Домой Стресс Теория вероятности основные определения и формулы. Основы теории вероятностей и математической статистики

Теория вероятности основные определения и формулы. Основы теории вероятностей и математической статистики

Теория вероятностей - это математическая наука, изучающая закономерности в массовых случайных явлениях.

До появления теории вероятностей как общепризнанной теории в науке господствовал детерминизм, согласно которому осуществление определенного комплекса условий однозначно определяет результат. Классическим примером является механика. Например, на основании законов небесной механики по известному в некоторый момент положению планет Солнечной системы могут быть очень точно предсказаны солнечные и лунные затмения. Подобные законы называются детерминированными законами.

Однако практика показала, что этот подход далеко не всегда применим. Не все явления макромира поддаются точному предсказанию, несмотря на то, что наши знания о нем непрерывно уточняются и углубляются. Еще менее детерминированы законы и закономерности микромира.

Математические законы теории вероятностей отражают реальные статистические законы, объективно существующие в массовых случайных явлениях.

Теория вероятностей развивалась вначале как прикладная дисциплина. В связи с этим ее понятия и выводы имели окраску тех областей знаний, в которых они были получены.

В работах Б.В. Гнеденко, Л.Е. Майстрова, А.Н. Колмогорова представлены основные этапы развития теории вероятностей. Для краткости приведем их в виде таблицы.

Таблица 1

Этапы развития теории вероятностей

Название этапа

Основные понятия

Источники становления и развития

Предыстория теории вероятностей, до конца XVI века

Равновозможные (равновероятные) исходы, принцип - «не более так, чем иначе», вероятностное знание, вероятностные рассуждения

Решение элементарных задач, философия, азартные игры

Возникновение теории вероятностей как науки, с XVII века до начала XVIII века.

Количественная оценка возможности наступления случайного события, представления о частоте события, математическом ожидании и о теоремах сложения и умножения, формулы комбинаторики

Демография, страховое дело, оценка ошибок наблюдения.

Период формирования основ теории вероятностей, с 1713 г. до середины XIX века

Классическое и статистическое определения вероятности, геометрические вероятности, теоремы сложения и умножения вероятностей, закон больших чисел, математическое ожидание, формула Бернулли, теорема Бейеса, случайная величина

Демография, страховое дело, оценка ошибок наблюдения, естествознание

Русская - Петербургская школа, со второй половины XIX века до XX века

Предельные теоремы, теория случайных процессов, обобщение закона больших чисел, метод моментов

Контроль качества продукции, естествознание т.д.

Современный этап развития теории вероятностей, XX - XXI века

Аксиоматическое построение теории вероятностей, частотная интерпретация вероятности, стационарные случайные процессы, и т.д.

Внутренние потребности самой математики, статистическая физика, теория информации, теория случайных процессов, астрономия, биология, генетика, и т.д.

Представленные в таблице источники становления отражают потребности практики, которые стали толчком к развитию теории вероятностей.

Философия к 17 веку накопила довольно богатый материал, который оказал влияние на зарождение и первый период развития теории вероятностей. Главным же источником зарождения теории вероятностей является практика. Необходимость создания математического аппарата для анализа случайных явлений, вытекала из потребностей обработки и обобщения статистического материала. Однако теория вероятностей сформировалась, не только на материале практических задач: эти задачи слишком сложны. Более простым и удобным материалом для изучения закономерностей случайных явлений оказались азартные игры. На базе азартных игр наряду с основными понятиями развивались и методы теории вероятностей.

Зарождение теории вероятностей началось с того, что придворный французского короля, шевалье (кавалер) де Мере (1607-1648), сам азартный игрок, обратился к французскому физику, математику и философу Блезу Паскалю (1623-1662) с вопросами к задаче об очках. До нас дошли два знаменитых вопроса де Мере к Паскалю: 1) сколько раз надо бросить две игральные кости, чтобы случаев выпадения сразу двух шестерок было больше половины от общего числа бросаний; 2) как справедливо разделить поставленные на кон деньги, если игроки прекратили игру преждевременно? Паскаль обратился к математику Пьеру Ферма (1601-1665) и переписывался с ним по поводу этих задач. Они вдвоем установили некоторые исходные положения теории вероятностей, в частности пришли к понятию математического ожидания и теоремам сложения и умножения вероятностей.

Непосредственное практическое применение вероятностные методы нашли, прежде всего, в задачах страхования. С тех пор теория вероятностей находит все более широкое применение в различных областях.

Первооткрывателями теории вероятностей считаются французские ученые Б.Паскаль и П.Ферма и голландский ученый Х.Гюйгенс (1629-1695). Стала зарождаться новая наука, вырисовываться ее специфика и методология: определения, теоремы, методы.

Крупный шаг в развитии теории вероятностей связан с работами Якова Бернулли (1654?1705). Ему принадлежит первое доказательство одного из важнейших положений теории вероятностей? закона больших чисел. Еще до Якова Бернулли многие отмечали как эмпирический факт ту особенность случайных явлений, которую называют «свойством устойчивости частот при большом числе опытов». Было неоднократно отмечено, что при большом числе опытов, исход каждого из которых является случайным, относительная частота появления данного исхода имеет тенденцию стабилизироваться, приближаясь к некоторому определенному числу?вероятности этого исхода. Яков Бернулли впервые дал теоретическое обоснование этому эмпирическому факту. Теорема Якова Бернулли? простейшая форма закона больших чисел? устанавливает связь между вероятностью события и частотой его появления; при достаточно большом числе опытов можно с практической достоверностью ожидать сколь угодно близкого совпадения частоты с вероятностью.

Другой важный этап в развитии теории вероятностей связан с именем Моавра (1667?1754). Этот ученый впервые ввел в рассмотрение и для простейшего случая обосновал закон, очень часто наблюдаемый в случайных явлениях: так называемый нормальный закон (закон Гаусса).

Нормальный закон играет исключительно важную роль в случайных явлениях. Теоремы, обосновывающие этот закон для тех или иных условий, носят в теории вероятностей общее название «центральной предельной теоремы».

Стройное и систематическое изложение основ теории вероятностей впервые дал знаменитый математик Лаплас (1749?1827). Он доказал одну из форм центральной предельной теоремы (теоремы Моавра? Лапласа) и развил ряд замечательных приложений теории вероятностей к вопросам практики, в частности, к анализу ошибок наблюдений и измерений.

Значительный шаг вперед в развитии теории вероятностей связан с именем Гаусса (1777?1855), который дал еще более общее обоснование нормальному закону и разработал метод обработки экспериментальных данных, известный под названием «метода наименьших квадратов».

Следует отметить работы Пуассона (1781?1840), доказавшего более общую, чем у Якова Бернулли, форму закона больших чисел, а также впервые применившего теорию вероятностей к задачам стрельбы. С именем Пуассона связан один из законов распределения, играющий большую роль в теории вероятностей и ее приложениях.

Для всего XVIII и начала XIX века характерны бурное развитие теории вероятностей и повсеместное увлечение ею. Теория вероятностей становится «модной» наукой. Ее начинают применять не только там, где применение правомерно, но и там, где оно ничем не оправдано.

