавшись определением интеграла, можно преобразовать ее к виду

Несложно заметить, что момент инерции зависит от выбора оси и меняется при ее параллельном переносе и повороте. Найдем значения моментов инерции для некоторых однородных тел.

Из формулы (4.14) очевидно, что момент инерции материальной точки равен

где т - масса точки; R - расстояние до оси вращения.

Несложно вычислить момент инерции и для полого тонкостенного цилиндра (или частного случая цилиндра с малой высотой - тонкого кольца) радиуса R относительно оси симметрии. Расстояние до оси вращения всех точек для такого тела одинаково, равно радиусу и может быть вынесено из- под знака суммы (4.14):

Рис. 4.5

Сплошной цилиндр (или частный случай цилиндра с малой высотой - диск) радиуса R для расчета момента инерции относительно оси симметрии требует вычисления интеграла (4.15). Заранее можно понять, что масса в этом случае в среднем сосредоточена несколько ближе к оси, чем в случае полого цилиндра, и формула будет похожа на (4.17), но в ней появится коэффициент, меньший единицы. Найдем этот коэффициент. Пусть сплошной цилиндр имеет плотность р и высоту А. Разобьем его на полые цилиндры (тонкие цилиндрические поверхности) толщиной dr (рис. 4.5 показывает проекцию, перпендикулярную оси симметрии). Объем такого полого цилиндра радиуса г равен площади поверхности, умноженной на толщину: dV = 2nrhdr, масса: dm = 2nphrdr, а момент инерции в соответствии с формулой (4.17): dj =

= r 2 dm = 2лр/?г Wr. Полный момент инерции сплошного цилиндра получается интегрированием (суммированием) моментов инерции полых цилиндров:

Аналогично ищется момент инерции тонкого стержня длины L и массы т, если ось вращения перпендикулярна стержню и проходит через его середину. Разобьем такой

С учетом того что масса сплошного цилиндра связана с плотностью формулой т = nR 2 hp, имеем окончательно момент инерции сплошного цилиндра:

Рис. 4.6

стержень в соответствии с рис. 4.6 на кусочки толщиной dl. Масса такого кусочка равна dm = mdl/L, а момент инерции в соответствии с формулой (4.6): dj = l 2 dm = l 2 mdl/L. Полный момент инерции тонкого стержня получается интегрированием (суммированием) моментов инерции кусочков:

Взятие элементарного интеграла дает момент инерции тонкого стержня длины L и массы т

Рис. 4.7

Несколько сложней берется интеграл при поиске момента инерции однородного шара радиуса R и массы /77 относительно оси симметрии. Пусть сплошной шар имеет плотность р. Разобьем его в соответствии с рис. 4.7 на полые тонкие цилиндры толщиной dr, ось симметрии которых совпадает с осью вращения шара. Объем такого полого цилиндра радиуса г равен площади поверхности, умноженной на толщину:

где высота цилиндра h найдена с использованием теоремы Пифагора:

Тогда несложно найти массу полого цилиндра:

а также момент инерции в соответствии с формулой (4.15):

Полный момент инерции сплошного шара получается интегрированием (суммированием) моментов инерции полых цилиндров:


С учетом того что масса сплошного шара связана с плотностью форму- 4 .

лой т = -npR A y имеем окончательно момент инерции относительно оси

симметрии однородного шара радиуса R массы т:

Основные динамические характеристики вращательного движения - момент импульса относительно оси вращения z:

и кинетическая энергия

В общем случае, энергия при вращении с угловой скоростью находится по формуле:

, где - тензор инерции .

