Домой Страх Основные свойства пары. Сложение пар сил в пространстве Момент пары сил сложение пар сил

Основные свойства пары. Сложение пар сил в пространстве Момент пары сил сложение пар сил

Момент силы. Пара сил.

1. Основные понятия и определения статики.

Материальные объекты в статике:

материальная точка,

система материальных точек,

абсолютно твердое тело.

Системой материальных точек, или механической системой, называется такая совокупность материальных точек, в которой положение и движение каждой точки зависит от положения и движения других точек этой системы.

Абсолютно твердое тело – это тело, расстояние между двумя точками которого не изменяется.

Твердое тело может находиться в состоянии покоя или движения определенного характера. Каждое их этих состояний будем называть кинематическим состоянием тела .

Сила - мера механического взаимодействия тел, определяющая интенсивность и направление этого взаимодействия.

Сила может быть приложена в точке, тогда эта сила – сосредоточенная .

Сила может действовать на все точки данного объема или поверхности тела, тогда эта сила – распределенная .

Система сил - с овокупность сил, действующих на данное тело.

Равнодействующей называется сила, эквивалентная некоторой системе сил.

Уравновешивающей силой называется сила, равная по модулю равнодействующей и направленная по линии ее действия в противоположную сторону.

Системой взаимно уравновешивающихся сил называется система сил, которая будучи приложенной к твердому телу, находящемуся в покое, не выводит его из этого состояния.

Внутренние силы – это силы, которые действуют между точками или телами данной системы.

Внешние силы – это силы, которые действуют со стороны точек или тел, не входящих в данную систему.

Задачи статики:

- преобразование систем сил, действующих на твердое тело в эквивалентные им системы;

- исследование условий равновесия тел под действием приложенных к ним сил.

1. Аксиомы статики.

3. Аксиома присоединения и исключения уравновешивающихся сил . Действие системы сил на твердое тело не изменится, если к ней присоединить или из нее исключить систему взаимно-уравновешивающихся сил.

Следствие . Не изменяя кинематического состояния абсолютно твердого тела, силу можно переносить вдоль линии ее действия, сохраняя неизменным ее модуль и направление.

С ила - скользящий вектор.

4. Аксиома параллелограмма сил . Равнодействующая двух пересекающихся сил приложена в точке их пересечения и изображается диагональю параллелограмма, построенного на этих силах.

5. Аксиома равенства действия и противодействия . Всякому действию соответствует равное и противоположно направленное противодействие.

2. Связи и их реакции

Твердое тело называется свободным , если оно может перемещаться в пространстве в любом направлении.

Тело, ограничивающее свободу движения данного твердого тела, является по отношению к нему связью .

Твердое тело, свобода движения которого ограничено связями, называется несвободным .

Все силы, действующие на несвободное твердое тело, можно разделить на:

  • задаваемые (активные)
  • реакции связей

Задаваемая сила выражает действие на данное тело других тел, способных вызвать изменение его кинематического состояния.

Реакция связи – это сила, с которой данная связь действует на тело, препятствуя тем или иным его перемещениям.

Принцип освобождаемости твердых тел от связей - несвободное твердое тело можно рассматривать как свободное, на которое кроме задаваемых сил, действуют реакции связей.

Как определить направление реакции?

Если существует два взаимно перпендикулярных направления на плоскости, в одном из которых связь препятствует перемещению тела, а в другом нет, то направление ее реакции противоположно первому направлению.

В общем случае направлена реакция связи в сторону, противоположную той, куда связь не дает перемещаться телу.

Неподвижный шарнир

Подвижный

3. Момент силы относительно центра

Моментом силы F относительно некоторого неподвижного центра О называется вектор, расположенный перпендикулярно к плоскости, проходящей через вектор силы и центр О, направленный в ту сторону, чтобы смотря с его конца можно было видеть поворот силы F относительно центра О против часовой стрелки.