Для этого периода характерны многочисленные попытки применить теорию вероятностей к изучению общественных явлений, к так называемым «моральным» или «нравственным» наукам. Во множестве появились работы, посвященные вопросам судопроизводства, истории, политики, даже богословия, в которых применялся аппарат теории вероятностей. Для всех этих псевдонаучных исследований характерен чрезвычайно упрощенный, механический подход к рассматриваемым в них общественным явлениям. В основу рассуждения полагаются некоторые произвольно заданные вероятности (например, при рассмотрении вопросов судопроизводства склонность каждого человека к правде или лжи оценивается некоторой постоянной, одинаковой для всех людей вероятностью), и далее общественная проблема решается как простая арифметическая задача.

Естественно, что все подобные попытки были обречены на неудачу и не могли сыграть положительной роли в развитии науки. Напротив, их косвенным результатом оказалось то, что примерно в двадцатых? тридцатых годах XIX века в Западной Европе повсеместное увлечение теорией вероятностей сменилось разочарованием и скептицизмом. На теорию вероятностей стали смотреть как на науку сомнительную, второсортную, род математического развлечения, вряд ли достойный серьезного изучения.

Замечательно, что именно в это время в России создается та знаменитая Петербургская математическая школа, трудами которой теория вероятностей была поставлена на прочную логическую и математическую основу и сделана надежным, точным и эффективным методом познания. Со времени появления этой школы развитие теории вероятностей уже тесным образом связано работами русских, а в дальнейшем? советских ученых.

Среди ученых Петербургской математической школы следует назвать В. Я. Буняковского (1804?1889) ? автора первого курса теории вероятностей на русском языке, создателя современной русской терминологии в теории вероятностей, автора оригинальных исследований в области статистики и демографии.

Учеником В. Я. Буняковского был великий русский математик П. Л. Чебышев (1821?1894), которому принадлежит дальнейшее расширение и обобщение закона больших чисел. Кроме того, П. Л. Чебышев ввел в теорию вероятностей весьма мощный и плодотворный метод моментов.

Учеником П. Л. Чебышева был А. А. Марков (1856?1922), который существенно расширил область применения закона больших чисел и центральной предельной теоремы, распространив их не только на независимые, но и на зависимые опыты. Важнейшей заслугой А. А. Маркова явилось то, что он заложил основы совершенно новой ветви теории вероятностей? теории случайных, или «стохастических», процессов. Развитие этой теории составляет основное содержание новейшей, современной теории вероятностей.

Учеником П. Л. Чебышева был и А. М. Ляпунов (1857?1918), с именем которого связано первое доказательство центральной предельной теоремы при чрезвычайно общих условиях. Для доказательства своей теоремы А. М. Ляпунов разработал специальный метод характеристических функций, широко применяемый в современной теории вероятностей.

Характерной особенностью работ Петербургской математической школы была исключительная четкость постановки задач, полная математическая строгость применяемых методов и наряду с этим тесная связь теории с непосредственными требованиями практики. Трудами ученых Петербургской математической школы теория вероятностей была выведена с задворков науки и поставлена как полноправный член в ряд точных математических наук. Условия применения ее методов были строго определены, а самые методы доведены до высокой степени совершенства.

Советская школа теории вероятностей, унаследовав традиции Петербургской математической школы, занимает в мировой науке ведущее место. Назовем только некоторых крупнейших советских ученых, труды которых сыграли решающую роль в развитии современной теории вероятностей и ее практических приложений.

С. Н. Бернштейн разработал первую законченную аксиоматику теории вероятностей, а также существенно расширил область применения предельных теорем.

А. Я. Хинчин (1894?1959) известен своими исследованиями в области дальнейшего обобщения и усиления закона больших чисел, но главным образом своими исследованиями в области стационарных случайных процессов.

Ряд важнейших основополагающих работ в различных областях теории вероятностей и математической статистики принадлежит А. Н. Колмогорову. Он дал наиболее совершенное аксиоматическое построение теории вероятностей, связав ее с одним из важнейших разделов современной математики? метрической теорией функций. Особое значение работы А. Н. Колмогорова имеют в области теории случайных функций (стохастических процессов), которые в настоящее время являются основой всех исследований в данной области. Работы А. Н. Колмогорова, относящиеся к оценке эффективности легли в основу целого нового научного направления в теории стрельбы, переросшего затем в более широкую науку об эффективности боевых действий.

В. И. Романовский и Н. В. Смирнов известны своими работами в области математической статистики, Е. Е. Слуцкий? в теории случайных процессов, Б. В. Гнеденко? в области теории массового обслуживания, Е. Б. Дынкин? в области марковских случайных процессов, В. С. Пугачев? в области случайных процессов в применении к задачам автоматического управления.

Развитие зарубежной теории вероятностей в настоящее время также идет усиленными темпами в связи с настоятельными требованиями практики. Преимущественным вниманием пользуются, как и у нас, вопросы, относящиеся к случайным процессам. Значительные работы в этой области принадлежат Н. Винеру, В. Феллеру, Д. Дубу. Важные работы по теории вероятностей и математической статистике принадлежат Р. Фишеру, Д. Нейману и Г. Крамеру.

Теория вероятностей, подобно другим разделам математики, развилась из потребностей практики, и абстрактно она отражает закономерности в массовых случайных событиях. Эти закономерности играют очень важную роль в различных областях естествознания, медицине, технике, экономике, военном деле. Многие разделы теории вероятностей были развиты благодаря запросам практики.

Когда бросается монета, можно сказать, что она упадет орлом вверх, или вероятность этого составляет 1/2. Конечно, это не означает того, что если монета подбрасывается 10 раз, она обязательно упадет вверх орлом 5 раз. Если монета является "честной" и если она подбрасывается много раз, то орел выпадет очень близко в половине случаев. Таким образом, существует два вида вероятностей: экспериментальная и теоретическая .

Экспериментальная и теоретическая вероятность

Если бросить монетку большое количество раз - скажем, 1000 - и посчитать, сколько раз выпадет орел, мы можем определить вероятность того, что выпадет орел. Если орел выпадет 503 раза, мы можем посчитать вероятность его выпадения:
503/1000, или 0,503.

Это экспериментальное определение вероятности. Такое определение вероятности вытекает из наблюдения и изучения данных и является довольно распространенным и очень полезным. Вот, к примеру, некоторые вероятности которые были определены экспериментально:

1. Вероятность того, что у женщины разовьется рак молочной железы составляет 1/11.

2. Если вы целуетесь, с кем-то, кто болен простудой, то вероятность того, что вы тоже заболеете простудой, составляет 0,07.

3. Человек, который только что был освобожден из тюрьмы, имеет 80% вероятности возвращения назад в тюрьму.

Если мы рассматриваем бросание монеты и беря во внимание то, что столь же вероятно, что выпадет орел или решка, мы можем вычислить вероятность выпадение орла: 1 / 2. Это теоретическое определение вероятности. Вот некоторые другие вероятности, которые были определены теоретически, с помощью математики:

1. Если находится 30 человек в комнате, вероятность того, что двое из них имеют одинаковый день рождения (исключая год), составляет 0,706.