В термодинамике

Точно по тем же самым рассуждениям, как и в случае поступательного движения, равнораспределение подразумевает, что при тепловом равновесии средняя вращательная энергия каждой частицы одноатомного газа: (3/2)k B T . Аналогично, теорема о равнораспределении позволяет вычислить среднеквадратичную угловую скорость молекул.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Энергия вращательного движения" в других словарях:

    У этого термина существуют и другие значения, см. Энергия (значения). Энергия, Размерность … Википедия

    ДВИЖЕНИЯ - ДВИЖЕНИЯ. Содержание: Геометрия Д....................452 Кинематика Д...................456 Динамика Д....................461 Двигательные механизмы............465 Методы изучения Д. человека.........471 Патология Д. человека............. 474… … Большая медицинская энциклопедия

    Кинетическая энергия энергия механической системы, зависящая от скоростей движения её точек. Часто выделяют кинетическую энергию поступательного и вращательного движения. Более строго, кинетическая энергия есть разность между полной… … Википедия

    Тепловое движение α пептида. Сложное дрожащее движение атомов, составляющих пептид, случайно, и энергия отдельного атома флуктуирует в широких пределах, но с помощью закона равнораспределения вычисляют как среднюю кинетическую энергию каждого… … Википедия

    Тепловое движение α пептида. Сложное дрожащее движение атомов, составляющих пептид, случайно, и энергия отдельного атома флуктуирует в широких пределах, но с помощью закона равнораспределения вычисляют как среднюю кинетическую энергию каждого… … Википедия

    - (франц. marées, нем. Gezeiten, англ. tides) периодические колебания уровня воды вследствие притяжения Луны и Солнца. Общие сведения. П. всего заметнее по берегам океанов. Тотчас после малой воды наибольшего отлива, уровень океана начинает… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Рефрижераторное судно Ivory Tirupati начальная остойчивость отрицательна Остойчивость способность … Википедия

    Рефрижераторное судно Ivory Tirupati начальная остойчивость отрицательна Остойчивость способность плавучего средства противостоять внешним силам, вызывающим его крен или дифферент и возвращаться в состояние равновесия по окончании возмущающего… … Википедия

Кинетическая энергия вращающегося тела равна сумме кинетических энергий всех частиц тела:

Масса какой-либо частицы, ее линейная (окружная) скорость, пропорциональная расстоянию данной частицы от оси вращения. Подставляя в это выражение и вынося за знак суммы общую для всех частиц угловую скорость о, находим:

Эту формулу для кинетической энергии вращающегося тела можно привести к виду, аналогичному выражению кинетической энергии поступательного движения, если ввести величину так называемого момента инерции тела. Моментом инерции материальной точки называют произведение массы точки на квадрат расстояния ее от оси вращения. Момент инерции тела есть сумма моментов инерции всех материальных точек тела:

Итак, кинетическая энергия вращающегося тела определяется такой формулой:

Формула (2) отличается от формулы, определяющей кинетическую энергию тела при поступательном движении, тем, что вместо массы тела здесь входит момент инерции I и вместо скорости групповая скорость

Большой кинетической энергией вращающегося маховика пользуются в технике, чтобы сохранить равномерность хода машины при внезапно меняющейся нагрузке. Вначале, чтобы привести маховик с большим моментом инерции во вращение, от машины требуется затрата значительной работы, но зато при внезапном включении большой нагрузки машина не останавливается и производит работу за счет запаса кинетической энергии маховика.

Особенно массивные маховые колеса применяют в прокатных станах, приводимых в действие электромотором. Вот описание одного из таких колес: «Колесо имеет в диаметре 3,5 м и весит При нормальной скорости 600 об/мин запас кинетической энергии колеса таков, что в момент проката колесо дает стану мощность в 20 000 л. с. Трение в подшипниках сведено до минимума сказкой под давлением, и во избежание вредного действия центробежных сил инерции колесо уравновешено так, что груз в помещенный на окружности колеса, выводит его из состояния покоя».

Приведем (без выполнения вычислений) значения моментов инерции некоторых тел (предполагается, что каждое из этих тел имеет одинаковую во всех своих участках плотность).

