Домой Игры Описание молекул методом молекулярных орбиталей. Метод молекулярных орбиталей (ММО)

Описание молекул методом молекулярных орбиталей. Метод молекулярных орбиталей (ММО)

Рис.1. Контурные диаграммы электронной плотности в Н 2 +

Лекция № 4. Понятие о методе молекулярных орбиталей. Энергетические диаграммы молекулярных орбиталей для бинарных гомоядерных молекул. σ - и π- молекулярные орбитали. Диа - и парамагнитные молекулы. Ионная связь.

Межмолекулярные взаимодействия. Водородная связь.

Метод валентных связей достаточно наглядно объясняет образование и строение многих молекул, однако он не может объяснить многие факты, например, существование молекулярных ионов (Н2 + , Не2+ ) или радикалов (· СН3 , · NH2 ), парамагнетизм молекул с четным числом электронов (О2 , NO), которые находят объяснение в рамках метода молекулярных орбиталей (ММО).

Метод молекулярных орбиталей

Метод молекулярных орбиталей, разработанный Малликеном и Хундом, основан на допущении, что каждый электрон в молекуле находится в поле всех ядер и электронов атомов, образующих молекулу, и его состояние характеризуется волновой функцией Ψ , называемой молекулярной орбиталью. Каждой МО соответствует волновая функция, характеризующая область наиболее вероятного пребывания электронов определенной энергии в молекуле. Атомным s- , p -, d -, f - орбиталям соответствуют молекулярные σ -, π - , δ - , … орбитали, заполнение которых происходит в соответствии с принципом Паули, правилом Хунда, принципом наименьшей энергии.

Самым простым способом формирования молекулярной орбитали (МО) является

линейная комбинация атомных орбиталей (АО) (метод ЛКАО – МО).

Если в поле двух атомных ядер А и В находится один электрон, то он может находиться то у одного ядра, то у другого, и его состояние можно описать двумя молекулярными орбиталями Ψ и Ψ * , которые образуются линейной комбинацией атомных орбиталей:

Ψ = Ψ А + Ψ В и Ψ * = Ψ А – Ψ В

Молекулярная орбиталь называется связывающей Ψ , если она отвечает повышению электронной плотности в области между ядрами и тем самым усилению их притяжения, и разрыхляющей Ψ * , если электронная плотность понижается между ядрами и увеличивается за ядрами, что эквивалентно увеличению отталкивания ядер. Энергия связывающей МО ниже энергии исходной АО, энергия разрыхляющей МО выше энергии исходной атомной орбитали.

На рис. 1 изображены контурные диаграммы электронной плотности связывающей Ψ

(а) и разрыхляющей Ψ * (б) молекулярных орбиталей в частице Н2 + .

Как и в МВС, симметрия молекулярных орбиталей относительно линии связывания приводит к образованию σ - МО, в направлении, перпендикулярном линии связывания, - π - МО.

При перекрывании d - орбиталей образуются δ-

На рис. 2 показано образование σ - связывающих и σ - разрыхляющих МО при комбинации разных атомных орбиталей, на рис. 3 соответственно π -МО и π* - МО.

Перекрывание s –орбиталей приводит к образованию двух молекулярных орбиталей: σs -связывающей и σ * s -разрыхляющей.

Перекрывание р -орбиталей приводит к образованию шести молекулярных орбиталей разной симметрии. Из двух р -орбиталей взаимодействующих атомов, направленных вдоль линии связи, например оси X, образуются связывающая σ p z - и разрыхляющая σ* p z -орбитали, вдоль осей Z и Y - πр z - и πp y - связывающие и π* р z - и π* p y - разрыхляющие МО.

Заселение электронами МО происходит в соответствии с принципом Паули, принципом наименьшей энергии и правилом Хунда.

Рис. 2. Образование σ – связывающих и σ – разрыхляющих молекулярных орбиталей

В связи с тем, что для однотипных орбиталей величина области перекрывания орбиталей уменьшается в ряду σ > π > δ , то и расщепление энергетических уровней при образовании МО из АО уменьшается в этом же порядке (рис.4), что приводит к изменению порядка заполнения σр − и π - МО в молекулах.

непарными электронами с одинаковыми значениями спинов, например B, С, N и их электронные аналоги, последовательность заполнения МО следующая:

σ (1s) < σ* (1s) < σ(2s) < σ* (2s) < π (2pz )= π (2py ) < σ(2px ) < π* (2pz )= π* (2py ) < σ* (2px )....

Рис. 3. Образование π - связывающих и π - разрыхляющих молекулярных орбиталей

Рис. 4. Уменьшение степени расщепления энергетических уровней в ряду σ > π > δ

Для гомоядерных двухатомных молекул второго и последующих периодов, у которых p – подуровни атомов заполняются cпаренными электронами с антипараллельными значениями спинов, например (O – Ne) и их электронные аналоги, последовательность заполнения МО несколько изменяется:

σ (1s) < σ* (1s) < σ(2s) < σ* (2s) < σ(2px ) < π (2pz )= π (2py ) < π* (2pz )= π* (2py ) < σ* (2px )....

Электронную конфигурацию молекулы можно изобразить в виде энергетической диаграммы или электронной формулы.

На рис. 5 приведена энергетическая диаграмма молекулярных орбиталей для молекулы водорода H2 , электронная формула которой запишется так: [σ(1s)]2 или (σ 1s )2 .

Рис. 5. Энергетическая диаграмма молекулы H 2

Заполнение связывающей молекулярной орбитали σ 1s приводит к повышению электронной плотности между ядрами и определяет существование молекулы H2 .

Метод МО обосновывает возможность существования молекулярного иона водорода H2 + и невозможность существования молекулы Hе2 , поскольку в последнем случае заполнение связывающей и разрыхляющей σ 1s - орбиталей двумя электронами не приводит к изменению энергии изолированных атомов: [(σ 1s )2 (σ *1s )2 ] (рис. 6). Следовательно, молекулы He2 не существует.

Рис. 6. Энергетическая диаграмма, подтверждающая невозможность существования молекулы He2

На рис. 7 приведена энергетическая диаграмма молекулярных орбиталей, образованных перекрыванием s – и р -орбиталей второго энергетического уровня для двухатомных гомоядерных молекул типа А2 .

Стрелками показано изменение порядка заполнения МО молекул, образованных атомами, у которых 2p -подуровень заполнен непарными электронами (B2 , C2 , N2 ), для которых связывающие π св (2py ) и π св (2pz ) расположены ниже σсв (2px ), и спаренными электронами (O2 , F2 , Ne2 ), для которых связывающие π св (2py ) и π св (2pz ) расположены выше σсв (2px ),

Рис. 7. Энергетическая диаграмма МО для гомоядерных молекул 2-го периода (стрелками показано изменение порядка заполнения связывающих σ- и π -МО)

В ММО используется понятие - порядок связи , который определяется как разность между количеством электронов на связывающих МО и количеством электронов на разрыхляющих МО, поделенная на число атомов, образующих связь.

N − N*

Для двухатомных молекул порядок связи n равен: n =

Где N – количество

электронов на связывающих МО, N * - количество электронов на разрыхляющих МО.

Для молекулы H2 порядок связи соответственно равен

2− 0

1 , для He2

2− 2

Что подтверждает невозможность существования двухатомной

молекулы. Известно, что инертные газы существуют в виде одноатомных молекул. Используя при заселении электронами молекулярных орбиталей те же правила, что и

при заполнении атомных орбиталей в изолированных атомах (принцип Паули, принцип минимума энергии и правило Хунда)), можно определить электронное строение двухатомных молекул, например N2 и O2 .

Запишем электронные конфигурации атомов в основном состоянии:

или .

или .

Электронные конфигурации молекул N2 и O2 можно записать следующим

N + N → N2

O2 : O +O → O2

На рис. 8 показана энергетическая диаграмма образования молекулы кислорода.

Рис.8. Энергетическая диаграмма молекулы кислорода

В молекуле O2 два электрона с параллельными спинами оказались на двух

вырожденных (с одинаковой энергией) * -разрыхляющих молекулярных орбиталях. Наличие неспаренных электронов обусловливает парамагнитные свойства молекулы кислорода, которые особенно становятся заметными, если охладить кислород до жидкого состояния.

Молекулы парамагнетиков обладают собственным магнитным моментом, обусловленным внутренним движением зарядов. При отсутствии внешнего магнитного поля магнитные моменты молекул ориентированы беспорядочно, поэтому обусловленное ими результирующее магнитное поле равно нулю. Равен нулю и суммарный магнитный момент вещества.

Если же вещество поместить во внешнее магнитное поле, то под его действием магнитные моменты молекул приобретают преимущественную ориентацию в одном направлении, и вещество намагничивается - его суммарный магнитный момент становится отличным от нуля.

Молекулы диамагнетиков не имеют собственных магнитных моментов и при внесении в магнитное поле намагничиваются слабо.

Парамагнетиками являются все вещества, состоящие из химических частиц с нечетным числом электронов, например молекула NO, молекулярные ионы N2 + , N2 - и др.

Большинство веществ, молекулы которых содержат четное количество электронов, обладают диамагнитными свойствами (N2 , CO).

Объяснение парамагнитных свойств молекул кислорода и бора, содержащих четное количество электронов, дано на основании ММО. Молекула О2 имеет два непарных электрона на * -разрыхляющих молекулярных орбиталях, молекула В2 имеет два непарных электрона на * -связывающих молекулярных орбиталях (см. табл. 1).

Химические частицы, имеющие неспаренные электроны на внешних орбиталях, называют свободными радикалами. Они обладают парамагнетизмом и высокой реакционной способностью. Неорганические радикалы с локализованными неспаренными электронами, например (. Н), (. NН2 ), обычно являются короткоживущими. Они образуются при фотолизе,

радиолизе, пиролизе, электролизе. Для их стабилизации используют низкие температуры. Короткоживущие радикалы - промежуточные частицы во многих реакциях, особенно цепных и каталитических.

Порядок связи в молекуле N2 , у которой имеется избыток шести электронов на

Понятие порядка химической связи в методе МО совпадает с понятием кратности связи в методе ВС (О2 - двойная, N2 -тройная связь). Величина порядка связи влияет на прочность связи. Чем выше порядок связи, тем больше энергия связи и меньше ее длина.

В табл. 1 приведены электронные конфигурации и характеристики связи для гомоядерных молекул первого и второго периодов. Как видно из таблицы, с увеличением порядка связи в ряду B2 - C2 - N2 увеличивается энергия и уменьшается длина связи.

Таблица 1. Электронные конфигурации и некоторые свойства молекул первого и второго периодов

Магнитные

Молекула

Электронная конфигурация

разрыва связи,

свойства

[(σ1s )2 ]

диамагнитная

[(σ1s )2 (σ*1s )2 ]

Молекула не су ществует

диамагнитная

Молекула не су ществует

парамагнитная

диамагнитная

диамагнитная

Метод МО допускает нецелочисленные значения порядка связи. Это имеет место в молекулярных ионах, например, в молекулярнм ионе Н2 + , для которого n = 0,5.