2. Во время поездки, Вы встречаете кого-то, и в течение разговора обнаруживаете, что у вас есть общий знакомый. Типичная реакция: "Этого не может быть!". На самом деле, эта фраза не подходит, потому что вероятность такого события достаточно высока - чуть более 22%.

Таким образом, экспериментальная вероятность определяются путем наблюдения и сбора данных. Теоретические вероятности определяются путем математических рассуждений. Примеры экспериментальных и теоретических вероятностей, как например, рассмотренных выше, и особенно тех, которые мы не ожидаем, приводят нас, к ваэности изучения вероятности. Вы можете спросить: "Что такое истинная вероятность?" На самом деле, таковой нет. Экспериментально можно определить вероятности в определенных пределах. Они могут совпадать или не совпадать с вероятностями, которые мы получаем теоретически. Есть ситуации, в которых гораздо легче определить один из типов вероятности, чем другой. Например, было бы довольно найти вероятность простудиться, используя теоретическую вероятность.

Вычисление экспериментальных вероятностей

Рассмотрим сначала экспериментальное определение вероятности. Основной принцип, который мы используем для вычисления таких вероятностей, является следующим.

Принцип P (экспериментальный)

Если в опыте, в котором проводится n наблюдений, ситуация или событие Е происходит m раз за n наблюдений, то говорят, что экспериментальная вероятность события равна P (E) = m/n.

Пример 1 Социологический опрос. Было проведено экспериментальное исследование, чтобы определить количество левшей, правшей и людей, у которых обе руки развиты одинаково Результаты показаны на графике.

a) Определите вероятность того, что человек - правша.

b) Определите вероятность того, что человек - левша.

c) Определите вероятность того, что человек одинаково свободно владеет обеими руками.

d) В большинстве турниров, проводимых Профессиональной Ассоциацией Боулинга, участвуют 120 игроков. На основании данных этого эксперимента, сколько игроков могут быть левшой?

Решение

a)Число людей, являющиеся правшами, составляет 82, количество левшей составляет 17, а число тех, кто одинаково свободно владеет двумя руками - 1. Общее количество наблюдений - 100. Таким образом, вероятность того, что человек правша, есть Р
P = 82/100, или 0,82, или 82%.

b) Вероятность того, что человек левша, есть Р, где
P = 17/100, или 0,17, или 17%.

c) Вероятность того, что человек одинаково свободно владеет двумя руками составляет P, где
P = 1/100, или 0,01, или 1%.

d) 120 игроков в боулинг, и из (b) мы можем ожидать, что 17% - левши. Отсюда
17% от 120 = 0,17.120 = 20,4,
то есть мы можем ожидать, что около 20 игроков являются левшами.

Пример 2 Контроль качества . Для производителя очень важно держать качество своей продукции на высоком уровне. На самом деле, компании нанимают инспекторов контроля качества для обеспечения этого процесса. Целью является выпуск минимально возможного количества дефектных изделий. Но так как компания производит тысячи изделий каждый день, она не может позволить себе проверять каждое изделие, чтобы определить, бракованное оно или нет. Чтобы выяснить, какой процент продукции являются дефектным, компания проверяет гораздо меньше изделий.
Министерство сельского хозяйства США требует, чтобы 80% семян, которые продают производители, прорастали. Для определения качества семян, которые производит сельхозкомпания, высаживается 500 семян из тех, которые были произведены. После этого подсчитали, что 417 семян проросло.

a) Какова вероятность того, что семя прорастет?

b) Отвечают ли семена государственным стандартам?

Решение a) Мы знаем, что из 500 семян, которые были высажены, 417 проросли. Вероятность прорастания семян Р, и
P = 417/500 = 0,834, или 83.4%.

b) Так как процент проросших семян превысил 80% по требованию, семена отвечают государственным стандартам.

Пример 3 Телевизионные рейтинги. Согласно статистических данных, в Соединенных Штатах 105 500 000 домохозяйств с телевизорами. Каждую неделю, информация о просмотре передач собирается и обрабатывается. В течение одной недели 7815000 домохозяйств были настроены на популярный комедийный сериал "Все любят Реймонда" на CBS и 8302000 домохозяйств были настроены на популярный сериал «Закон и порядок» на NBC (Источник: Nielsen Media Research). Какова вероятность того, что телевизор одного дома настроен на «Everybody Loves Raymond" в течение данной недели? на «Закон и порядок»?

Решениеn Вероятность того, что телевизор в одном домохозяйстве настроен на "Все любят Реймонда" равна Р, и
P = 7,815,000/105,500,000 ≈ 0,074 ≈ 7,4%.
Возможность, что телевизор домохозяйства был настроен на «Закон и порядок» составляет P, и
P = 8,302,000/105,500,000 ≈ 0,079 ≈ 7,9%.
Эти проценты называются рейтингами.

Теоретическая вероятность

Предположим, что мы проводим эксперимент, такие, как бросание монетки ли дротиков, вытаскивание карты из колоды, или проверка изделий на качество на сборочной линии. Каждый возможный результат такого эксперимента называется исход . Множество всех возможных исходов называется пространством исходов . Событие это множество исходов, то есть подмножество пространства исходов.

Пример 4 Бросание дротиков. Предположим, что в эксперименте «метание дротиков» дротик попадает в мишень. Найдите каждое из нижеследующих:

b) Пространство исходов

Решение
a) Исходы это: попадание в черное (Ч), попадание в красное (К) и попадание в белое (Б).

b) Пространство исходов есть {попадание в черное, попадание в красное, попадание в белое}, которое может быть записано просто как {Ч, К, Б}.

Пример 5 Бросание игральных костей. Игральная кость это куб с шестью гранями, на каждой их которых нарисовано от одной до шести точек.


Предположим, что мы бросаем игральную кость. Найдите
a) Исходы
b) Пространство исходов

Решение
a) Исходы: 1, 2, 3, 4, 5, 6.
b) Пространство исходов {1, 2, 3, 4, 5, 6}.

Мы обозначаем вероятность того, что событие Е случается в качестве Р (Е). Например, "монета упадет решкой" можно обозначать H. Тогда Р (Н) представляет собой вероятность того, монета упадет решкой. Когда все исходы эксперимента имеют одинаковую вероятность появления, говорят, что они равновероятны. Чтобы увидеть различия между событиями, которые равновероятны, и неравновероятными событиями, рассмотрим мишень, изображенную ниже.

Для мишени A, события попадания в черное, красное и белое равновероятны, так как черные, красные и белые сектора - одинаковые. Однако, для мишени B зоны с этими цветами не одинаковы, то есть попадание в них не равновероятно.

Принцип P (Теоретический)

Если событие E может случиться m путями из n возможных равновероятных исходов из пространства исходов S, тогда теоретическая вероятность события, P(E) составляет
P(E) = m/n.

Пример 6 Какая вероятность выкинуть 3, бросив игральный кубик?