Свойства момента силы относительно центра:

1) Модуль момента силы относительно центра может быть выражен удвоенной площадью треугольника ОАВ

(1.1)

2) Момент силы относительно центра равен нулю в том случае, если линия действия силы проходит через эту точку, то есть h = 0 .

3) Если из точки О в точку приложения силы А провести радиус вектор, то вектор момента силы можно выразить векторным произведением

(1.2)

4) При переносе силы по линии ее действия вектор ее момента относительно данной точки не изменяется.

Если к твердому телу приложено несколько сил, лежащих в одной плоскости, можно вычислить алгебраическую сумму моментов этих сил относительно любой точки этой плоскости

Момент М О , равный алгебраической сумме моментов данной системы относительно какой-либо точки в той же плоскости, называют главным моментом системы сил относительно этой точки.

3. Момент силы относительно оси

Чтобы определить момент силы относительно оси необходимо:

1) провести плоскость, перпендикулярную к оси Z;

2) определить точку О пересечения оси с плоскостью;

3) спроецировать ортогонально силу F на эту плоскость;

4) найти момент проекции силы F относительно точки О пересечения оси с плоскостью.

Правило знаков:

Момент силы относительно оси считается положительным , если, смотря навстречу оси Z, можно видеть проекцию , стремящейся вращать плоскость I вокруг оси Z в сторону, противоположную вращению часовой стрелки.

Свойства момента силы

относительно оси

1) Момент силы относительно оси изображается отрезком, отложенным по оси Zот точки О в положительном направлении, если > 0 и в отрицательном направлении, если < 0.

2) Значение момента силы относительно оси может быть выражено удвоенной площадью Δ

(1.5)

3) Момент силы относительно оси равен нулю в двух случаях:

  • если F 1 = 0 , то есть линия действия силы параллельна оси;
  • eсли h 1 = 0 , то есть линия действия силы пересекают ось.

4. Пара сил. Векторный и алгебраический момент пары сил

Система двух равных по модулю, параллельных и противоположно направленных сил и , называется парой сил.

Плоскость, в которой находятся линии действия сил и , называется плоскостью действия пары сил.

Кратчайшее расстояние h между линиями действия сил, составляющих пару, называется плечом пары сил .

Момент пары сил определяется произведением модуля одной из сил пары на плечо.

Правило знаков

Вектор момента М пары и направляют перпендикулярно к плоскости действия пары сил в такую сторону, что бы смотря навстречу этому вектору, видеть пару сил стремящейся вращать плоскость ее действия в сторону, обратную вращению часовой стрелки.

  1. 4. Свойства пар сил на плоскости

Свойство 1 . Вектор-момент M пары по модулю и направлению равен векторному произведению радиуса вектора АВ на ту из сил этой пары, к началу которой направлен радиус-вектор АВ , то есть

(1.7)

Свойство 2 . Главный момент сил, составляющих пару относительно произвольной точки на плоскости действия пары, не зависит от положения этой точки и равняется моменту этой пары сил.

5. Условия эквивалентности пар сил

Теорема об условии эквивалентности пар сил,

лежащих в одной плоскости.

ПРАКТИЧЕСКАЯ РАБОТА № 2

Тема: Определение реакций опор.

Цель: Определить реакции опор двухопорной балки.

Оснащение: методические указания; алгоритм; карточки индивидуальных заданий.

Ход работы:

1) Ознакомиться с краткими теоретическими сведениями.

2) Ответить на контрольные вопросы.

3) Выполнить индивидуальное задание.

4) Оформить отчёт.

Краткие теоретические сведения

Пара сил. Момент пары сил

Парой сил называется система из двух параллельных сил равных по величине, противоположных по направлению и не лежащих на одной прямой (рисунок 1).

Рисунок 1 – Пара сил

Плоскость, в которой расположены силы, называют плоскостью пары.

Кратчайшее расстояние между линиями действия сил называется плечом пары.

Момент пары сил по абсолютному значению равен произведению одной из сил на ее плечо.

М = F·a = F"·a.