Закономерности в изменениях порядка, энергии и длины связи можно проследить на примерах молекулы и молекулярных ионов кислорода.

Электронная конфигурация и порядок связи молекулы кислорода приведены в табл. 1. Электронные конфигурации и порядок связи молекулярных ионов кислорода

следующие:

O2 - -

n = 1,5 .

Понижение порядка связи в ряду частиц O2 + , O2 , O2 - определяет уменьшение

прочности связи и находит экспериментальное подтверждение:

O2 + :

n = 2,5, Е св =629 кДж/моль,

d св =112 пм;

n = 2,0, Е св =494 кДж/моль,

d св =121 пм;

O2 - :

n = 1,5, Е св =397 кДж/моль,

d св =126 пм.

Все частицы имеют неспаренные электроны, проявляют парамагнитные свойства. Молекулы, имеющие одинаковое количество валентных электронов, называют

изоэлектронными частицами. К ним относятся молекулы CO и N2 , имеющие в сумме 14 электронов; молекулярный ион N2 + и молекула CN, имеющие 13 электронов. Изоэлектронным частицам ММО приписывает одинаковый порядок заполнения

электронами молекулярных орбиталей, одинаковый порядок связи, что позволяет объяснить близость физических свойств молекул.

При образовании гетероядерной молекулы типа АВ комбинация орбиталей двух разных атомов, приводящая к образованию молекулы, возможна только при близости энергий электронов, при этом орбитали атома c большей электроотрицательностью на энергетической диаграмме всегда располагаются ниже.

На рис. 9 приведена энергетическая схема образования молекулы CO.

На связывающие π - и σ - МО переходят четыре 2р -электрона атома кислорода и два 2р -электрона атома углерода. Энергия 2р -электронов соединяющихся атомов неодинакова: у атома кислорода заряд ядра и электроотрицательность выше по сравнению с атомом углерода, поэтому 2р -электроны в атоме кислорода сильнее притягиваются ядром и их положение на энергетической схеме соответствует более низкой энергии в сравнении с 2р - орбиталями атома углерода. Все шесть электронов, участвующих в образовании связи, размещаются на трех связывающих МО, следовательно, кратность связи равна трем, что объясняет значительное сходство в свойствах свободного азота и оксида углерода (II) (табл. 2).

Рис. 9. Энергетическая схема образования молекулы CO

Таблица 2. Некоторые физические свойства молекул CO и N2

Молекула

Т пл , К

Т кип, К

Е св , кДж/моль

d св , пм

Невалентные типы химической связи

Ионная связь.

При разности электроотрицательностей взаимодействующих атомов больше двух единиц смещение валентных электронов настолько велико, что можно говорить об их переходе от одного атома к другому с образованием заряженных частиц – катионов и анионов. Эти частицы взаимодействуют друг с другом по законам электростатики. Образующаяся при этом связь называется ионной . Соединения с ионной связью значительно

менее распространены, чем соединения с ковалентной связью, характерны для веществ, существующих в обычных условиях в кристаллическом состоянии и обладающих ионной проводимостью в расплавленном или растворенном состоянии. К соединениям с ионной связью относятся прежде всего типичные соли - галогениды щелочных металлов, имеющие ионную кристаллическую решетку. Ионные молекулы существуют только при высоких температурах в пара х ионных соединений.

Ионная связь в отличие от ковалентной ненаправленна, т. к. ионы образуют сферически симметричные силовые поля, не обладает насыщаемостью , т. к. взаимодействие ионов противоположного знака происходит по разным направлениям, делокализована , т. к. в области связывания не наблюдается повышенной электронной плотности.

Электростатическая модель ионной связи рассматривает ее образование как взаимодействие противоположно заряженных ионов, каждый из которых характеризуется

Энергию образования молекулы АВ можно определить как алгебраическую сумму нескольких энергий: энергии притяжения ионов Аz+ и Вz- , энергии отталкивания ионов, энергии сродства к электрону атома В и энергии ионизации атома А.

ионами в молекуле, n - учитывает долю энергии отталкивания, которая обычно составляет 10% энергии притяжения, E B - энергия сродства к электрону атома В, I A - энергия ионизации атома А.

Для газообразной молекулы KСl проведен расчет энергии Е АВ без учета поляризации

ионов: d =2,67·10-10 эВ, E Cl =3,61 эВ, I K = 4,34 эВ и энергия связи равна Е связи = -Е АВ = 4,06 эВ ~ 391 кДж..

Экспериментально определенная энергия ионизации молекулы KСl равна 422 кДж/моль.

В газах, жидкостях и кристаллах каждый ион стремится окружить себя наибольшим числом ионов противоположного заряда.

Расположение ионов в пространстве определяется соотношением их радиусов. Если отношение радиуса катиона к радиусу аниона находится в пределах

r + /r - = 0,41-0,73, то вокруг центрального атома - катиона или аниона координируется шесть ионов противоположного заряда. Такая координация называется октаэдрической, а тип кристаллической решетки обозначается как тип NaCl.

Если отношение радиуса катиона к радиусу аниона находится в пределах

r + /r - = 0,73-1,37, то вокруг центрального атома - катиона или аниона координируется восемь ионов противоположного заряда. Такая координация называется кубической, а тип кристаллической решетки обозначается как тип CsCl.

При сближении ионов происходит деформация их сферических электронных оболочек, что приводит к смещению электрического заряда и появлению у частицы индуцированного электрического момента. Это явление называется поляризацией иона . Поляризация ионов – двухсторонний процесс, в котором сочетаются поляризуемость ионов и поляризующее действие , зависящие от электронного строения, заряда и размера иона. Поляризуемость минимальна у ионов с конфигурацией инертного газа (ns 2 np 6 ), которые в то же время обладают наибольшим поляризующим действием. Значительная поляризуемость ионов d – элементов объясняется наличием большого количества валентных электронов, в результате увеличивается ковалентная составляющая связи.

Эффектом поляризации объясняются многие различия в свойствах веществ, например, плохая растворимость в воде хлорида серебра по сравнению с хлоридами щелочных

металлов, различия в температурах плавления, например, Т пл, AgCl =4550 С, T пл, NaCl = 8010 С. Электронные конфигурации ионов: Ag+ - 4d 10 5s 0 ; Na+ - 3s 0 .

Менее симметричная электронная конфигурация иона Ag+ вследствие наличия 4d 10 -электронов вызывает более сильную его поляризацию, что приводит к появлению

направленной ковалентной составляющей связи по сравнению с NaCl, у которого степень ионности связи выше.

Металлическая связь.

Важнейшим свойством металлов является высокая электрическая проводимость, которая уменьшается с ростом температуры. Атомы металлов отличаются от атомов других элементов тем, что сравнительно слабо удерживают свои внешние электроны. Поэтому в кристаллической решетке металла эти электроны покидают свои атомы, превращая их в положительно заряженные ионы. "Обобществленные" электроны передвигаются в пространстве между катионами и удерживают их вместе. Межатомные расстояния в металлах больше, чем в их соединениях с ковалентной связью. Такая связь существует не только в кристаллах металлов, но и в их расплавах и в аморфном состоянии. Она называется

металлической, определяет электронную проводимость металлов.

Электроны в металле беспорядочно движутся, переходя от одного атома к другому, образуя электронный газ . Положительно заряженные ионы металла лишь слегка колеблются около своего положения в кристаллической решетке, при нагревании металла колебания катионов усиливаются и электрическое сопротивление металла увеличивается. Благодаря наличию свободных, не связанных с определенными атомами электронов, металлы хорошо проводят электрический ток и тепло.

Такие физические свойства металлов как высокая тепло- и электропроводность, пластичность и ковкость, металлический блеск можно объяснить исходя из представлений об электронном газе.Металлическая связь является достаточно прочной, т. к. большинство металлов имеет высокую температуру плавления.

Более строгую интерпретацию металлической связи позволяет дать метод молекулярных орбиталей . Напомним, что при взаимодействии двух атомных орбиталей образуются две молекулярные орбитали: связывающая и разрыхляющая. Происходит расщепление энергетического уровня на два. Если взаимодействуют одновременно четыре атома металла, образуются четыре молекулярные орбитали. При одновременном взаимодействии N частиц, содержащихся в кристалле, образуется N молекулярных орбиталей, причем величина N может достигать огромных значений, сравнимых с числом

Авогадро (6 ·1023 ). Молекулярные орбитали, образованные атомными орбиталями одного подуровня, находятся настолько близко, что практически сливаются, образуя определенную

энергетическую зону (рис. 10) .

Рис. 10. Образование энергетической зоны в кристалле

Рассмотрим образование энергетических зон на примере металлического натрия,

Предпосылки возникновения метода

Хронологически метод молекулярных орбиталей появился позже метода валентных связей, поскольку оставались в теории ковалентной связи вопросы, которые не могли получить объяснение методом валентных связей. Рассмотрим некоторые из них.

Основное положение метода валентных связей состоит в том, что связь между атомами осуществляется за счет электронных пар (связующих двух-электронных облаков). Но это не всегда так. В ряде случаев в образовании химической связи участвуют отдельные электроны. Так, в молекулярном ионе Н 2+ одноэлектронная связь. Метод валентных связей образование одноэлектронной связи объяснить не может, она противоречит его основному положению.

Метод валентных связей не объясняет также роли неспаренных электронов в молекуле. Молекулы, имеющие неспаренные электроны, парамагнитны, т.е. втягиваются в магнитное поле, так как неспаренный электрон создает постоянный магнитный момент. Если в молекулах нет неспаренных электронов, то они диамагнитны - выталкиваются из магнитного поля. Молекула кислорода парамагнитна, в ней имеется два электрона с параллельной ориентацией спинов, что противоречит методу валентных связей. Необходимо также отметить, что метод валентных связей не смог объяснить ряд свойств комплексных соединений - их цветность и др.

Чтобы объяснить эти факты, был предложен метод молекулярных орбиталей.

Основные положения метода

Согласно методу молекулярных орбиталей электроны в молекулах распределены по молекулярным орбиталям, которые подобно атомным орбиталям характеризуются определенной энергией (энергетическим уровнем) и формой. В отличие от атомных орбиталей молекулярные орбитали охватывают не один атом, а всю молекулу, т.е. являются двух- или многоцентровыми. Если в методе валентных связей атомы молекул сохраняют определенную индивидуальность, то в методе молекулярных орбиталей молекула рассматривается как единая система.

Наиболее широко в методе молекулярных орбиталей используется линейная комбинация атомных орбиталей. При этом соблюдается несколько правил:

Уравнение Шредингера для молекулярной системы должно состоять из члена кинетической энергии и члена потенциальной энергии сразу для всех электронов. Но решение одного уравнения с таким большим количеством переменных (индексы и координаты всех электронов) невозможно, поэтому вводится понятие одноэлектронного приближения .