Решение На игральном кубике 6 равновероятных исходов и существует только одна возможность выбрасивания цифры 3. Тогда вероятность P составит P(3) = 1/6.

Пример 7 Какая вероятность выбрасывания четной цифры на игральном кубике?

Решение Событие - это выбрасывание четной цифры. Это может случиться 3 способами (если выпадет 2, 4 или 6). Число равновероятных исходов равно 6. Тогда вероятность P(четное) = 3/6, или 1/2.

Мы будем использовать ряд примеров, связанных со стандартной колодой из 52 карт. Такая колода состоит из карт, показанных на рисунке ниже.

Пример 8 Какая вероятность вытянуть туза из хорошо перемешанной колоды карт?

Решение Существует 52 исхода (количество карт в колоде), они равновероятны (если колода хорошо перемешана), и есть 4 способа вытянуть туза, поэтому согласно принципу P, вероятность
P(вытягивания туза) = 4/52, или 1/13.

Пример 9 Предположим, что мы выбираем не глядя, один шарик из мешка с 3-мя красными шариками и 4-мя зелеными шариками. Какова вероятность выбора красного шарика?

Решение Существует 7 равновероятных исходов достать любой шарик, и так как число способов вытянуть красный шарик равно 3, получим
P(выбора красного шарика) = 3/7.

Следующие утверждения - это результаты из принципа P.

Свойства вероятности

a) Если событие E не может случиться, тогда P(E) = 0.
b) Если событие E случиться непременно тогда P(E) = 1.
c) Вероятность того, что событие Е произойдет это число от 0 до 1: 0 ≤ P(E) ≤ 1.

Например, в бросании монеты, событие, когда монета упадет на ребро имеет нулевую вероятность. Вероятность того, что монета либо на орел или решку имеет вероятность 1.

Пример 10 Предположим, что вытягиваются 2 карты из колоды с 52-мя картами. Какова вероятность того, что обе из них пики?

Решение Число путей n вытягивания 2 карт из хорошо перемешанной колоды с 52 картами есть 52 C 2 . Так как 13 из 52 карт являются пиками, число способов m вытягивания 2-х пик есть 13 C 2 . Тогда,
P(вытягивания 2-х пик)= m/n = 13 C 2 / 52 C 2 = 78/1326 = 1/17.

Пример 11 Предположим, что 3 человека выбираются случайно из группы, состоящей из 6-ти мужчин и 4-х женщин. Какова вероятность того, что будут выбраны 1 мужчина и 2 женщины?

Решение Число способов выбора троих человек из группы 10 человек 10 C 3 . Один мужчина может быть выбран 6 C 1 способами, и 2 женщины могут быть выбраны 4 C 2 способами. Согласно фундаментальному принципу подсчета, число способов выбора 1-го мужчины и 2-х женщин 6 C 1 . 4 C 2 . Тогда, вероятность что будет выбраны 1-го мужчины и 2-х женщин есть
P = 6 C 1 . 4 C 2 / 10 C 3 = 3/10.

Пример 12 Бросание игральных кубиков. Какая вероятность выбрасывания в сумме 8 на двух игральных кубиках?

Решение На каждом игральном кубике есть 6 возможных исходов. Исходы удваиваются, то есть существует 6.6 или 36 возможных способа, в котором могут выпасть цифры на двух кубиках. (Лучше, если кубики разные, скажем один красный а второй голубой - это поможет визуализировать результат.)

Пары цифр, в сумме составляющие 8, показаны на рисунке внизу. Есть 5 возможных способов получения суммы, равной 8, отсюда вероятность равна 5/36.

Раздел 12. Теория вероятностей.

1. Введение

2. Простейшие понятия теории вероятностей

3. Алгебра событий

4. Вероятность случайного события

5. Геометрические вероятности

6. Классические вероятности. Формулы комбинаторики.

7. Условная вероятность. Независимость событий.

8. Формула полной вероятности и формулы Байеса

9. Схема повторных испытаний. Формула Бернулли и её асимптотика

10. Случайные величины (СВ)

11. Ряд распределения ДСВ

12. Интегральная функция распределения

13. Функция распределения НСВ

14. Плотность вероятности НСВ

15. Числовые характеристики случайных величин

16. Примеры важных распределений СВ

16.1. Биномиальное распределение ДСВ.

16.2. Распределение Пуассона

16.3. Равномерное распределение НСВ.

16.4. Нормальное распределение.

17. Предельные теоремы теории вероятностей.

Введение

Теория вероятностей, подобно многим другим математическим дисциплинам, развивалась из потребностей практики. При этом, изучая реальный процесс, приходилось создавать абстрактную математическую модель реального процесса. Обычно учитывают главные, наиболее существенные движущие силы реального процесса, отбрасывая из рассмотрения второстепенные, которые называются случайными. Конечно, что считать главным, а что второстепенным,- отдельная задача. Решение этого вопроса определяет уровень абстракции, простоту или сложность математической модели и уровень адекватности модели реальному процессу. В сущности, любая абстрактная модель является результатом двух противостоящих устремлений: простоты и адекватности реальности.

Например, в теории стрельбы разработаны достаточно простые и удобные формулы для определения траектории полёта снаряда из орудия, расположенного в точке (рис. 1).


В определённых условиях упомянутая теория является достаточной, например, при массированной артподготовке.

Однако ясно, что если из одного орудия при одинаковых условиях произвести несколько выстрелов, то траектории будут хотя и близкими, но все же отличающимися. И если размер цели мал по сравнению с областью рассеивания, то возникают специфические вопросы, связанные именно с влиянием факторов, неучтённых в рамках предлагаемой модели. При этом учёт дополнительных факторов приведёт к слишком сложной модели, пользоваться которой практически невозможно. К тому же, этих случайных факторов бывает много, природа их чаще всего неизвестна.



В приведённом примере такими специфическими вопросами, выходящими за рамки детерминированной модели, являются, например, следующие: сколько надо произвести выстрелов, чтобы с определённой уверенностью (например, на ) гарантировать поражение цели? как надо провести пристрелку, чтобы на поражение цели затратить наименьшее количество снарядов? и т.п.

Как мы увидим в дальнейшем, слова «случайный», «вероятность» станут строгими математическими терминами. Вместе с тем они весьма распространены в обычной разговорной речи. При этом считается, что прилагательное «случайный» является противопоставлением «закономерному». Однако, это не так, ибо природа устроена таким образом, что случайные процессы обнаруживают закономерности, но при определённых условиях.

Основное условие называется массовостью.

Например, если подбросить монету, то нельзя предсказать, что выпадает, герб или цифра,- можно лишь угадать. Однако, если эту монету подбросить большое число раз, что доля выпадений герба будет не сильно отличается от некоторого числа, близкого к 0,5 (в дальнейшем это число мы назовем вероятностью). Причем, с увеличением числа подбрасываний отклонение от этого числа будет уменьшаться. Это свойство называется устойчивостью средних показателей (в данном случае - доли гербов). Надо сказать, что на первых шагах теории вероятностей, когда надо было на практике убедиться в наличии свойства устойчивости, даже большие учёные не считали за труд провести самостоятельно проверку. Так, известен опыт Бюффона, который подбросил монету 4040 раз, и герб выпал 2048 раз, следовательно, доля (или относительная частота) выпадения герба равна 0,508, что близко интуитивно к ожидаемому числу 0,5.