Эффект действия пары сил полностью определяется ее моментом. Поэтому момент пары сил можно показывать дугообразной стрелкой, указывающей направление вращения (рисунок 2).

Рисунок 2 – Определение знака момента пары сил

Эквивалентность пар. Сложение и равновесие пар сил на плоскости

Две пары сил считаются эквивалентными в том случае, если после замены одной пары другой парой механическое состояние тела не изменяется, т. е. не изменяется движение тела или не нарушается его равновесие.

Эффект действия пары сил на твердое тело не зависит от ее положения в плоскости. Таким образом, пару сил можно переносить в плоскости ее действия в любое положение.

Рассмотрим еще одно свойство пары сил, которое является основой для сложения нар.

Не нарушая состояния тела, можно как угодно изменять модули сил и плечо пары, только бы момент пары оставался неизменным.

Рисунок 3 – Эквивалентные пары сил

Если, изменив значения сил и плечо новой пары, мы сохраним равенство их моментов М 1 = М 2 или F1·а = F2·b, то состояние тела от такой замены не нарушится.

Подобно силам, пары можно складывать. Пара, заменяющая собой действие данных пар, называется результирующей.



Две пары можно заменить одной парой, момент которой равен алгебраической сумме моментов исходных пар.

Это применимо к любому количеству пар, лежащих в одной плоскости. Поэтому при произвольном числе слагаемых пар, лежащих в одной плоскости или параллельных плоскостях, момент результирующей пары определится по формуле:

М Σ = М 1 + М 2 + … + М n = Σ М i ,

где моменты пар, вращающие по часовой стрелке принимаются положительными, а против часовой стрелки - отрицательными.

Условие равновесия системы пар, лежащих в одной плоскости: для равновесия системы пар необходимо и достаточно, чтобы момент результирующей пары равнялся нулю или чтобы алгебраическая сумма моментов пар равнялась нулю.

Аксиома о условии эквивалентности пар сил в пространстве. Заместо вектора момента каждой пары сил, перпендикулярного плоскости чертежа, указывают лишь направление, в каком пара сил стремится вращать эту плоскость.

Пары сил в пространстве эквивалентны, ежели их моменты геометрически равны. Не изменяя деяния пары сил на жесткое тело, пару сил можно переносить в всякую плоскость, параллельную плоскости деяния пары, также изменять ее силы и плечо, сохраняя постоянным модуль и направление ее момента. Таковым образом, вектор момента пары сил можно переносить в всякую точку, т. е. момент пары сил является вольным вектором. Вектор момента пары сил описывает все три ее элемента: положение плоскости деяния пары, направление вращения и числовое значение момента. Разглядим сложение 2-ух пар сил, расположенных в пересекающихся плоскостях, и докажем последующую аксиому: геометрическая сумма моментов составляющих пар сил равна моменту эквивалентной им пары. Пусть требуется сложить две пары сил, расположенные в пересекающихся плоскостях I и II имеющие моменты

Рис. 34 Выбрав силы этих пар равными по модулю

определим плечи этих пар:

Расположим эти пары сил таковым образом, чтоб силы были ориентированы по полосы пересечения плоскостей KL в противоположные стороны и уравновешивались. Оставшиеся силы образуют пару сил, эквивалентную данным двум парам сил. Эта пара сил имеет плечо ВС = d и момент, перпендикулярный плоскости деяния пары сил, равный по модулю М= Pd.

Геометрическая сумма моментов составляющих пар сил равна моменту эквивалентной пары. Потому что момент пары сил является вольным вектором, перенесем моменты составляющих пар сил в точку В и сложим их, построив на этих моментах параллелограмм. Диагональ этого параллелограмма

представляет собой момент эквивалентной пары Отсюда следует, что вектор т. е. геометрическая сумма моментов составляющих пар сил равна моменту эквивалентной им пары сил:

Таковой метод сложения моментов пар сил именуется правилом параллелограмма моментов. Построение параллелограмма моментов можно заменить построением треугольника моментов.