Одноэлектронное приближение предполагает, что можно рассматривать каждый электрон движущимся в поле ядер и усредненном поле остальных электронов молекулы. Это означает, что каждый i -й электрон в молекуле описывается своей собственной функцией ψ i и имеет свою собственную энергию E i . В соответствии с этим, для каждого электрона в молекуле можно составить свое уравнение Шредингера. Тогда для n электронов необходимо решить n уравнений. Это осуществляется методами матричного исчисления с помощью компьютеров.

При решении уравнения Шредингера для многоцентровой и многоэлектронной системы получаются решения в виде одноэлектронных волновых функций - молекулярных орбиталей, их энергий и электронной энергии всей молекулярной системы как целого.

Линейная комбинация атомных орбиталей

В одноэлектронном приближении метод молекулярных орбиталей описывает каждый электрон своей орбиталью. Как в атоме есть атомные орбитали, так и в молекуле есть молекулярные орбитали. Различие заключается в том, что молекулярные орбитали - многоцентровые.

Рассмотрим электрон, расположенный на молекулярной орбитали ψ i нейтральной молекулы, в тот момент времени, когда он находится вблизи ядра некоторого атома m . В этой области пространства потенциальное поле создается, в основном, ядром атома m и находящимися вблизи электронами. Поскольку молекула в целом нейтральна, притяжение между рассматриваемым электроном и каким-либо другим ядром n приблизительно компенсируется отталкиванием между рассматриваемым электроном и электронами, находящимися вблизи ядра n . Значит, вблизи ядра движение электрона будет приближенно таким же, как и в отсутствие остальных атомов. Поэтому в орбитальном приближении молекулярная орбиталь ψ i вблизи ядра m должна быть похожа на одну из атомных орбиталей этого атома. Поскольку атомная орбиталь имеют существенные значения только вблизи своих ядер, можно приблизительно представить молекулярную орбиталь ψ i в виде линейной комбинации атомных орбиталей отдельных атомов.

Для простейшей молекулярной системы, состоящей из двух ядер атомов водорода, учитывая 1s -атомные орбитали, описывающие движение электрона в атоме Н , молекулярная орбиталь представляется в виде:

Величины c 1i и c 2i - численные коэффициенты, которые и находятся решением уравнения Шредингера . Они показывают вклад каждой атомной орбитали в конкретную молекулярную орбиталь. В общем случае коэффициенты принимают значения, лежащие в интервале от -1 до +1. Если в выражении для конкретной молекулярной орбитали один из коэффициентов преобладает, то это отвечает тому, что электрон, находясь на данной молекулярной орбитали, в основном находится вблизи того ядра и описывается в основном именно той атомной орбиталью, чей коэффициент больше. Если коэффициент перед атомной орбиталью близок к нулю, то это означает, что пребывание электрона в области, описываемой данной атомной орбиталью маловероятно. По физическому смыслу квадраты данных коэффициентов определяют вероятность нахождения электрона в области пространства и энергий, описываемых данной атомной орбиталью.

В методе ЛКАО для образования устойчивой молекулярной орбитали необходимо, чтобы энергии атомных орбиталей были близки друг к другу. Кроме того, нужно, чтобы их симметрия не сильно отличалась. При выполнении этих двух требований коэффициенты должны быть близкими по своим значениям, а это, в свою очередь, обеспечивает максимальное перекрывание электронных облаков. При сложении атомных орбиталей образуется молекулярная орбиталь, энергия которой понижается относительно энергий атомных орбиталей. Такая молекулярная орбиталь называется связывающей . Волновая функция, соответствующая связывающей орбитали, получается в результате сложения волновых функций с одинаковым знаком. Электронная плотность при этом концентрируется между ядрами, и волновая функция принимает положительное значение. При вычитании атомных орбиталей энергия молекулярной орбитали повышается. Эта орбиталь называется разрыхляющей . Электронная плотность в этом случае располагается за ядрами, а между ними равна нулю. Волновая функция в двух образовавшихся электронных облаках имеет противоположные знаки, что хорошо видно из схемы образования связывающей и разрыхляющей орбиталей.

Когда атомная орбиталь одного из атомов вследствие большой разницы в энергии или симметрии не может взаимодействовать с атомной орбиталью другого атома, она переходит в энергетическую схему молекулярных орбиталей молекулы с энергией, соответствующей ей в атоме. Орбиталь этого типа называется несвязывающей .

Классификация орбиталей

Классификация орбиталей на σ или π производится в соответствии с симметрией их электронных облаков. σ -орбиталь имеет такую симметрию электронного облака, при которой поворот ее вокруг оси, соединяющей ядра, на 180° приводит к орбитали, по форме не отличимой от первоначальной. Знак волновой функции при этом не меняется. В случае π -орбитали при повороте ее на 180° знак волновой функции меняется на противоположный. Отсюда следует, что s -электроны атомов при взаимодействии между собой могут образовывать только σ -орбитали, а три (шесть) p -орбитали атома - одну σ- и две π -орбитали, причем σ -орбиталь возникает при взаимодействии р х атомных орбиталей, а π -орбиталь - при взаимодействии р y и р z . Молекулярные π -орбитали повернуты относительно межьядерной оси на 90°.

Для того чтобы отличать связывающие и разрыхляющие орбитали друг от друга, а также их происхождение, принята следующая система обозначений. Связывающая орбиталь обозначается сокращением «св» , располагающимся справа вверху после греческой буквы, обозначающей орбиталь, а разрыхляющая - соответственно «разр» . Принято еще одно обозначение: звездочкой помечаются разрыхляющие орбитали, а без звездочки - связывающие. После обозначения молекулярной орбитали пишется обозначение атомной орбитали, которой молекулярная обязана своим происхождением, например, π разр 2p y . Это означает, что молекулярная орбиталь π -типа, разрыхляющая, образовалась при взаимодействии 2р y - атомных орбиталей.

Положение атомной орбитали на шкале энергий определяется значением энергии ионизации атома, отвечающей удалению электрона, описываемого данной орбиталью, на бесконечно большое расстояние. Такая энергия ионизации называется орбитальной энергией ионизации . Так, для атома кислорода возможны типы ионизации, когда удаляется электрон с - или с 2s -электронной подоболочки.

Положение молекулярной орбитали энергетических диаграммах также определяется на основании квантово-химических расчетов электронной структуры молекул. Для сложных молекул число энергетических уровней молекулярных орбиталей на энергетических диаграммах велико, однако для конкретных химических задач часто важно знать энергии и состав не всех молекулярных орбиталей, а только наиболее «чувствительных» к внешним воздействиям. Такими орбиталями являются молекулярные орбитали, на которых размещены электроны самых высоких энергий. Эти электроны могут легко взаимодействовать с электронами других молекул, удаляться с данной молекулярной орбитали, а молекула будет переходить в ионизированное состояние или видоизменяться вследствие разрушения одних или образования других связей. Такой молекулярной орбиталью является высшая занятая молекулярная орбиталь. Зная число молекулярных орбиталей (равно суммарному числу всех атомных орбиталей) и число электронов, нетрудно определить порядковый номер ВЗМО и, соответственно, из данных расчета - ее энергию и состав. Также наиболее важной для изучения химических задач является низшая свободная молекулярная орбиталь, т.е. следующая по очереди за ВЗМО на шкале энергий, но вакантная молекулярная орбиталь. Важны и другие орбитали, прилегающие по энергии к ВЗМО и НСМО.

Молекулярные орбитали в молекулах, как и атомные орбитали в атомах, характеризуются не только относительной энергией, но и определенной суммарной формой электронного облака. Аналогично тому, как в атомах имеются s -, р -, d -, ... орбитали, самая простая молекулярная орбиталь, обеспечивающая связь между только двумя центрами (двухцентровая молекулярная орбиталь), может быть σ -, π -, δ -, ... типа. Молекулярные орбитали разделяются на типы в зависимости от того, какой симметрией они обладают относительно линии, соединяющей ядра атомов относительно плоскости, проходящей через ядра молекулы и др. Это приводит к тому, что электронное облако молекулярной орбитали различным образом распределяется в пространстве.

σ -орбитали - это молекулярные орбитали, симметричные относительно вращения вокруг межъядерной оси. Область повышенной электронной плотности σ -молекулярной орбитали распределена вдоль данной оси. Такие молекулярные орбитали могут быть образованны любыми атомными орбиталями атомных орбиталей любой симметрии. На рисунке заливкой помечены участки волновых функций, имеющие отрицательный знак; остальные участки имеют положительный знак. π -орбитали - это молекулярные орбитали, антисимметричные относительно вращения вокруг межъядерной оси. Область повышенной электронной плотности π -молекулярных орбиталей распределена вне межъядерной оси. Молекулярные орбитали π -симметрии образуются при особом перекрывании р -, d - и f -атомных орбиталей. δ -орбитали - это молекулярные орбитали, антисимметричные относительно отражения в двух взаимно перпендикулярных плоскостях, проходящих через межъядерную ось. δ -молекулярная орбиталь образуется при особом перекрывании d - и f -атомных орбиталей. Электронное облако данных молекулярных орбиталей распределено, главным образом, вне межъядерной оси.

Физический смысл метода

Для любой другой системы, включающей k атомных орбиталей, молекулярная орбиталь в приближении метода ЛКАО запишется в общем виде следующим образом:

Для уяснения физического смысла такого подхода вспомним, что волновая функция Ψ соответствует амплитуде волнового процесса, характеризующего состояние электрона. Как известно, при взаимодействии, например, звуковых или электромагнитных волн их амплитуды складываются. Как видно, приведенное уравнение разложения молеклярной орбитали на составляющие атомные орбитали равносильно предположению, что амплитуды молекулярной «электронной волны» (т. е. молекулярная волновая функция) тоже образуются сложением амплитуд взаимодействующих атомных «электронных волн» (т. е. сложением атомных волновых функций). При этом, однако, под влиянием силовых полей ядер и электронов соседних атомов волновая функция каждого атомного электрона изменяется по сравнению с исходной волновой функцией этого электрона в изолированном атоме. В методе ЛКАО эти изменения учитываются путем введения коэффициентов c iμ , где индекс i определяет конкретную молекулярную орбиталь, а индекс - конкретную атомную орбиталь. Так что при нахождении молекулярной волновой функции складываются не исходные, а измененные амплитуды - c iμ ·ψ μ .

Выясним, какой вид будет иметь молекулярная волновая функция Ψ 1 , образованная в результате взаимодействия волновых функций ψ 1 и ψ 2 - 1s -орбиталей двух одинаковых атомов. Для этого найдем сумму c 11 ·ψ 1 + c 12 ·ψ 2 . В данном случае оба рассматриваемых атома одинаковы, так что коэффициенты c 11 и c 12 равны по величине (c 11 = c 12 = c 1 ) и задача сводится к определению суммы c 1 ·(ψ 1 + ψ 2) . Поскольку постоянный коэффициент c 1 не влияет на вид искомой молекулярной волновой функции, а только изменяет ее абсолютные значения, ограничимся нахождением суммы (ψ 1 + ψ 2) . Для этого расположим ядра взаимодействующих атомов на том расстоянии друг от друга (r) , на котором они находятся в молекуле, и изобразим волновые функции 1s -орбиталей этих атомов (рисунок а ).