Поэтому обычно даётся определение предмета теории вероятностей как раздела математики, изучающего закономерности массовых случайных процессов.

Надо сказать, что, несмотря на то, что наибольшие достижения теории вероятностей относятся к началу прошлого века, в особенности благодаря аксиоматическому построению теории в работах А.Н. Колмогорова (1903-1987), интерес к изучению случайностей проявился давно.

Сначала интересы были связаны с попытками применить числовой подход к азартным играм. Первые достаточно интересные результаты теории вероятностей принято связывать с работами Л. Пачоли (1494г), Д. Кардано (1526) и Н. Тартальи (1556).

Позже Б. Паскаль (1623-1662), П. Ферма (1601-1665), Х. Гюйгенс (1629-1695) заложили основы классической теории вероятностей. В начале 18 века Я. Бернулли (1654-1705) формирует понятие вероятности случайного события как отношение числа благоприятствующих шансов к числу всех возможных. На использовании понятия меры множества строили свои теории Э. Борель (1871-1956), А. Ломницкий (1881-1941), Р. Мизес (1883-1953).

Теоретико-множественная точка зрения в наиболее законченном виде была изложена в 1933г. А.Н. Колмогоровым в его монографии «Основные понятия теории вероятностей». Именно с этого момента теория вероятностей становится строгой математической наукой.

Большой вклад в развитие теории вероятностей внесли русские математики П.Л. Чебышёв (1821-1894), А.А. Марков (1856-1922), С.Н. Бернштейн (1880-1968) и другие.

Теория вероятностей бурно развивается и в настоящее время.

Простейшие понятия теории вероятностей

Как любая математическая дисциплина, теория вероятностей начинается с введения простейших понятий, которые не определяются, а лишь поясняются.

Одним из основных первичных понятий является опыт. Под опытом понимается некоторый комплекс условий, которые могут воспроизводиться неограниченное число раз. Каждую реализацию этого комплекса и назовем опытом или испытанием. Результаты опыта могут быть различными, в этом и проявляется элемент случайности. Различные результаты или исходы опыта называются событиями (точнее случайными событиями). Таким образом, при осуществлении опыта может произойти то или иное событие. Другими словами, случайное событие – это исход опыта, который при осуществлении опыта может произойти (появиться) или не произойти.

Опыт будем обозначать буквой , а случайные события обозначаются обычно заглавными буквами

Часто в опыте можно заранее выделить его исходы, которые можно назвать простейшими, которые нельзя разложить на более простые. Такие события называются элементарными событиями (или случаями).

Пример 1. Пусть подбрасывается монета. Исходами опыта являются: выпадение герба (обозначим это событие буквой ); выпадение цифры (обозначим ). Тогда можно записать: опыт ={подбрасывание монеты}, исходы: Ясно, что элементарные события в данном опыте. Иначе говоря, перечисление всех элементарных событий опыта полностью его описывает. По этому поводу будем говорить, что опыт есть пространство элементарных событий, и в нашем случае опыт кратко можно записать в виде: ={подбрасывание монеты}={Г;Ц}.

Пример 2 . ={монета подбрасывается дважды}= Здесь приведено словесное описание опыта и перечисление всех элементарных событий: означает, что сначала при первом подбрасывании монеты выпал герб, при втором – тоже герб; означает, что при первом подбрасывании монеты выпал герб, при втором цифра и т.д.

Пример 3. В системе координат в квадрат бросаются точки. В этом примере элементарными событиями являются точки с координатами которые удовлетворяют приведенным неравенствам. Кратко это записывается следующим образом:

Двоеточие в фигурных скобках означает, что состоит из точек но не любых, а только тех, которые удовлетворяют условию (или условиям), указанным после двоеточия (в нашем примере это неравенства).

Пример 4. Монета подбрасывается до первого выпадения герба. Другими словами, подбрасывание монеты продолжается до тех пор, пока не выпадет герб. В этом примере элементарные события перечислить можно, хотя их бесконечное число:

Заметим, что в примерах 3 и 4 пространство элементарных событий насчитывает бесконечное число исходов. В примере 4 их можно перечислить, т.е. пересчитать. Такое множество называется счетным. В примере 3 пространство является несчетным.

Введем в рассмотрение еще два события, которые присутствуют в любом опыте и которые имеют большое теоретические значение.

Назовем событие невозможным, если в результате опыта оно обязательно не произойдет. Будем его обозначать знаком пустого множества . Наоборот, событие, которое в результате опыта обязательно произойдёт называется достоверным. Достоверное событие обозначается так же, как и само пространство элементарных событий – буквой .

Например, при подбрасывании игральной кости событие {выпало меньше 9 очков} - достоверное, а событие {выпало ровно 9 очков} невозможное.

Итак, пространство элементарных событий может задаваться словесным описанием, перечислением всех его элементарных событий, заданием правил или условий, по которым получаются все его элементарные события.

Алгебра событий

До сих пор мы говорили лишь об элементарных событиях как непосредственных результатах опыта. Однако в рамках опыта можно говорить и о других случайных событиях, кроме элементарных.

Пример 5. При подбрасывании игральной кости, кроме элементарных событий выпадений соответственно единицы, двойки,…, шестерки, можно говорить о других событиях: (выпадение четного числа), (выпадение нечетного числа), (выпадение числа, кратного трем), (выпадение числа, меньшего 4) и т.п. В данном примере указанные события, кроме словесного задания, можно задать перечислением элементарных событий:

Образование новых событий из элементарных, а также из других событий осуществляется с помощью операций (или действий) над событиями.

Определение. Произведением двух событий и называется событие, состоящее в том, что в результате опыта произойдет и событие ,и событие , т. е произойдут оба события вместе (одновременно).

Знак произведения (точку) часто не ставят:

Определение. Суммой двух событий называется событие, состоящее в том, что в результате опыта произойдет или событие ,или событие ,или оба вместе (одновременно).

В обоих определениях мы намеренно подчеркнули союзы и и или -сцелью привлечь внимание читателя к своей речи при решении задач. Если мы произносим союз «и», то речь идет о произведении событий; если произносится союз «или», то события надо складывать. При этом заметим что союз «или» в обиходной речи часто используется в смысле исключения одного из двух: «только или только ». В теории вероятностей такое исключение не предполагается: и ,и , и означают появление события

Если задано перечислением элементарных событий, то сложные события с помощью указанных операций получить просто. Для получения надо найти все элементарные события, принадлежащие обоим событиям, если таковых нет, то Сумму событий также составить несложно: надо взять любое из двух событий и добавить к нему те элементарные события из другого события, которые не входят в первое.

В примере 5 получаем, в частности

Введенные операции называются бинарными, т.к. определены для двух событий. Большое значение имеет следующая унарная операция (определенная для одного события): событие называется противоположным событию если оно состоит в том, что в данном опыте событие не произошло. Из определения ясно, что всякое событие и ему противоположное обладают следующими свойствами: Введённая операция называется дополнением события А.