Применяя построение параллелограмма либо треугольника моментов, можно решить и обратную задачку, т. е. разложить всякую пару сил на две составляющие. Пусть требуется сложить несколько пар сил, расположенных произвольно в пространстве (рис. 35). Определив моменты этих пар, их можно перенести в всякую точку О места. Складывая поочередно моменты этих пар сил, можно выстроить многоугольник моментов пар, замыкающая сторона которого определит момент эквивалентной им пары сил. На (рис. 35) показано построение многоугольника моментов при сложении 3-х пар.

Момент пары сил, сил, эквивалентной данной системе пар сил в пространстве, равен геометрической сумме моментов составляющих пар сил:
или

Плоскость I деяния данной пары сил перпендикулярна направлению ее момента

Ежели момент эквивалентной пары сил равен нулю, то пары сил взаимно уравновешиваются:

Таковым образом, условие равновесия пар сил, произвольно расположенных в пространстве, можно сконструировать так: пары сил, произвольно расположенные в пространстве, взаимно уравновешиваются в этом случае, ежели геометрическая сумма их моментов равна нулю. Ежели пары сил размещены в одной плоскости (рис. 36), то моменты этих пар сил, направленные по одной прямой, складываются алгебраически.

Основные свойства пары характеризуются следующими тремя теоремами.

Теорема I. Пара сил не имеет равнодействующей.

Это значит, что при F 1 =F 2 равнодействующая не существует .

Из этой теоремы следует, что пара сил не может быть уравновешена одной силой; пара сил может быть уравновешена только парой .

Теорема II. Алгебраическая сумма моментов сил, составля­ющих пару, относительно любой точки плоскости действия пары есть величина постоянная, равная моменту пары .

Из этой теоремы следует, что при любом центре моментов пара сил войдет в уравнение моментов с одним и тем же знаком и одной и той же величиной.

Теорема III . Алгебраическая сумма проекций сил пары на ось всегда равна нулю.

Из этой теоремы следует, что пара сил не входит ни в уравнение сил, ни в уравнение проекций сил.

  1. Векторный момент силы относительно точки. Свойства момента. Векторный момент пары сил, свойства момента.

Теорема о сложении пар

Теорема . Всякая плоская система пар эквивалента одной результирующей паре, момент которой равен алгебраической сумме моментов данных пар.

  1. Эквивалентные пары сил. Векторный момент пары сил. Условие равновесия пар сил.

Эквивалентные пары

Две пары называются эквивалентными , если одну из них можно заменить другой, не нарушая механического состояния свободного твердого тела.

Теорема об эквивалентных парах формулируется так: если моменты двух пар алгебраически равны, то эти пары эквивалентны.

Из доказанной теоремы об эквивалентных парах вытекает четыре следствия:

1. не изменяя механического состояния тела, пару можно
перемещать как угодно в плоскости ее действия;

2. не изменяя механического состояния тела, можно менять
силы и плечо пары, но так, чтобы ее момент остаются неизменным;

3. чтобы задать пару, достаточно задать ее момент, поэтому иногда слово «пара» заменяют словом «момент» и условно изображают его так, как показано на рис. 4.6;

4. условия равновесия плоской системы па­раллельных сил будут справедливы, если вместе с такой системой действуют и пары сил, так как их можно повернуть в плоскости действия и поставить силы пары параллельно другим силам системы.



Условие равновесия плоской системы пар

Применяя доказанную в предыдущем параграфе теорему к плоской системе пар, находящейся в равновесии, запишем

Поэтому условие равновесия плоской системы пар в общем виде будет выглядеть так:

а формулируется следующим образом: для равновесия плоской системы пар необходимо и достаточно, чтобы алгебраическая сумма моментов данных пар равнялась нулю/

  1. Условия равновесия произвольной плоской системы сил. Три формы.