Чтобы найти молекулярную волновую функцию Ψ 1 , сложим величины ψ 1 и ψ 2 : в результате получится кривая, изображенная на (рисунке б ). Как видно, в пространстве между ядрами значения молекулярной волновой функции Ψ 1 больше, чем значения исходных атомных волновых функций. Но квадрат волновой функции характеризует вероятность нахождения электрона в соответствующей области пространства, т. е. плотность электронного облака. Значит, возрастание Ψ 1 в сравнении с ψ 1 и ψ 2 означает, что при образовании молекулярной орбиталли плотность электронного облака в межъядерном пространстве увеличивается. В результате образуется химическая связь. Поэтому молекулярная орбиталь рассматриваемого типа называется связывающей .

В данном случае область повышенной электронной плотности находится вблизи оси связи, так что образовавшаяся молекулярная орбиталь относится к σ -типу. В соответствии с этим, связывающая молекулярная орбиталь, полученная в результате взаимодействия двух атомных 1s -орбиталей, обозначается σ 1s св .

Электроны, находящиеся на связывающей молекулярной орбитали, называются связывающими электронами .

Рассмотрим другую молекулярную орбиталь Ψ 2 . По причине симметрии системы следует предположить, что коэффициенты перед атомными орбиталями в выражении для молекулярной орбитали Ψ 2 = c 21 ·ψ 1 + c 22 ·ψ 2 должны быть равны по модулю. Но тогда они должны отличаться друг от друга знаком: c 21 = - c 22 = c 2 .

Значит, кроме случая где знаки вкладов обеих волновых функции одинаковы, возможен и случай, когда знаки вкладов 1s -атомных орбиталей различны. В таком случае (рисунок (а) )вклад 1s -атомной орбитали одного атома положителен, а другого - отрицателен. При сложении этих волновых функций получится кривая, показанная на рисунке (б) . Молекулярная орбиталь, образующаяся при подобном взаимодействии, характеризуется уменьщением абсолютной величины волновой функции в межъядерном пространстве по сравнению с ее значением в исходных атомах: на оси связи появляется даже узловая точка, в которой значение волновой функции, а, следовательно, и ее квадрата, обращается в нуль. Это означает, что в рассматриваемом случае уменьшится и плотность электронного облака в пространстве между атомами. В результате притяжение каждого атомного ядра в направлении к межъядерной области пространства окажется более слабым, чем в противоположном направлении, т.е. возникнут силы, приводящие к взаимному отталкиванию ядер. Здесь, следовательно, химическая связь не возникает; образовавшаяся в этом случае молекулярная орбиталь называется разрыхляющей σ 1s * , а находящиеся на ней электроны - разрыхляющими электронами .

Переход электронов с атомных 1s -орбиталей на связывающую молекулярную орбиталь, приводящий к возникновению химической связи, сопровождается выделением энергии. Напротив, переход электронов с атомных 1s -орбиталей на разрыхляющую молекулярную орбиталь требует затраты энергии. Следовательно, энергия электронов на орбитали σ 1s св ниже, а на орбитали σ 1s * выше, чем на атомных 1s -орбиталях. Приближенно можно считать, что при переходе 1s -электрона на связывающую молекулярную орбиталь выделяется столько же энергии, сколько необходимо затратить для его перевода на разрыхляющую молекулярную орбиталь.

Порядок связи

В методе молекулярных орбиталей для характеристики электронной плотности, ответственной за связывание атомов в молекулу вводится величина - порядок связи . Порядок связи, в отличие от кратности связи, может принимать нецелочисленные значения. Порядок связи в двухатомных молекулах принято определять по числу связывающих электронов, участвующих в ее образовании: два связывающих электрона соответствуют простой связи, четыре связывающих электрона - двойной связи и т. д. При этом разрыхляющие электроны компенсируют действие соответствующего числа связывающих электронов. Так, если в молекуле имеются 6 связывающих и 2 разрыхляющих электрона, то избыток числа связывающих электронов над числом разрыхляющих равен четырем, что соответствует образованию двойной связи. Следовательно, с позиции метода молекулярных орбиталей химическую связь в молекуле водорода, образованную двумя связывающими электронами, следует рассматривать как простую связь.

У элементов первого периода валентной орбиталью является 1s -орбиталь. Эти две атомных орбитали образуют две σ -молекулярные орбитали - связывающую и разрыхляющую. Рассмотрим электронное строение молекулярного иона H 2 + . Он имеет один электрон, который будет занимать более энергетически выгодную s -связывающую орбиталь. В соответствии с правилом подсчета кратности связи она будет равна 0,5, а так как в ионе имеется один неспаренный электрон, H 2 + будет обладать парамагнитными свойствами. Электронное строение этого иона запишется по аналогии с электронным строением атома так: σ 1s св . Появление второго электрона на s -связывающей орбитали приведет к энергетической диаграмме, описывающей молекулу водорода, возрастанию кратности связи до единицы и диамагнитным свойствам. Возрастание кратности связи повлечет за собой и увеличение энергии диссоциации молекулы H 2 и более короткому межъядерному расстоянию по сравнению с аналогичной величиной у иона водорода.

Двухатомная молекула Не 2 существовать не будет, так как имеющиеся у двух атомов гелия четыре электрона расположатся на связывающей и разрыхляющей орбиталях, что приводит к нулевой кратности связи. Но в тоже время ион He 2 + будет устойчив и кратность связи в нем равна 0,5. Так же, как и ион водорода, этот ион будет обладать парамагнитными свойствами.

У элементов второго периода появляются еще четыре атомных орбитали: 2s, 2р х, 2р у, 2р z , которые будут принимать участие в образовании молекулярных орбиталей. Различие в энергиях 2s - и 2p -орбиталей велико, и они не будут взаимодействовать между собой с образованием молекулярных орбиталей. Эта разница в энергиях при переходе от первого элемента к последнему будет увеличиваться. В связи с этим обстоятельством электронное строение двухатомных гомоядерных молекул элементов второго периода будет описываться двумя энергетическими диаграммами, отличающимися порядком расположения на них σ св 2p x и π св 2p y,z . При относительной энергетической близости 2s - и 2p -орбиталей, наблюдаемой в начале периода, включая атом азота, электроны, находящиеся на σ разр 2s и σ св 2p x -орбиталях, взаимно отталкиваются. Поэтому π св 2p y - и π св 2p z -орбитали оказываются энергетически более выгодными, чем σ св 2p x -орбиталь. На рисунке представлены обе диаграммы. Так как участие 1s -электронов в образовании химической связи незначительно, их можно не учитывать при электронном описании строения молекул, образованных элементами второго периода.

Второй период системы открывают литий и бериллий, у которых внешний энергетический уровень содержит лишь s -электроны. Для этих элементов схема молекулярных орбиталей ничем не будет отличаться от энергетических диаграмм молекул и ионов водорода и гелия, с той лишь разницей, что у последних она построена из 1s -электронов, а у Li 2 и Ве 2 - из 2s -электронов. 1s -электроны лития и бериллия можно рассматривать как несвязывающие, т.е. принадлежащие отдельным атомам. Здесь будут наблюдаться те же закономерности в изменении порядка связи, энергии диссоциации и магнитных свойств. Ион Li 2 + имеет один неспаренный электрон, расположенный на σ св 2s -орбитали - ион парамагнитен. Появление второго электрона на этой орбитали приведет к увеличению энергии диссоциации молекулы Li 2 и возрастанию кратности связи с 0,5 до 1. Магнитные свойства приобретут диамагнитный характер. Третий s -электрон расположится на σ разр -орбитали, что будет способствовать уменьшению кратности связи до 0,5 и, как следствие этого, понижению энергии диссоциации. Такое электронное строение имеет парамагнитный ион Be 2 + . Молекула Ве 2 , так же как и Hе 2 , существовать не может из-за нулевого порядка связи. У этих молекул число связывающих электронов равно числу разрыхляющих.

Как видно из рисунка, по мере заполнения связывающих орбиталей энергия диссоциации молекул увеличивается, а с появлением электронов на разрыхляющих орбиталях уменьшается. Ряд заканчивается нестабильной молекулой Ne 2 . Из рисунка также видно, что удаление электрона с разрыхляющей орбитали приводит к повышению кратности связи и, как следствие этого, увеличению энергии диссоциации и уменьшению межъядерного расстояния. Ионизация молекулы, сопровождаемая удалением связывающего электрона дает прямо противоположный эффект.


Метод валентных связей дает теоретическое обоснование широко применяемым химиками структурным формулам и позволяет правильно определить структуру практически всех соединений s – и p – элементов. Большое достоинство метода в его наглядности. Однако представление о локализованных (двухцентровых, двухэлектронных) химических связях оказывается слишком узким для объяснения многих экспериментальных фактов. В частности, метод валентных связей несостоятелен для описания молекул с нечетным числом электронов, например, H , H , бораны, некоторые соединения с сопряженными связями, ряд ароматических соединений, карбонилы металлов, т.е. молекулы с дефицитом электронов или их избытком (H ). Обнаружились непреодолимые трудности использования метода валентных связей для объяснения валентности элементов восьмой группы с фтором и кислородом (XeF 6 , XeOF 4 , XeO 3 и др.), металлов в ”сэндвичевых” металлоорганических соединениях, например, железа в ферроцене

Fe (C 5 H 5) 2 , где он должен был бы образовать связи с десятью атомами углерода, не имея такого количества электронов на внешней оболочке.

На основе метода ВС трудно объяснить и то, что отрыв электронов от некоторых молекул приводит к упрочнению химической связи. Так, энергия разрыва связи в молекуле F 2 составляет 38 ккал/моль, а в молекулярном ионе F - 76 ккал/моль. Этот метод не объясняет и парамагнетизм молекулярного кислорода O 2 и B 2 .

Более общим и универсальным оказался метод молекулярных орбиталей (МО) , при помощи которого удается объяснить факты, непонятные с позиции метода ВС . Значительный вклад в разработку метода МО внес американский ученый Р. Малликен (1927 – 1929 гг).

Основные понятия. В своей основе метод МО распространяет квантово - механические закономерности, установленные для атома, на более сложную систему - молекулу. В основе метода молекулярных орбиталей лежит представление об ""орбитальном"" строении молекулы, т.е. предположение о том, что все электроны данной молекулы (как и в атоме) распределяются по соответствующим орбиталям. Каждая орбиталь характеризуется набором квантовых чисел, отражающих свойства электрона в данном энергетическом состоянии. Особенность метода МО заключается в том, что в молекуле имеется нескольких атомных ядер, т.е. в отличие от одноцентровых атомных орбиталей молекулярные орбитали несколькоцентровые (общие для двух и большего числа атомных ядер). По аналогии с атомными s -, p -, d -, f - орбиталями молекулярные орбитали обозначаются греческими буквами σ -, π, δ -, φ .