Момент инерции тонкого кольца относительно оси, проходящей через его центр и перпендикулярной к его плоскости (рис. 55):

Момент инерции круглого диска (или цилиндра) относительно оси, проходящей через его центр и перпендикулярной к его плоскости (полярный момент инерции диска; рис. 56):

Момент инерции тонкого круглого диска относительно оси, совпадающей с его диаметром (экваториальный момент инерции диска; рис. 57):

Момент инерции шара относительно оси, проходящей через центр шара:

Момент инерции тонкого сферического слоя радиуса относительно оси, проходящей через центр:

Момент инерции толстого сферического слоя (полого шара, имеющего радиус внешней поверхности и радиус полости ) относительно оси, проходящей через центр:

Вычисление моментов инерции тел производится при помощи интегрального исчисления. Чтобы дать представление о ходе подобных расчетов, найдем момент инерции стержня относительно перпендикулярной к нему оси (рис. 58). Пусть есть сечение стержня, плотность. Выделим элементарно малую часть стержня, имеющую длину и находящуюся на расстоянии х от оси вращения. Тогда ее масса Так как она находится на расстоянии х от оси вращения, то ее момент инерции Интегрируем в пределах от нуля до I:

Момент инерции прямоугольного параллелепипеда относительно оси симметрии (рис. 59)

Момент инерции кольцевого тора (рис. 60)

Рассмотрим, как связана энергия вращения катящегося (без скольжения) по плоскости тела с энергией поступательного движения этого тела,

Энергия поступательного движения катящегося тела равна , где масса тела и скорость поступательного движения. Пусть означает угловую скорость вращения катящегося тела и радиус тела. Легко сообразить, что скорость поступательного движения тела, катящегося без скольжения, равна окружной скорости тела в точках соприкосновения тела с плоскостью (за время когда тело совершает один оборот, центр тяжести тела перемещается на расстояние следовательно,

Таким образом,

Энергия вращения

следовательно,

Подставляя сюда указанные выше значения моментов инерции, находим, что:

а) энергия вращательного движения катящегося обруча равна энергии его поступательного движения;

б) энергия вращения катящегося однородного диска равна половине энергии поступательного движения;

в) энергия вращения катящегося однородного шара составляет энергии поступательного движения.

Зависимость момента инерции от положения оси вращения. Пусть стержень (рис. 61) с центром тяжести в точке С вращается с угловой скоростью (о вокруг оси О, перпендикулярной к плоскости чертежа. Положим, что в течение некоторого промежутка времени он переместился из положения А В в причем центр тяжести описал дугу Это перемещение стержня можно рассматривать так, как если бы стержень сначала поступательно (т. е. оставаясь себе параллельным) переместился в положение и затем повернулся вокруг С в положение Обозначим (расстояние центра тяжести от оси вращения) через а, а угол через При движении стержня из положения А В в положение перемещение каждой его частицы одинаково с перемещением центра тяжести, т. е. оно равно или Чтобы получить действительное движение стержня, мы можем предположить, что оба указанных движения совершаются одновременно. В соответствии с этим кинетическую энергию стержня, вращающегося с угловой скоростью вокруг оси, проходящей через О, можно разложить на две части.

«Физика - 10 класс»

Почему для увеличения угловой скорости вращения фигурист вытягивается вдоль оси вращения.
Должен ли вращаться вертолёт при вращении его винта?

Заданные вопросы наводят на мысль о том, что если на тело не действуют внешние силы или действие их скомпенсировано и одна часть тела начинает вращение в одну сторону, то другая часть должна вращаться в другую сторону, подобно тому как при выбросе горючего из ракеты сама ракета движется в противоположную сторону.


Момент импульса.


Если рассмотреть вращающийся диск, то становится очевидным, что суммарный импульс диска равен нулю, так как любой частице тела соответствует частица, движущаяся с равной по модулю скоростью, но в противоположном направлении (рис. 6.9).