Отсюда следует, что если задано перечислением элементарных событий, то, зная задание события ,легко получить оно состоит из всех элементарных событий пространства которые не принадлежат В частности, для примера 5 событие

Если нет скобок, то устанавливается следующий приоритет в выполнении операций: дополнение, умножение, сложение.

Итак, с помощью введённых операций пространство элементарных событий пополняется другими случайными событиями, которые образуют так называемую алгебру событий.

Пример 6. По мишени стрелок произвёл три выстрела. Рассмотрим события = {стрелок попал в мишень при i-м выстреле}, i = 1,2,3.

Составим из этих событий (не забудем и о противоположных ) некоторые события. Пространных комментариев не приводим; полагаем, что читатель проведёт их самостоятельно.

Событие В = {все три выстрела попали в мишень}. Подробнее: В = {и первый, и второй, и третий выстрелы попали в мишень}. Использовали союз и, следовательно, события перемножаются:

Аналогично:

С = {ни один из выстрелов не попал в цель}

Е = {один выстрел достиг мишени}

Д = {мишень поражена при втором выстреле} = ;

F = {мишень поражена двумя выстрелами}

Н = {в мишени окажется хотя бы одно попадание}

Как известно, в математике большое значение имеет геометрическая интерпретация аналитических объектов, понятий и формул.

В теории вероятностей удобно наглядное представление (геометрическая интерпретация) опыта, случайных событий и операций над ними в виде так называемых диаграмм Эйлера-Венна . Суть состоит в том, что всякий опыт отождествляется (интерпретируется) с бросанием точек в некоторый квадрат. Точки бросаются наугад, так что у всех точек имеются одинаковые шансы попасть в любое место этого квадрата. Квадрат определяет рамки рассматриваемого опыта. Каждое событие в рамках опыта отождествляется с некоторой областью квадрата. Иначе говоря, осуществление события означает попадание случайной точки внутрь области, обозначенной буквой Тогда операции над событиями легко интерпретируются геометрически (рис.2)

А:

А + В: всякая

штриховка

На рис.2 а) для наглядности событие А выделено вертикальной штриховкой, событие В - горизонтальной. Тогда операции умножения соответствует двойная штриховка - событию соответствует та часть квадрата которая покрыта двойной штриховкой. При этом, если то и называются несовместными событиями. Соответственно операции сложения соответствует любая штриховка- событие означает часть квадрата, заштрихованная любой штриховкой – вертикальной, горизонтальной и двойной. На рис.2 б) показано событие ему соответствует заштрихованная часть квадрата - все, что не входит в область Введенные операции обладают следующими основными свойствами, некоторые из которых справедливы для одноименных операций над числами, но есть и специфические.

1 0 . коммутативность умножения;

2 0 . коммутативность сложения;

3 0 . ассоциативность умножения;

4 0 . ассоциативность сложения,

5 0 . дистрибутивность умножения относительно сложения,

6 0 . дистрибутивность сложения относительно умножения;

9 0 . законы двойственности де Моргана,

10 0 .

1 .A .A+ .A· =A, 1 .A+ . 1 .A· = , 1 .A+ =

Пример 7. Иван и Петр договорились встретиться на временном промежутке в Т час, например, (0,Т). При этом они условились, что каждый из них, придя на встречу, ждет другого не более час.

Придадим этому примеру геометрическую интерпретацию. Обозначим: время прихода на встречу Ивана; время прихода на встречу Петра. Согласно договоренности: 0 . Тогда в системе координат получаем: = Нетрудно заметить, что в нашем примере пространство элементарных событий представляет собой квадрат. 1


0 x соответствует та часть квадрата, которая расположена выше этой прямой.Аналогично, второму неравенству y≤x+ и; и не работает, если не работают все элементы, т.е. .Таким образом, второй закон двойственности де Моргана: реализуется при параллельном соединении элементов.

Приведённый пример показывает, почему теория вероятностей находит большое применение в физике, в частности, в расчетах надежности реальных технических устройств.


Классификация событий на возможные, вероятные и случайные. Понятия простого и сложного элементарного события. Операции над событиями. Классическое определение вероятности случайного события и её свойства. Элементы комбинаторики в теории вероятностей. Геометрическая вероятность. Аксиомы теории вероятностей.

Классификация событий

Одним из основных понятий теории вероятностей является понятие события. Под событием понимают любой факт, который может произойти в результате опыта или испытания. Под опытом , или испытанием , понимается осуществление определённого комплекса условий.


Примеры событий:

    – попадание в цель при выстреле из орудия (опыт - произведение выстрела; событие - попадание в цель);
    – выпадение двух гербов при трёхкратном бросании монеты (опыт - трёхкратное бросание монеты; событие - выпадение двух гербов);
    – появление ошибки измерения в заданных пределах при измерении дальности до цели (опыт - измерение дальности; событие - ошибка измерения).

Можно привести бесчисленное множество подобных примеров. События обозначаются заглавными буквами латинского алфавита и т.д.


Различают события совместные и несовместные . События называются совместными, если наступление одного из них не исключает наступления другого. В противном случае события называются несовместными. Например, подбрасываются две игральные кости. Событие - выпадание трех очков на первой игральной кости, событие - выпадание трех очков на второй кости. и - совместные события. Пусть в магазин поступила партия обуви одного фасона и размера, но разного цвета. Событие - наудачу взятая коробка окажется с обувью черного цвета, событие - коробка окажется с обувью коричневого цвета, и - несовместные события.


Событие называется достоверным , если оно обязательно произойдет в условиях данного опыта.


Событие называется невозможным, если оно не может произойти в условиях данного опыта. Например, событие, заключающееся в том, что из партии стандартных деталей будет взята стандартная деталь, является достоверным, а нестандартная - невозможным.


Событие называется возможным , или случайным , если в результате опыта оно может появиться, но может и не появиться. Примером случайного события может служить выявление дефектов изделия при контроле партии готовой продукции, несоответствие размера обрабатываемого изделия заданному, отказ одного из звеньев автоматизированной системы управления.


События называются равновозможными , если по условиям испытания ни одно из этих событий не является объективно более возможным, чем другие. Например, пусть магазину поставляют электролампочки (причем в равных количествах) несколько заводов-изготовителей. События, состоящие в покупке лампочки любого из этих заводов, равновозможны.


Важным понятием является полная группа событий . Несколько событий в данном опыте образуют полную группу, если в результате опыта обязательно появится хотя бы одно из них. Например, в урне находится десять шаров, из них шесть шаров красных, четыре белых, причем пять шаров имеют номера. - появление красного шара при одном извлечении, - появление белого шара, - появление шара с номером. События образуют полную группу совместных событий.


Введем понятие противоположного, или дополнительного, события. Под противоположным событием понимается событие, которое обязательно должно произойти, если не наступило некоторое событие . Противоположные события несовместны и единственно возможны. Они образуют полную группу событий. Например, если партия изготовленных изделий состоит из годных и бракованных, то при извлечении одного изделия оно может оказаться либо годным - событие , либо бракованным - событие .