Основная проблема метода МО - нахождение волновых функций, описывающих состояние электронов на молекулярных орбиталях. Согласно одному из вариантов метода молекулярных орбиталей, названным линейной комбинацией атомных орбиталей (МОЛКАО) , молекулярные орбитали образуются из атомных путем их линейной комбинации. Пусть электронные орбитали взаимодействующих атомов характеризуются волновыми функциями Ψ 1 , Ψ 2 , Ψ 3 и т.д. Тогда предполагается, что волновая функция Ψ мол , отвечающая молекулярной орбитали, может быть представлена в виде суммы:

Ψ мол. = С 1 Ψ 1 + С 2 Ψ 2 + С 3 Ψ 3 + …. .,

где С 1 , С 2 , С 3 ... некоторые численные коэффициенты. Это уравнение равносильно предположению, что амплитуда молекулярной электронной волны (т.е. молекулярная волновая функция) образуется сложением амплитуд взаимодействующих атомных электронных волн (т. е. сложением атомных волновых функций). При этом, однако, под влиянием силовых полей ядер и электронов соседних атомов волновая функция каждого электрона изменяется по сравнению с исходной волновой функцией этого электрона в изолированном атоме. В методе МОЛКАО эти изменения учитываются введением коэффициентов С 1 , С 2 , С 3 и т.д.

При построении молекулярных орбиталей по методу МОЛКАО должны соблюдаться определенные условия:

1. Комбинируемые атомные орбитали должны быть близкими по энергии, иначе электрону будет энергетически невыгодно находиться на подуровне с более высокой энергией. (1 s и 5 p не взаимодействуют).

2. Необходимо максимальное перекрывание атомных орбиталей, образующих молекулярную орбиталь.

3. Атомные орбитали, образующие молекулярные орбитали, должны обладать одинаковыми свойствами симметрии относительно межъядерной оси молекулы. (p x - электронное облако может комбинироваться только с p x облаком, но не p y и p z ).

Следует также учитывать, что совокупность молекулярных орбиталей молекулы, занятых электронами, представляет ее электронную конфигурацию. Она строится так же как и для атома, на основе принципа наименьшей энергии и принципа Паули.

Для описания электронной конфигурации основного состояния молекулы с 2n или (2n - 1) электронами требуется n молекулярных орбиталей.

Связывающие и разрыхляющие орбитали. Рассмотрим, какой вид будет иметь молекулярная волновая функция Ψ м , образованная в результате взаимодействия волновых функций (Ψ 1 и Ψ 2 ) 1 s орбиталей двух одинаковых атомов. Для этого найдем сумму С 1 Ψ 1 + С 2 Ψ 2 . Поскольку в данном случае атомы одинаковые С 1 = С 2 ; они не будут влиять и на характер волновых функций, поэтому ограничимся нахождением суммы Ψ 1 + Ψ 2 .

Для этого расположим ядра взаимодействующих атомов на том расстоянии друг от друга (r) , на котором они находятся в молекуле. Вид Ψ функций 1 s орбиталей будет следующим:


Ψ мол

Рис. 22. Схема образования связывающей МО

из атомных 1 s - орбиталей

Чтобы найти молекулярную волновую функцию Ψ , сложим величины Ψ 1 и Ψ 2 . В результате получим следующий вид кривой (рис. 22)

Как видно, в пространстве между ядрами значения молекулярной волновой функции Ψ мол. больше, чем значения исходных атомных волновых функций. Но Ψ мол. характеризует вероятность нахождения электрона в соответствующей области пространства, т.е. плотность электронного облака.

Возрастание Ψ мол. – функции в сравнении с Ψ 1 и Ψ 2 означает, что при образовании молекулярной орбитали плотность электронного облака в межъядерном пространстве увеличивается, в результате возникают силы притяжения положительно заряженных ядер к этой области – образуется химическая связь. Поэтому молекулярная орбиталь рассматриваемого типа называется связывающей.

В данном случае область повышенной электронной плотности находится вблизи оси связи, так что образовавшаяся МО относится к σ – типу. В соответствии с этим, связывающая МО , полученная в результате взаимодействия двух атомных 1s – орбиталей обозначается σ св. 1s . Электроны, находящиеся на связывающей МО , называются связывающими электронами.

При взаимодействии двух атомов знаки волновых функций их 1s – орбиталей могут оказаться различными. Такой случай графически можно представить следующим образом:


Ψ мол

Рис. 23. Схема образования разрыхляющей МО

из атомных 1 S – орбиталей

Молекулярная орбиталь (рис. 23), образующаяся при таком взаимодействии, характеризуется уменьшением абсолютной величины волновой функции в межъядерном пространстве по сравнению с ее значением в исходных атомах: на оси связи

появляется даже точка, в которой значение волновой функции, а, следовательно, и ее квадрата, обращается в нуль. Это означает, что в рассматриваемом случае уменьшится и плотность электронного облака в пространстве между атомами. В результате притяжения каждого атомного ядра в направлении к межъядерной области пространства окажется более слабым, чем в противоположном направлении, т.е. возникнут силы, приводящие к взаимному отталкиванию ядер. Здесь, следовательно, химическая связь не возникает; образовавшаяся в этом случае МО называется разрыхляющей (σ разр. 1s ), а находящиеся на ней электроны – разрыхляющими электронами.


Молекулярные орбитали, полученные при сложении и вычитании 1s – атомных орбиталей имеют следующие формы (рис. 24). Взаимодействие, приводящее к образованию связывающей орбитали, сопровождается выделением энергии, поэтому электрон, находящийся на связывающей орбитали, обладает меньшей энергией, чем в исходном атоме.

Рис. 24. Схема образования связывающей и разрыхляющей

молекулярных σ - орбиталей

Образование разрыхляющей орбитали требует затраты энергии. Следовательно, на разрыхляющей орбитали электрон обладает более высокой энергией, чем в исходном атоме.


Двухатомные гомоядерные молекулы элементов первого периода. Образование молекулы водорода H 2 по методу МО представляется следующим образом (рис. 25):

Рис. 25. Энергетическая диаграмма образования

молекулярных орбиталей H 2

Следовательно, вместо двух энергетически равноценных 1 s – орбиталей (исходные атомы водорода) при образовании молекулы H 2 возникают две энергетически неравноценные молекулярные орбитали – связывающая и разрыхляющая.

В этом случае 2 элемента занимают молекулярную орбиталь с более низкой энергией, т.е. σ св 1 s орбиталь.

Реакция образования молекулы H 2 в терминах МО может быть записана:

2 H = H 2 [ (σ св 1 s) 2 ] или

H + H = H 2 [(σ св 1 s) 2 ]

В молекуле H 2 два электрона. Согласно принципу наименьшей энергии и принципу Паули эти два электрона с противоположными спинами также заселяют σ св орбиталь.

Приведенная энергетическая диаграмма молекулярных орбиталей справедлива для двухъядерных образований (элементами первого периода): H 2 + , He 2 + и He 2

В молекулярном дигелии – ионе He 2 + три электрона, два из которых заселяют связывающую, третий – разрыхляющую орбиталь He 2 + [(σ св 1 s) 2 (σ разр 1 s)] (рис. 26):


Ион H 2 + состоит из двух протонов и одного электрона. Естественно, что единственный электрон этого иона должен занимать энергетически наиболее выгодную орбиталь, т.е. σ св 1s . Таким образом, электронная формула иона H 2 + H 2 + [(σ св 1s) " ] (рис. 27):

Рис. 27. Энергетическая диаграмма образования

молекулярных орбиталей H

В системе из двух атомов гелия He 2 четыре электрона; два на связывающей и два на разрыхляющей орбитали.

Энергия, длина и порядок связи. По характеру распределения электронов по молекулярным орбиталям можно оценить энергию и порядок связи. Как уже было показано, нахождение электрона на связывающей орбитали означает, что электронная плотность концентрируется между ядрами, что обуславливает сокращение межъядерного расстояния и упрочения молекулы. Наоборот электрон на разрыхляющей орбитали означает, что электронная плотность концентрируется за ядрами. В этом случае, следовательно, энергия связывания снижается, а межъядерное расстояние увеличивается, как это показано ниже.

В ряду H 2 + - H 2 - He 2 + по мере заполнения связывающей орбитали, энергия диссоциации молекул возрастает, с появлением же электрона на разрыхляющей МО , наоборот, уменьшается, а затем увеличивается.

Молекула гелия существовать не может в невозбужденном состоянии, так как число связывающих и разрыхляющих электронов у нее одинаково.

Согласно методу МО порядок связи (кратность) (n) оценивается полуразностью числа связывающих и разрыхляющих электронов:

a – число электронов на связывающих орбиталях;

b - число электронов на разрыхляющих орбиталях.

или , где А – число атомов в молекуле.

Двухатомные гомоядерные молекулы элементов второго периода. У элементов 2 – го периода кроме 1 s – орбиталей в образовании МО принимают участие 2s -; 2p x - , 2p y и 2p z – орбитали.

Комбинация из 2s – орбиталей, как и в случае атомных 1s – орбиталей, соответствует образованию двух молекулярных σ – орбиталей: σ св 2s и σ разр 2s .

Иная картина наблюдается при комбинации орбиталей p – типа. При комбинации атомных 2p x – орбиталей, которые вытянуты вдоль оси х , возникают молекулярные σ – орбитали: σ св 2p x и σ разр 2p x .

При комбинации 2p y и 2p z атомных орбиталей образуются π св 2p y и π св 2p z , π разр 2p y и π разр 2p z .

Поскольку энергия 2p y и 2p z - орбиталей одинакова и перекрываются они одинаковым способом, возникающие π св 2p y и π св 2p z – орбитали имеют одинаковую энергию и форму; то же самое относится к π разр 2p y и π разр 2p z – орбиталям. Таким образом, молекулярные π – орбитали составляют π св и π разр дважды вырожденные энергетические уровни.

Согласно спектроскопическим данным МО двухатомных молекул элементов конца периода по уровню энергии располагаются в следующем порядке:

σ св 1s < σ разр 1s < σ св 2s < σ разр 2s < σ св 2p x < π св 2p y = π св 2p z < π разр 2p y = π разр 2p z < σ разр 2p x

При энергетической близости 2s и 2p – орбиталей электроны на σ 2s и σ 2p – орбиталях взаимно отталкиваются и потому π св 2p y и π св 2p z - орбитали оказываются энергетически более выгодными, чем σ св 2p x орбиталь. В этом случае порядок заполнения молекулярных орбиталей несколько изменяется и соответствует следующей последовательности:

σ св 1s < σ разр 1s < σ св 2s < σ разр 2s < π св 2p y = π св 2p z < σ св 2p x < π разр 2p y = π разр 2p z < σ разр 2p x

Энергетическое различие 2s и 2p – орбиталей в периоде увеличивается от I группы к VIII . Поэтому приведенная последовательность молекулярных орбиталей характерна для двухатомных молекул элементов начала II – го периода вплоть до N 2 . Так, электронная конфигурация N 2 . в основном (невозбужденном) состоянии имеет вид:

2N = N 2 [(σ св 1s) 2 (σ разр 1s) 2 (σ св 2s) 2 (σ разр 2s) 2 * (π св 2p y) 2 (π св 2p z) 2 (σ св. 2p x) 2 ]

или графически (рис. 28):

АО МО АО

N 1s 2 2s 2 2p 3 N 2 1s 2 2s 2 2p 3


Рис. 28. Энергетическая диаграмма образования

молекулярных орбиталей N 2

Характер распределения электронов по молекулярным орбиталям позволяет объяснить также магнитные свойства молекул. По магнитным свойствам различают парамагнитные и диамагнитные вещества. Парамагнитными являются вещества, у которых имеются непарные электроны, у диамагнитных веществ – все электроны парные.