Различные случаи приведения плоской системы произвольно расположенных сил

Изучив свойства главного вектора и главного момента, укажем четыре возможных случая приведения плоской системы произвольно расположенных сил:

1. F гл ≠0, М гл ≠0, т. е. главный вектор и главный момент
не равны нулю. В этом случае система сил эквивалентна
равнодействующей, которая равна по модулю главному век­
тору, параллельна ему, направлена в ту же сторону, но по
другой линии действия (см. § 5.3, п. 3).

2. F гл ≠0, М гл =0. В этом случае система сил эквивалентна
равнодействующей, линия действия которой проходит через
центр приведения и совпадает с главным вектором.

3. F гл =0, М гл ≠0. В этом случае система эквивалентна
паре. Так как модуль и направление главного вектора во
всех случаях не зависят от выбора центра приведения, то
в рассматриваемом случае величина и знак главного момента
тоже не зависят от центра приведения, ибо одна и та же
система сил не может быть эквивалентна различным парам.

4. F гл =0, М гл =0. В этом случае система сил эквивалентна
нулю, т. е. находится в равновесии.

  • 11.Векторный момент силы относительно центра. Выражение векторного момента силы в виде векторного произведения. Аналитическое выражение момента силы относительно центра.
  • 12. Момент силы относительно оси. Аналитическое выражение момента силы относительно оси.
  • 13. Связь между моментом силы относительно оси и векторным моментом силы относительно точки.
  • 9. Сложение параллельных сил.
  • 9. Пара сил. Векторный момент пары сил. Алгебраический момент пары сил.
  • 10. Свойства пар сил. Эквивалентность пар. Теоремы об эквивалентности пар.
  • 10. Сложение пар сил. Условие равновесия системы пар сил.
  • 15. Основная лемма статики о параллельном переносе силы.
  • 16. Основная теорема статики о приведении системы сил к заданному центру (теорема Пуансо). Главный вектор и главный момент системы сил.
  • 18. Инварианты приведения пространственной системы сил.
  • 20. Уравнения равновесия плоской системы сил.(Три формы).
  • 19. Статически определимые и неопределимые системы. Расчет составных конструкций.
  • 30. Распределенные нагрузки.
  • 22. Трение скольжения. Законы трения. Угол и конус трения. Условия равновесия тел на шероховатой поверхности.
  • 23. Угол и конус трения. Условия равновесия тела на шероховатой поверхности
  • 21. Расчет плоских ферм. Классификация ферм. Методы расчета плоских ферм. Леммы о нулевых стержнях.
  • 25. Случаи приведения пространственной системы сил к простейшему виду.
  • 17. Приведение системы сил к динаме. Уравнение центральной оси. Четыре случая приведения сил
  • 20. Уравнение равновесия пространственной системы сил. Частные случаи.
  • 25,26,29. Центр параллельных сил. Центр тяжести твердого тела. Центр тяжести однородного объема, площади, материальной линии. Статический момент площади относительно оси.
  • 27. Методы нахождения центра тяжести (симметрии, разбиения, дополнения).
  • 28. Центры тяжести дуги окружности и кругового сектора. Центр тяжести пирамиды.
  • 31.Предмет кинематики. Пространство и время в классической механике. Относительность движения. Траектория движения точки. Основная задача кинематики.
  • 33. Скорость точки при векторном способе задания движения.
  • 34. Ускорение точки при векторном способе задания движения.
  • 35. Скорость и ускорение при координатном способе задания движения.
  • 36. Скорость точки при естественном способе задания движения.
  • 37. Естественный трехгранник. Разложение ускорения по естественным осям. Касательное и нормальное ускорение.
  • 37. Частные случаи движения точки. Смысл касательного и нормального ускорения.
  • 39. Кинематика твердого тела. Виды движения твердого тела. Поступательное движение твердого тела.
  • 40. Вращательное движение твердого тела вокруг неподвижной оси. Уравнение вращательного движения тела. Угловая скорость и угловое ускорение.
  • 41. Равномерное и равнопеременное вращение
  • 42. Определение кинематических характеристик движения точек вращающегося тела. Траектории, закон движения. Скорость и ускорение точек вращающегося тела.
  • 43. Выражение скорости и ускорения точки вращающегося тела в виде векторных произведений.
  • 7. Теорема о трех силах
  • 8. Расчет усилий в стержнях фермы методом вырезания узлов
  • 38. Равномерное и равнопеременное движение точки
  • 10. Свойства пар сил. Эквивалентность пар. Теоремы об эквивалентности пар.