Но диск движется, угловая скорость вращения всех частиц одинакова. Однако ясно, что чем дальше находится частица от оси вращения, тем больше её импульс. Следовательно, для вращательного движения надо ввести ещё одну характеристику, подобную импульсу, - момент импульса.

Моментом импульса частицы, движущейся по окружности, называют произведение импульса частицы на расстояние от неё до оси вращения (рис. 6.10):

Линейная и угловая скорости связаны соотношением v = ωr, тогда

Все точки твёрдого дела движутся относительно неподвижной оси вращения с одинаковой угловой скоростью. Твёрдое тело можно представить как совокупность материальных точек.

Момент импульса твёрдого тела равен произведению момента инерции на угловую скорость вращения:

Момент импульса - векторная величина, согласно формуле (6.3) момент импульса направлен так же, как и угловая скорость.

Основное уравнение динамики вращательного движения в импульсной форме.


Угловое ускорение тела равно изменению угловой скорости, делённому на промежуток времени, в течение которого это изменение произошло: Подставим это выражение в основное уравнение динамики вращательного движения отсюда I(ω 2 - ω 1) = MΔt, или IΔω = MΔt.

Таким образом,

ΔL = MΔt. (6.4)

Изменение момента импульса равно произведению суммарного момента сил, действующих на тело или систему, на время действия этих сил.

Закон сохранения момента импульса:

Если суммарный момент сил, действующих на тело или систему тел, имеющих неподвижную ось вращения, равен нулю, то изменение момента импульса также равно нулю, т. е. момент импульса системы остаётся постоянным.

ΔL = 0, L = const .

Изменение импульса системы равно суммарному импульсу сил, действующих на систему.

Вращающийся фигурист разводит в стороны руки, тем самым увеличивает момент инерции, чтобы уменьшить угловую скорость вращения.

Закон сохранения момента импульса можно продемонстрировать с помощью следующего опыта, называемого «опыт со скамьёй Жуковского». На скамью, имеющую вертикальную ось вращения, проходящую через её центр, встаёт человек. Человек держит в руках гантели. Если скамью заставить вращаться, то человек может изменять скорость вращения, прижимая гантели к груди или опуская руки, а затем разводя их. Разводя руки, он увеличивает момент инерции, и угловая скорость вращения уменьшается (рис. 6.11, а), опуская руки, он уменьшает момент инерции, и угловая скорость вращения скамьи увеличивается (рис. 6.11, б).

Человек может также заставить вращаться скамью если пойдёт вдоль её края. При этом скамья будет вращаться в противоположном направлении, так как суммарный момент импульса должен остаться равным нулю.

На законе сохранения момента импульса основан принцип действия приборов, называемых гироскопами. Основное свойство гироскопа - это сохранение направления оси вращения, если на эту ось не действуют внешние силы. В XIX в. гироскопы использовались мореплавателями для ориентации в море.


Кинетическая энергия вращающегося твёрдого тела.


Кинетическая энергия вращающегося твёрдого тела равна сумме кинетических энергий отдельных его частиц. Разделим тело на малые элементы, каждый из которых можно считать материальной точкой. Тогда кинетическая энергия тела равна сумме кинетических энергий материальных точек, из которых оно состоит:

Угловая скорость вращения всех точек тела одинакова, следовательно,

Величина в скобках, как мы уже знаем, это момент инерции твёрдого тела. Окончательно формула для кинетической энергии твёрдого тела, имеющего неподвижную ось вращения, имеет вид

В общем случае движения твёрдого тела, когда ось вращения свободна, его кинетическая энергия равна сумме энергий поступательного и вращательного движений. Так, кинетическая энергия колеса, масса которого сосредоточена в ободе, катящегося по дороге с постоянной скоростью, равна

В таблице сопоставлены формулы механики поступательного движения материальной точки с аналогичными формулами вращательного движения твёрдого тела.


Новое на сайте

>

Самое популярное