В таблице приведены сведения об энергии, длине и порядке связи гомоядерных молекул элементов начала и конца 2 – ого периода:

В молекуле кислорода имеется два непарных электрона, поэтому она парамагнитна; молекула фтора непарных электронов не имеет, следовательно, она диамагнитна. Парамагнитны также молекула B 2 и молекулярные ионы H 2 + и He 2 + , а молекулы С 2 , N 2 и H 2 – диамагнитны.

Двухатомные гетероядерные молекулы. Гетероядерные (разноэлементные) двухатомные молекулы описывают методом МОЛКАО , так же как гомоядерные двухатомные молекулы. Однако поскольку речь идет о разных атомах, то энергия атомных орбиталей и их относительный вклад в молекулярные орбитали тоже различны:

Ψ + = С 1 Ψ А + С 2 Ψ B

Ψ - = С 3 Ψ А + С 4 Ψ B




Рис. 29. Энергетическая диаграмма молекулярных орбиталей гетероядерной молекулы АВ

В связывающую орбиталь больший вклад вносит атомная орбиталь более электроотрицательного атома, а в разрыхляющую – орбиталь менее электроотрицательного элемента (рис. 29). Допустим, атом B электроотрицательнее атома A . Тогда С 2 > С 1 , а С 3 > С 4 .

Различие в энергии исходных атомных орбиталей определяет полярность связи. Величина в является мерой ионности,

а величина a – ковалентности связи.

Диаграмма энергетических уровней гетероядерных двухатомных молекул 2 – го периода аналогична диаграмме гомоядерных молекул 2 – го периода. Например, рассмотрим рас-пределение электронов по орбиталям молекулы CO и ионов CN - и NO + .

Молекула CO и ионы CN - , NO + изоэлектронны молекуле N 2 (содержит по 10 валентных электронов), что соответствует следующей электронной конфигурации в невозбужденном состоянии:



(σs св.) 2 (σs разр.) 2 (πу св.) 2 (πz св.) 2 (σх св.) 2

Энергетическая диаграмма уровней молекулы BeH 2 имеет вид: Четыре валентных электрона невозбужденной молекулы BeH 2 располагаются на σ и σ - орбиталях, что описывается формулой (σ ) 2 (σ ) 2 .

Ионная связь

Химическая связь, возникающая за счет перехода электронов от атома к атому, называется ионной, или электрова-

лентной. Электровалентность определяется числом электронов, теряемых или приобретаемых каждым атомам. Причиной возникновения ионной связи является большая разность ЭО взаимодействующих атомов 2,0 и более. Принципиального различия в механизме возникновения ковалентной и ионной связей нет. Эти виды связи отличаются лишь степенью поляризации электронного облака связи, а, следовательно, длинами диполей и величинами дипольных моментов. Чем меньше разность электроотрицательностей атомов, тем более проявляется ковалентная связь и менее - ионная. Даже в таком ’’идеальном” ионном соединении, как фторид франция, ионная связь составляет около 93- 94 % .

Если рассмотреть соединения элементов какого – либо периода с одним и тем же элементом, то по мере передвижения от начала к концу периода преимущественно ионный характер связи меняется на ковалентный. Например, у фторидов элементов 2 – ого периода в ряду LiF, BeF 2 , BF 3 , CF 4 , NF 3 , OF 2 , F 2 ионная связь характерная для фторида лития, постепенно ослабевает и переходит в типично ковалентную связь в молекуле фтора.

Для однотипных молекул, например HF, HCl, HBr, HS (или H 2 O, H 2 S, H 2 Se ), дипольный момент тем больше, чем больше ЭО элементов (ЭО F > ЭО Cl ; ЭО О > ЭO S , Se ).

Образующиеся ионы можно представить в виде заряженных шаров, силовые поля которых равномерно распределяются во всех направлениях пространства (рис. 30). Каждый ион может притягивать к себе ионы противоположного знака по любому направлению. Иначе говоря, ионная связь в отличие от ковалентной характеризуется ненаправленностью .

Рис. 30. Распределение электрических силовых

полей двух разноименных ионов

В отличие от ковалентной связи ионная связь характеризуется еще и ненасыщенностью . Объясняется это тем, что образующиеся ионы способны притягивать большое количество ионов противоположного знака. Число притягивающихся ионов определяется относительными размерами взаимодействующих ионов. Вследствие ненаправленности и ненасыщаемости ионной связи, энергетически наиболее выгодно, когда каждый ион окружен максимальным числом ионов противоположного знака. Таким образом, для ионных соединений понятие простых двухионных молекул типа NaCl, CsCl теряет смысл. Ионные соединения в обычных условиях представляют собой кристаллические вещества. Весь кристалл можно рассматривать как гигантскую молекулу, состоящую из ионов Na , Cl и Cs Cl

Лишь в газообразном состоянии ионные соединения существуют в виде неассоциированных молекул типа NaCl и CsCl .

Ионная связь, как было показано выше, не является чисто ионной даже в типичных молекулах (CsF, F 2 F ). Неполное разделение зарядов в ионных соединениях объясняется взаимной поляризацией ионов, т.е. влиянием их друг на друга. Поляризуемость – способность к деформации электронных оболочек в электрическом поле.

Это приводит к деформации электронных оболочек ионов. Наибольшее смещение испытывают при поляризации электроны внешнего слоя, поэтому в первом приближении можно считать, что деформации подвергается только внешняя электронная оболочка. Поляризуемость различных ионов неодинакова

Li + < Na + < K + < Rb + < Cs +

Увеличение R

Точно также поляризуемость галогенов изменяется в следующей последовательности:

F - < Cl - < Br - < I -


Увеличение R иона, увеличение поляризуемости.

Чем меньше заряд иона, тем меньше его поляризуемость. Поляризующая способность ионов, т.е. их способность оказывать деформирующее воздействие на другие ионы зависит от заряда и размера ионов. Чем больше заряд иона и меньше его радиус, тем сильнее создаваемое им электрическое поле, следовательно, тем больше его поляризующая способность. Таким образом, анионы характеризуются (в сравнении с катионами) сильной поляризуемостью и слабой поляризующей способностью.

Рис. 31. Смещение электронного облака аниона

в результате поляризации

Под действием электрических полей каждого иона внешняя электронная оболочка смещается в сторону противоположно заряженного иона. Действие электрических полей смещает и ядра атомов в противоположных направлениях. Под действием электрического поля катиона внешнее электронное облако аниона смещается. Происходит как бы обратный перенос части электронного заряда от аниона к катиону (рис. 31).

Таким образом, в результате поляризации электронные облака катиона и аниона оказываются не полностью разделенными и частично перекрываются, связь из чисто ионной превращается в сильнополярную ковалентную. Следовательно, ионная связь – предельный случай полярной ковалентной связи. Поляризация ионов оказывает заметное влияние на свойства образуемых ими соединений. Поскольку с усилением поляризации возрастает степень ковалентности связи, то это сказывается на диссоциации солей в водных растворах. Так, хлорид BaCl 2 принадлежит к сильным электролитам и в водных растворах практически полностью распадается на ионы, тогда как хлорид ртути HgCl 2 почти не диссоциирует на ионы. Это объясняется сильным поляризующим действием иона Hg 2+ радиус которого (1,1 Аº ) заметно меньше радиуса иона Ba 2+ (1,34 Аº )

Особенно высоким поляризующим действием обладает ион водорода, который может сближаться с анионом до близкого расстояния, внедряясь в его электронную оболочку и вызывая сильную ее деформацию. Так, радиус Cl - равен 1,81 Аº , а расстояние между ядрами атомов хлора и водорода в HCl – 1,27 Аº .

Водородная связь

Общие понятия. Водородная связь – разновидность донорно – акцепторной связи, осуществляющаяся между молекулами различных веществ, в состав которых входит водород. Если молекулу такого вещества обозначить НХ , то взаимодействие за счет водородной связи можно выразить так

Н – Х….. Н – Х….. Н – Х

В качестве х можно взять атомы F, O, N, Cl, S и др. Точечным пунктиром обозначена водородная связь.

В молекулах НХ атом H ковалентно соединен с электроотрицательным элементом, общая электронная пара значительно смещена к электроотрицательному элементу. Водородный атом оказывается протонированным (H + ) и он имеет свободную орбиталь.

Анион электроотрицательного элемента другой молекулы НХ имеет неподеленную пару электронов, за счет которых происходит взаимодействие. Если водородная связь образуется между разными молекулами, то она называется межмолекулярной, если связь образуется между двумя группами одной и той же молекулы, то она называется внутримолекулярной. Образование водородной связи наблюдается в растворах НF, H 2 O (жидк.), NH 3 (жидк.), спиртах, органических кислотах и др.

Энергия и длина водородной связи. Водородная связь отличается от ковалентной меньшей прочностью. Энергия водородной связи невелика и достигает 20 – 42 кДж/моль. Она зависит от электроотрицательности (ЭО) и размеров атомов Х : энергия возрастает с увеличением ЭО и уменьшением их размеров. Длина ковалентной связи заметно меньше длины водородной связи (l св. H) , например, l св. (F - H) = 0, 092 нм , а l св. H (F … H) = 0, 14 нм . У воды l св. (O - H) = 0, 096 нм , а l св. H (O … H) = 0, 177 нм.


или более сложные конфигурации, например у льда, у которого молекулы воды образуют по четыре водородные связи

Соответственно в жидком состоянии молекулы, вступающие в водородные связи, ассоциированы, а в твердом состоянии образуют сложные кристаллические структуры.

При образовании водородных связей существенно изменяются свойства веществ: повышаются температура кипения и плавления, вязкость, теплоты плавления и парообразования. например, вода, фтороводород и аммиак имеют аномально высокие температуры кипения и плавления.

Вещества в парообразном состоянии проявляют водородную связь в незначительной степени, т.к. с повышением температуры энергия водородной связи уменьшается.

Метод молекулярных орбиталей основан на предположении, что электроны в молекуле расположены на молекулярных орбиталях, аналогично атомным орбиталям в изолированном атоме . Каждой молекулярной орбитали соответствует определенный набор молекуляр-ных квантовых чисел. Для молекулярных орбиталей сохраняет справед-ливость принцип Паули, т.е. каждой молекулярной орбитали может находиться не более двух электронов с антипараллельными спинами.