Операции над событиями

При разработке аппарата и методики исследования случайных событий в теории вероятностей очень важным является понятие суммы и произведения событий.


Суммой, или объединением, нескольких событий называется событие, состоящее в наступлении хотя бы одного из этих событий.


Сумма событий обозначается так:


Например, если событие есть попадание в цель при первом выстреле, событие - при втором, то событие есть попадание в цель вообще, безразлично, при каком выстреле - первом, втором или при обоих вместе.


Произведением, или пересечением, нескольких событий называется событие, состоящее в совместном появлении всех этих событий.


Произведение событий обозначается


Например, если событие есть попадание в цель при первом выстреле, событие - при втором, то событие состоит в том, что в цель попали при обоих выстрелах.


Понятия суммы и произведения событий имеют наглядную геометрическую интерпретацию. Пусть событие состоит в попадании точки в область , событие - в попадании в область , тогда событие состоит в попадании точки в область, заштрихованную на рис. 1, и событие - в попадании точки в область, заштрихованную на рис. 2.


Классическое определение вероятности случайного события

Для количественного сравнения событий по степени возможности их появления вводится числовая мера, которая называется вероятностью события.


Вероятностью события называется число, являющееся выражением меры объективной возможности появления события.


Вероятность события будем обозначать символом .


Вероятность события равна отношению числа случаев , благоприятствующих ему, из общего числа единственно возможных, равновозможных и несовместных случаев к числу , т. е.



Это есть классическое определение вероятности. Таким образом, для нахождения вероятности события необходимо, рассмотрев различные исходы испытания, найти совокупность единственно возможных, равновозможных и несовместных случаев, подсчитать общее их число , число случаев , благоприятствующих данному событию, и затем выполнить расчет по формуле (1.1).


Из формулы (1.1) следует, что вероятность события является неотрицательным числом и может изменяться в пределах от нуля до единицы в зависимости от того, какую долю составляет благоприятствующее число случаев от общего числа случаев:


Свойства вероятности

Свойство 1. Если все случаи являются благоприятствующими данному событию , то это событие обязательно произойдет. Следовательно, рассматриваемое событие является достоверным, а вероятность его появления , так как в этом случае



Свойство 2. Если нет ни одного случая, благоприятствующего данному событию , то это событие в результате опыта произойти не может. Следовательно, рассматриваемое событие является невозможным, а вероятность его появления , так как в этом случае :



Свойство 3. Вероятность наступления событий, образующих полную группу, равна единице.


Свойство 4. Вероятность наступления противоположного события определяется так же, как и вероятность наступления, события :



где - число случаев, благоприятствующих появлению противоположного события . Отсюда вероятность наступления противоположного события равна разнице между единицей и вероятностью наступления события :



Важное достоинство классического определения вероятности события состоит в том, что с его помощью вероятность события можно определить, не прибегая к опыту, а исходя из логических рассуждений.

Пример 1. Набирая номер телефона, абонент забыл одну цифру и набрал ее наудачу. Найти вероятность того, что набрана нужная цифра.


Решение. Обозначим событие, состоящее в том, что набрана нужная цифра. Абонент мог набрать любую из 10 цифр, поэтому общее число возможных исходов равно 10. Эти исходы единственно возможны (одна из цифр набрана обязательно) и равновозможны (цифра набрана наудачу). Благоприятствует событию лишь один исход (нужная цифра лишь одна). Искомая вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех исходов:


Элементы комбинаторики

В теории вероятностей часто используют размещения, перестановки и сочетания. Если дано множество , то размещением (сочетанием) из элементов по называется любое упорядоченное (неупорядоченное) подмножество элементов множества . При размещение называется перестановкой из элементов.


Пусть, например, дано множество . Размещениями из трех элементов этого множества по два являются , , , , , ; сочетаниями - , , .


Два сочетания различаются хотя бы одним элементом, а размещения различаются либо самими элементами, либо порядком их следования. Число сочетаний из элементов по вычисляется по формуле



есть число размещений из элементов по ; - число перестановок из элементов.

Пример 2. В партии из 10 деталей имеется 7 стандартных. Найти вероятность того, что среди взятых наудачу 6 деталей ровно 4 стандартных.


Решение. Общее число возможных исходов испытания равно числу способов, которыми можно извлечь 6 деталей из 10, т. е. равно - числу сочетаний из 10 элементов по 6. Число исходов, благоприятствующих событию (среди 6 взятых деталей ровно 4 стандартных), определяем так: 4 стандартные детали можно взять из 7 стандартных деталей способами; при этом остальные детали должны быть нестандартными; взять же 2 нестандартные детали из нестандартных деталей можно способами. Следовательно, число благоприятствующих исходов равно . Исходная вероятность равна отношению числа исходов, благоприятствующих событию, к числу всех исходов:


Статистическое определение вероятности

Формулу (1.1) используют для непосредственного вычисления вероятностей событий только тогда, когда опыт сводится к схеме случаев. На практике часто классическое определение вероятности неприменимо по двум причинам: во-первых, классическое определение вероятности предполагает, что общее число случаев должно быть конечно. На самом же деле оно зачастую не ограничено. Во-вторых, часто невозможно представить исходы опыта в виде равновозможных и несовместных событий.


Частота появления событий при многократно повторяющихся Опытах имеет тенденцию стабилизироваться около какой-то постоянной величины. Таким образом, с рассматриваемым событием можно связать некоторую постоянную величину, около которой группируются частоты и которая является характеристикой объективной связи между комплексом условий, при которых проводятся опыты, и событием.


Вероятностью случайного события называется число, около которого группируются частоты этого события по мере увеличения числа испытаний.


Это определение вероятности называется статистическим.


Преимущество статистического способа определения вероятности состоит в том, что он опирается на реальный эксперимент. Однако его существенный недостаток заключается в том, что для определения вероятности необходимо выполнить большое число опытов, которые очень часто связаны с материальными затратами. Статистическое определение вероятности события хотя и достаточно полно раскрывает содержание этого понятия, но не дает возможности фактического вычисления вероятности.

В классическом определении вероятности рассматривается полная группа конечного числа равновозможных событий. На практике очень часто число возможных исходов испытаний бесконечно. В таких случаях классическое определение вероятности неприменимо. Однако иногда в подобных случаях можно воспользоваться другим методом вычисления вероятности. Для определенности ограничимся двумерным случаем.


Пусть на плоскости задана некоторая область площадью , в которой содержится другая область площадью (рис. 3). В область наудачу бросается точка. Чему равна вероятность того, что точка попадет в область ? При этом предполагается, что наудачу брошенная точка может попасть в любую точку области , и вероятность попасть в какую-либо часть области пропорциональна площади части и не зависит от ее расположения и формы. В таком случае вероятность попадания в область при бросании наудачу точки в область



Таким образом, в общем случае, если возможность случайного появления точки внутри некоторой области на прямой, плоскости или в пространстве определяется не положением этой области и ее границами, а только ее размером, т. е. длиной, площадью или объемом, то вероятность попадания случайной точки внутрь некоторой области определяется как отношение размера этой области к размеру всей области, в которой может появляться данная точка. Это есть геометрическое определение вероятности.