    Свойства пар сил:

      Не изменяя действия на тело пару сил можно поворачивать в плоскости действия и переносить в любое место этой плоскости

      Можно изменять модули сил, составляющих пару и плечо пары, но таким образом, чтобы момент пары оставался неизменным.

      Пару сил можно переносить в параллельную ей плоскость действия.

    Две пары сил называются эквивалентными , если они имеют геометрически равные моменты.

    Поэтому пара сил характеризуется при решении задач лишь моментом пары и обозначается m=M0(F1;F2).

    т-мы: (1)Две пары сил произвольно расположенных в пространстве эквивалентны одной паре сил с моментом, равным геометрической сумме моментов слагаемых пар. (2) еси на тело действует произвольная система пар, то ветор момента результирующей пары равен векторной сумме моментов составляющих пар. (3)Если все пары сил расположены перпендикулярно одной плоскости, то вектора моментов пар направлены перпендикулярно этой плоскости в ту или иную сторону, поэтому моменты пар можно складывать алгебраически. (4) для равновесия тела, находящегося под действием системы произвольно расположенной в пространстве пар необходимо и достаточно, чтобы момент результирующей пары был равен 0.

    10. Сложение пар сил. Условие равновесия системы пар сил.

    Теорема о сложении пар сил:

    Две пары сил, произвольно расположенные в пространстве, эквивалентны одной паре с моментом равным геометрической сумме моментов слагаемых пар.

    Если на тело действует произвольная система (М1,М2,…,Мn) пар, то вектор момента результирующей пары равен векторной сумме моментов, составляющих пары. M=M1+M2+…+Mn=ΣMk (сверху векторы)

    Если две пары сил расположены в одной плоскости, то векторы моментов пар направлены перпендикулярно этой плоскости в ту или иную стороны. Поэтому моменты пар можно складывать алгебраически. M=M1+M2+…+Mn=ΣMk

    Условие равновесия системы пар сил:

    Для равновесия тела, находящегося под действием системы произвольно расположенных в пространстве пар, необходимо и достаточно, чтобы момент результирующей (эквивалентной) пары был равен 0.

    В случае, если все пары сил расположены в одной плоскости (или в параллельных плоскостях), то для равновесия необходимо равенство 0 алгебраической суммы моментов составляющих пар.

    15. Основная лемма статики о параллельном переносе силы.

    Сила, приложенная в какой-либо точке твердого тела, эквивалентна такой же силе, приложенной в любой другой точке этого тела, и паре сил, момент которой равен моменту данной силы относительно новой точки приложения.

    Пусть в точке А твердого тела приложена сила F. Приложим теперь в точке В тела систему двух сил F" и F²-, эквивалентную нулю, причем выбираем F"=F (следовательно, F"=–F). Тогда сила F~(F, F", F"), так как (F",F")~0. Но, с другой стороны, система сил (F, F", F") эквивалентна силе F" и паре сил (F, F"); следовательно, сила F эквивалентна силе F" и паре сил (F, F"). Момент пары (F, F") равен M=M(F,F")=BAxF, т.е. равен моменту силы F относительно точки В M=M B (F). Таким образом, лемма о параллельном переносе силы доказана.

    Силу, приложенную к абсолютно твердому телу, можно, не изменяя оказываемого ею действия, переносить из данной точки в любую другую точку тела, прибавляя при этом пару с моментом, равным моменту переносимой силы относительно точки, куда переносится сила.

    Новое на сайте

    >

    Самое популярное