В общем случае, в многоатомной молекуле электронное облако принадлежит одновременно всем атомам, т.е. участвует в образовании многоцентровой химической связи. Таким образом, все электроны в молекуле принадлежат одновременно всей молекуле, а не являются собственностью двух связанных атомов . Следовательно, молекула рассматривается как единое целое, а не как некая совокупность индивидуальных атомов .

В молекуле, как и в любой системе из ядер и электронов, состояние электрона на молекулярных орбиталях должно описываться соответствую-щей волновой функцией. В наиболее распространенном варианте метода молекулярных орбиталей волновые функции электронов находят, представляя молекулярную орбиталь как линейную комбинацию атомных орбиталей (сам вариант получил сокращенное наименование «МОЛКАО»).

В методе МОЛКАО полагают, что волновая функция y , отвечаю-щая молекулярной орбитали, может быть представлена в виде суммы:

y = с 1 y 1 + с 2 y 2 + ¼ + с n y n

где y i – волновые функции, характеризующие орбитали взаимо-действующих атомов;

с i – числовые коэффициенты, введение которых необходимо потому, что вклад различных атомных орбиталей в суммарную мо- лекулярную орбиталь может быть различным.

Поскольку квадрат волновой функции отражает вероятность нахождения электрона в какой-либо точке пространства между взаимодействующими атомами, представляет интерес выяснить, какой вид должна иметь молекулярная волновая функция. Проще всего решить этот вопрос в случае комбинации волновых функций 1s-орбиталей двух одинаковых атомов:

y = с 1 y 1 + с 2 y 2

Поскольку для одинаковых атомов с 1 = с 2 = с, следует рассмотреть сумму

y = с 1 (y 1 + y 2)

Постоянная с влияет только на величину амплитуды функции, следовательно, для нахождения формы орбитали достаточно выяснить, что будет представлять собой сумма y 1 и y 2 .

Расположив ядра двух взаимодействующих атомов на расстоянии, равном длине связи, и изобразив волновые функции 1s-орбиталей, произведем их сложение. При этом оказывается, что в зависимости от знаков волновых функций, их сложение дает различные результаты. В случае сложения функций с одинаковыми знаками (рис. 4.15, а) значения y в межъядерном пространстве больше, чем значения y 1 и y 2 . В противоположном случае (рис. 4.15, б) суммарная молекулярная орбиталь характеризуется уменьшением абсолютной величины волновой функции в межъядерном пространстве по сравнению с волновыми функциями исход-ных атомов.

y 2
y 1



Рис. 4.15. Схема сложения атомных орбиталей при образовании

связывающей (а) и разрыхляющей (б) МО

Поскольку квадрат волновой функции характеризует вероятность нахождения электрона в соответствующей области пространства, т.е. плотность электронного облака, это означает, что в первом варианте сложения волновых функций плотность электронного облака в межъядерном пространстве увеличивается, а во втором – уменьшается.

Таким образом, сложение волновых функций с одинаковыми знаками приводит к возникновению сил притяжения положительно заряженных ядер к отрицательно заряженной межъядерной области и образованию химической связи. Такая молекулярная орбиталь называется связывающей , а электроны, находящиеся на ней - связывающими электронами .

В случае сложения волновых функций разных знаков притяжение каждого ядра в направлении межъядерной области ослабевает, и преобладают силы отталкивания - химическая связь не укрепляется, а образовавшаяся молекулярная орбиталь называется разрыхляющей (электроны, на ней расположенные – разрыхляющими электронами ).

Аналогично атомным s-, p-, d-, f- орбиталям, МО обозначают s- , p- , d- , j- орбитали . Возникающие при взаимодействии двух 1s-орбиталей молекулярные орбитали обозначают: s -связывающая и s (со звездочкой) - разрыхляющая . При взаимодействии двух атомных орбиталей всегда образуются две молекулярные - связывающая и разрыхляющая.

Переход электрона с атомной 1s- орбитали на s - орбиталь, приводящий к образованию химической связи, сопровождается выделением энергии. Переход электрона с 1s-орбитали на s -орбиталь требует затраты энергии. Следовательно, энергия s -связывающей орбитали ниже, а s -разрых-ляющей – выше, чем энергия исходных атомных 1s-орбиталей, что принято изображать в виде соответствующих диаграмм (рис. 4.16).

АО МО АО

Рис. 4.16. Энергетическая диаграмма образования МО молекулы водорода

Наряду с энергетическими диаграммами образования молекулярных орбиталей, интересен внешний вид молекулярных облаков, полученных путем перекрывания или отталкивания орбиталей взаимодействующих атомов.

Здесь следует учесть, что взаимодействовать могут не любые орбитали, а лишь удовлетворяющие определенным требованиям.

1. Энергии исходных атомных орбиталей не должны сильно отличаться друг от друга – они должны быть соизмеримы по величине.

2. Атомные орбитали должны обладать одинаковыми свойствами симметрии относительно оси молекулы.

Последнее требование приводит к тому, что могут комбинировать между собой, например, s – s (рис. 4.17, а), s – p x (рис. 4.17, б), р х – р х, но не могут s – p y , s – p z (рис. 4.17, в), т.к. в первых трех случаях обе орбитали при повороте вокруг межъядерной оси не меняют (рис. 3.17 а,б), а в последних случаях – изменяют знак (рис. 4.17, в). Это приводит, в последних случаях к взаимному вычитанию образующихся областей перекрывания, и оно не происходит.

3. Электронные облака взаимодействующих атомов должны максимально перекрываться. Это означает, например, что невозможно комбинирование p x – p y , p x – p z или p y – p z орбиталей, не имеющих областей перекрывания.


(а) (б) (в)

Рис. 4.17. Влияние симметрии атомных орбиталей на возможность

образования молекулярных орбиталей: МО образуются (а, б),

не образуются (в)

В случае взаимодействия двух s-орбиталей образующиеся s - и s -орбитали выглядят следующим образом (рис. 3.18)

1s
s 1
1s

+

Рис. 4.18. Схема комбинирования двух 1s-орбиталей

Взаимодействие двух p x -орбиталей также дает s-связь, т.к. возникающая связь направлена вдоль прямой, соединяющей центры атомов. Возникающие молекулярные орбитали обозначают соответст-венно s и s , схема их образования представлена на рис. 4.19.



Рис. 4.19. Схема комбинирования двух p x -орбиталей

При комбинации р у – р у или р z – p z -орбиталей (рис. 4.20) s-орбитали образоваться не могут, т.к. области возможного перекрывания орбиталей не расположены на прямой, соединяющей центры атомов. В этих случаях образуются вырожденные p у - и p z -, а также p - и p - орбитали (термин «вырожденные» обозначают в данном случае «одинаковые по форме и энергии»).

Рис. 4.20. Схема комбинирования двух p z -орбиталей

При расчетах молекулярных орбиталей многоатомных систем могут, кроме того, появиться энергетические уровни, лежащие посередине между связывающими и разрыхляющими молекулярными орбиталями . Такие МО называют несвязывающими .

Как и в атомах, электроны в молекулах стремятся занять молекулярные орбитали, отвечающие минимальной энергии. Так, в молекуле водорода оба электрона перейдут с 1s-орбитали на связывающую s 1 s -орбиталь (рис. 4.14), что можно изобразить формульной записью:

Как и атомные, молекулярные орбитали могут вмещать не более двух электронов.

Метод МО ЛКАО не оперирует понятием валентности, но вводит термин «порядок», или «кратность связи».

Порядок связи (Р) равен частному от деления разности числа связывающих и разрыхляющих электронов на число взаимодействующих атомов, т.е. в случае двухатомных молекул половине этой разности . Порядок связи может принимать целочисленные и дробные значения, в том числе и нуль (если порядок связи равен нулю, система неустойчива, и химическая связь не возникает).

Следовательно, с позиции метода МО, химическую связь в молекуле H 2 , образованную двумя связывающими электронами, следует рассматри-вать как одинарную связь, что соответствует и методу валентных связей.

Понятно, с точки зрения метода МО, и существование устойчивого молекулярного иона H . В этом случае единственный электрон переходит с атомной 1s-орбитали на молекулярную s 1 S -орбиталь, что сопровождает-ся выделением энергии и образованием химической связи с кратностью 0,5.

В случаях молекулярных ионов H и He (содержащих три электрона) третий электрон помещается уже на разрыхляющую s -орбиталь (например, He (s 1 S) 2 (s ) 1), и порядок связи в таких ионах согласно определению 0,5. Такие ионы существуют, но связь в них слабее, чем в молекуле водорода.

Поскольку в гипотетической молекуле Не 2 должно быть 4 электрона, они могут расположиться только по 2 на s 1 S - связывающей и s - разрыхляющей орбиталях, т.е. порядок связи равен нулю, и двухатомных молекул гелия, как и других благородных газов, не существует. Аналогично не могут образовываться молекулы Be 2 , Ca 2 , Mg 2 , Ba 2 и т.д.

Таким образом, с точки зрения метода молекулярных орбиталей из двух взаимодействующих атомных орбиталей образуются две молекуляр-ные: связывающая и разрыхляющая. Для АО с главными квантовыми числами 1 и 2 возможно образование МО, представленных в табл. 4.4.

Как было показано в предыдущих параграфах, метод ВС позволяет понять способность атомов к образованию определенного числа ковалентных связей, объясняет направленность ковалентной связи, дает удовлетворительное описание структуры и свойств большого числа молекул. Однако в ряде случаев метод ВС не может объяснить природу образующихся химических связей или приводит к неверным заключениям о свойствах молекул.

Так, согласно методу ВС, все ковалентные связи осуществляются общей парой электронов. Между тем, еще в конце прошлого века было установлено существование довольно прочного молекулярного иона водорода : энергия разрыва связи составляет здесь . Однако никакой электронной пары в этом случае образоваться не может, поскольку в состав иона входит всего один электрон. Таким образом, метод ВС не дает удовлетворительного объяснения существованию иона .

Согласно такому описанию, молекула не содержит неспаренных электронов. Однако магнитные свойства кислорода указывают на то, что в молекуле имеются два неспаренных электрона.

Каждый электрон, благодаря наличию у него спина, создает собственное магнитное поле. Направление этого поля определяется направлением спина, так что магнитные поля, образованные двумя спареиными электронами, взаимнокомпенсируют друг друга.

Поэтому молекулы, в состав которых входят только спаренные электроны, не создают собственного магнитного поля. Вещества, состоящие из таких молекул, являются диамагнитными - они выталкиваются из магнитного поля. Напротив, вещества, молекулы которых содержат неспаренные электроны, обладают собственным магнитным полем и являются парамагнитными; такие вещества втягиваются в магнитное поле.

Кислород - вещество парамагнитное, что свидетельствует о наличии в его молекуле неспаренных электронов.

На основе метода ВС трудно объяснить и то, что отрыв электронов от некоторых молекул приводит к упрочнению химической связи. Так, энергия разрыва связи в молекуле составляет , а в молекулярном ионе - ; аналогичные величины для молекул и молекулярного иона составляют соответственно 494 и .

Приведенные здесь и многие другие факты получают более удовлетворительное объяснение на основе метода молекулярных орбиталей (метод МО).

Мы уже знаем, что состояние электронов в атоме описывается квантовой механикой как совокупность атомных электронных орбиталей (атомных электронных облаков); каждая такая орбиталь характеризуется определенным набором атомных квантовых чисел. Метод МО исходит из предположения, что состояние электронов в молекуле также может быть описано как совокупность молекулярных электронных орбиталей (молекулярных электронных облаков), причем каждой молекулярной орбитали (МО) соответствует определенный набор молекулярных квантовых чисел. Как и в любой другой многоэлектронной системе, в молекуле сохраняет свою справедливость принцип Паули (см. § 32), так что на каждой МО может находиться не более двух электронов, которые должны обладать противоположно направленными спинами.

Молекулярное электронное облако может быть сосредоточено вблизи одного из атомных ядер, входящих в состав молекулы: такой электрон практически принадлежит одному атому и не принимает участия в образовании химических связей. В других случаях преобладающая часть электронного облака расположена в области пространства, близкой к двум атомным ядрам; это соответствует образованию двухцентровой химической связи. Однако в наиболее общем случае электронное облако принадлежит нескольким атомным ядрам и участвует в образовании многоцентровой химической связи. Таким образом, с точки зрения метода МО двухцентровая связь представляет собой лишь частный случай многоцентровой химической связи.

Основная проблема метода МО - нахождение волновых функций, описывающих состояние электронов на молекулярных орбиталях. В наиболее распространенном варианте этого метода, получившем сокращенное обозначение «метод МО ЛКАО» (молекулярные орбитали, линейная комбинация атомных орбиталей), эта задача решается следующим образом.

Пусть электронные орбитали взаимодействующих атомов характеризуются волновыми функциями и т. д. Тогда предполагается, что волновая функция , отвечающая молекулярной орбитали, может быть представлена в виде суммы

где некоторые численные коэффициенты.

Для уяснения физического смысла такого подхода вспомним, что волновая функция соответствует амплитуде волнового процесса, характеризующего состояние электрона (см. § 26). Как известно, при взаимодействии, например, звуковых или электромагнитных волн их амплитуды складываются. Как видно, приведенное уравнение равносильно предположению, что амплитуды молекулярной «электронной волны» (т. е. молекулярная волновая функция) тоже образуются сложением амплитуд взаимодействующих атомных «электронных волн» (т. е. сложением атомных волновых функций). При этом, однако, под влиянием силовых полей ядер и электронов соседних атомов волновая функция каждого атомного электрона изменяется по сравнению с исходной волновой функцией этого электрона в изолированном атоме. В методе МО ЛКАО эти изменения учитываются путем введения коэффициентов и т. д., так что при нахождении молекулярной волновой функции складываются не исходные, а измененные амплитуды - и т. д.

Выясним, какой вид будет иметь молекулярная волновая функция , образованная в результате взаимодействия волновых функций ( и ) -орбиталей двух одинаковых атомов. Для этого найдем сумму В данном случае оба рассматриваемых атома одинаковы, так что коэффициенты и равны по величине , и задача сводится к определению суммы . Поскольку постоянный коэффициент С не влияет на вид искомой молекулярной волновой функции, а только изменяет ее абсолютные значения, мы ограничимся нахождением суммы .

Для этого расположим ядра взаимодействующих атомов на том расстоянии друг от друга (r), на котором они находятся в молекуле, и изобразим волновые функции -орбиталей этих атомов (рис. 43,а); каждая из этих функций имеет вид, показанный на рис. 9, а(стр. 76). Чтобы найти молекулярную волновую функцию , сложим величины и : в результате получится кривая, изображенная на рис. 43,б. Как видно, в пространстве между ядрами значения молекулярной волновой функции больше, чем значения исходных атомных волновых функций. Но квадрат волновой функции характеризует вероятность нахождения электрона в соответствующей области пространства, т. е. плотность электронного облака (см. § 26). Значит, возрастание в сравнении с и означает, что при образовании МО плотность электронного облака в межъядерном пространстве увеличивается.

Рис. 43. Схема образования связывающей МО из атомных -орбиталей.

В результате возникают силы притяжения положительно заряженных атомных ядер к этой области--образуется химическая связь. Поэтому МО рассматриваемого типа называется связывающей.

В данном случае область повышенной электронной плотности находится вблизи оси связи, так что образовавшаяся МО относится к -типу. В соответствии с этим, связывающая МО, полученная в результате взаимодействия двух атомных -орбиталей, обозначается .

Электроны, находящиеся на связывающей МО, называются связывающими электронами.

Как указывалось на стр. 76, волновая функция -орбитали обладает постоянным знаком. Для отдельного атома выбор этого знака произволен: до сих пор мы считали его положительным. Но при взаимодействии двух атомов знаки волновых функций их -орбиталей могут оказаться различными. Значит, кроме случая, изображенного на рис. 43, а, где знаки обеих волновых функций одинаковы, возможен и случай, когда знаки волновых функций взаимодействующих -орбиталей различны. Такой случай представлен на рис. 44,а: здесь волновая функция -орбитали одного атома положительна, а другого - отрицательна. Пр и сложении этих волновых функций получится кривая, показанная на рис. 44, б. Молекулярная орбиталь, образующаяся при подобном взаимодействии, характеризуется уменьшением абсолютной величины волновой функции в межъядерном пространстве по сравнению с ее значением в исходных атомах: на оси связи появляется даже точка, в которой значение волновой функции, а, следовательно, и ее квадрата, обращается в нуль. Это означает, что в рассматриваемом случае уменьшится и плотность электронного облака в пространстве между атомами.

Рис. 44. Схема образования разрыхляющей МО из атомных -орбиталей.

В результате притяжение каждого атомного ядра в направлении к межъядерной области пространства окажется более слабым, чем в противоположном направлении, т. е. возникнут силы, приводящие к взаимному отталкиванию ядер. Здесь, следовательно, химическая связь не возникает; образовавшаяся в этом случае МО называется разрыхляющей , а находящиеся на ней электроны - разрыхляющими электронами.

Переход электронов с атомных -орбиталей на связывающую МО, приводящий к возникновению химической связи, сопровождается выделением энергии. Напротив, переход электронов с атомных -орбиталей на разрыхляющую МО требует затраты энергии. Следовательно, энергия электронов на орбитали ниже, а на орбитали выше, чем на атомных -орбиталях. Это соотношение энергий показано на рис. 45, на котором представлены как исходные -орбитали двух атомов водорода, так и молекулярные орбитали и сразу . Приближенно можно считать, что при переходе -электрона на связывающую МО выделяется столько же энергии, сколько необходимо затратить для его перевода на разрыхляющую МО.

Мы знаем, что в наиболее устойчивом (невозбужденном) состоянии атома электроны занимают атомные орбитали, характеризующиеся наименьшей возможной энергией. Точно так же наиболее устойчивое состояние молекулы достигается в том случае, когда электроны занимают МО, отвечающие минимальной энергии. Поэтому при образовании молекулы водорода оба электрона перейдут с атомных -орбиталей на связывающую молекулярную орбиталь (рис. 46); в соответствии с принципом Паули, электроны, находящиеся на одной МО, должны обладать противоположно направленными спинами.

Рис. 45. Энергетическая схема образования МО при взаимодействии -орбиталей двух одинаковых атомов.

Рис. 46. Энергетическая схема образования молекулы водорода.

Используя символы, выражающие размещение электронов на атомных и молекулярных орбиталях, образование молекулы водорода можно представить схемой:

В методе ВС кратность связи определяется числом общих электронных пар: простой считается связь, образованная одной общей электронной парой, двойной - связь, образованная двумя общими электронными парами, и т. д. Аналогично этому, в методе МО кратность связи принято определять по числу связывающих электронов, участвующих в ее образовании: два связывающих электрона соответствуют простой связи, четыре связывающих электрона - двойной связи и т. д. При этом разрыхляющие электроны компенсируют действие соответствующего числа связывающих электронов. Так, если в молекуле имеются 6 связывающих и 2 разрыхляющих электрона, то избыток числа связывающих электронов над числом разрыхляющих равен четырем, что соответствует образованию двойной связи. Следовательно, с позиции метода МО химическую связь в молекуле водорода,образованную двумя связывающими электронами, следует рассматривать как простую связь.

Теперь становится понятной возможность существования устойчивого молекулярного иона его образовании единственный электрон переходит с атомной орбитали на связывающую орбиталь , что сопровождается выделением энергии (рис. 47) и может быть выражено схемой:

В молекулярном ионе (рис. 48) имеется всего три электрона. На связывающей молекулярной орбитали могут разместиться, согласно принципу Паули, только два электрона, по этому третий электрон занимает разрыхляющую орбиталь .

Рис. 47. Энергетическая схема образования молекулярного иона водорода .

Рис. 48. Энергетическая схема образования молекулярного иона гелия .

Рис. 49. Энергетическая схема образования молекулы лития .

Рис. 50. Энергетическая схема образования МО при взаимодействии -орбиталей двух одинаковых атомов.

Таким образом, число связывающих электронов здесь на единицу больше числа разрыхляющих. Следовательно, ион должен быть энергетически устойчивым. Действительно, существование иона экспериментально подтверждено и установлено, что при его образовании выделяется энергия;

Напротив, гипотетическая молекула должна быть энергетически неустойчивой, поскольку здесь из четырех электронов, которые должны разместиться на МО, два займут связывающую, а два - разрыхляющую МО. Следовательно, образование молекулы не будет сопровождаться выделением энергии. Действительно, молекулы экспериментально не обнаружены.

В молекулах элементов второго периода МО образуются в результате взаимодействия атомных и -орбиталей; участие внутренних -электронов в образовании химической связи здесь пренебрежимо мало. Так, на рис. 49 приведена энергетическая схема образования молекулы : здесь имеются два связывающих электрона, что соответствует образованию простой связи. В молекуле же число связывающих и разрыхляющих электронов одинаково, так что эта молекула, подобно молекуле , энергетически неустойчива. Действительно, молекул обнаружить не удалось.

Схема образования МО при взаимодействии атомных -орби-талей показана на рис. 50. Как видно, из шести исходных -орбиталей образуются шесть МО: три связывающих и три разрыхляющих. При этом одна связывающая () и одна разрыхляющая орбитали принадлежат к -типу: они образованы взаимодействием атомных -орбиталей, ориентированных вдоль связи. Две связывающие и две разрыхляющие () орбитали образованы взаимодействием -орбиталей, ориентировванных перпендикулярно оси связи; эти орбитали принадлежат к -типу.

Новое на сайте

>

Самое популярное