Пример 3. Круглая мишень вращается с постоянной угловой скоростью. Пятая часть мишени окрашена в зеленый цвет, а остальная - в белый (рис. 4). По мишени производится выстрел так, что попадание в мишень - событие достоверное. Требуется определить вероятность попадания в сектор мишени, окрашенный в зелёный цвет.


Решение. Обозначим - "выстрел попал в сектор, окрашенный в зелёный цвет". Тогда . Вероятность получена как отношение площади части мишени, окрашенной в зелёный цвет, ко всей площади мишени, поскольку попадания в любые части мишени равновозможны.

Аксиомы теории вероятностей

Из статистического определения вероятности случайного события следует, что вероятность события есть число, около которого группируются частоты этого события, наблюдаемые на опыте. Поэтому аксиомы теории вероятностей вводятся так, чтобы вероятность события обладала основными свойствами частоты.


Аксиома 1. Каждому событию соответствует определенное число , удовлетворяющее условию и называемое его вероятностью.

Многие, столкнувшись с понятием «теория вероятности», пугаются, думая, что это нечто непосильное, очень сложное. Но все на самом деле не так трагично. Сегодня мы рассмотрим основное понятие теории вероятности, научимся решать задачи на конкретных примерах.

Наука

Что же изучает такой раздел математики, как «теория вероятности»? Она отмечает закономерности и величин. Впервые данным вопросом заинтересовались ученые еще в восемнадцатом веке, когда изучали азартные игры. Основное понятие теории вероятности - событие. Это любой факт, который констатируется опытом или наблюдением. Но что же такое опыт? Еще одно основное понятие теории вероятности. Оно означает, что этот состав обстоятельств создан не случайно, а с определенной целью. Что касается наблюдения, то здесь исследователь сам не участвует в опыте, а просто является свидетелем данных событий, он никак не влияет на происходящее.

События

Мы узнали, что основное понятие теории вероятности - это событие, но не рассмотрели классификацию. Все они делятся на следующие категории:

  • Достоверные.
  • Невозможные.
  • Случайные.

Независимо от того, какие это события, за которыми наблюдают или создают в ходе опыта, все они подвержены данной классификации. Предлагаем с каждым из видов познакомиться отдельно.

Достоверное событие

Это такое обстоятельство, перед которым сделан необходимый комплекс мероприятий. Для того чтобы лучше вникнуть в суть, лучше привести несколько примеров. Этому закону подчинены и физика, и химия, и экономика, и высшая математика. Теория вероятности включает такое важное понятие, как достоверное событие. Приведем примеры:

  • Мы работаем и получаем вознаграждение в виде заработной платы.
  • Сдали хорошо экзамены, прошли конкурс, за это получаем вознаграждение в виде поступления в учебное заведение.
  • Мы вложили деньги в банк, при необходимости получим их назад.

Такие события являются достоверными. Если мы выполнили все необходимые условия, то обязательно получим ожидаемый результат.

Невозможные события

Сейчас мы рассматриваем элементы теории вероятности. Предлагаем перейти к пояснению следующего вида события, а именно - невозможного. Для начала оговорим самое важное правило - вероятность невозможного события равна нулю.

От данной формулировки нельзя отступать при решении задач. Для пояснения приведем примеры таких событий:

  • Вода замерзла при температуре плюс десять (это невозможно).
  • Отсутствие электроэнергии никак не влияет на производство (так же невозможно, как и в предыдущем примере).

Более примеров приводить не стоит, так как описанные выше очень ярко отражают суть данной категории. Невозможное событие никогда не произойдет во время опыта ни при каких обстоятельствах.

Случайные события

Изучая элементы особое внимание стоит уделить именно данному виду события. Именно их и изучает данная наука. В результате опыта может что-то произойти или нет. Кроме этого, испытание может проводиться неограниченное количество раз. Яркими примерами могут служить:

  • Бросок монеты - это опыт, или испытание, выпадение орла - это событие.
  • Вытягивание мячика из мешка вслепую - испытание, попался красный шар - это событие и так далее.

Таких примеров может быть неограниченное количество, но, в общем, суть должна быть понятна. Для обобщения и систематизирования полученных знаний о событиях приведена таблица. Теория вероятности изучает только последний вид из всех представленных.

название

определение

Достоверные

События, происходящие со стопроцентной гарантией при соблюдении некоторых условий.

Поступление в учебное заведение при хорошей сдаче вступительного экзамена.

Невозможные

События, которые никогда не произойдут ни при каких условиях.

Идет снег при температуре воздуха плюс тридцать градусов по Цельсию.

Случайные

Событие, которое может произойти или нет в ходе проведения опыта/испытания.

Попадание или промах при бросании баскетбольного мяча в кольцо.

Законы

Теория вероятности - это наука, изучающая возможность выпадения какого-либо события. Как и другие, она имеет некоторые правила. Существуют следующие законы теории вероятности:

  • Сходимость последовательностей случайных величин.
  • Закон больших чисел.

При расчете возможности сложного можно использовать комплекс простых событий для достижения результата более легким и быстрым путем. Отметим, что законы теории вероятности легко доказываются с помощью некоторых теорем. Предлагаем для начала познакомиться с первым законом.

Сходимость последовательностей случайных величин

Отметим, что видов сходимости несколько:

  • Последовательность случайных величин сходима по вероятности.
  • Почти невозможное.
  • Среднеквадратическая сходимость.
  • Сходимость по распределению.

Так, с лету, очень тяжело вникнуть в суть. Приведем определения, которые помогут разобраться в данной теме. Для начала первый вид. Последовательность называют сходимой по вероятности , если соблюдено следующее условие: n стремится к бесконечности, число, к которому стремится последовательность, больше нуля и приближена к единице.

Переходим к следующему виду, почти наверное . Говорят, что последовательность сходится почти наверное к случайной величине при n, стремящейся к бесконечности, и Р, стремящейся к величине, приближенной к единице.

Следующий тип - это сходимость среднеквадратическая . При использовании СК-сходимости изучение векторных случайных процессов сводится к изучению их координатных случайных процессов.

Остался последний тип, давайте разберем кратко и его, чтобы переходить непосредственно к решению задач. Сходимость по распределению имеет и еще одно название - «слабое», далее поясним, почему. Слабая сходимость — это сходимость функций распределения во всех точках непрерывности предельной функции распределения.

Обязательно выполним обещание: слабая сходимость отличается от всех вышеперечисленных тем, что случайная величина не определена на вероятностном пространстве. Это возможно потому, что условие формируется исключительно с использованием функций распределения.

Закон больших чисел

Отличными помощниками при доказательстве данного закона станут теоремы теории вероятности, такие как:

  • Неравенство Чебышева.
  • Теорема Чебышева.
  • Обобщенная теорема Чебышева.
  • Теорема Маркова.

Если будем рассматривать все эти теоремы, то данный вопрос может затянуться на несколько десятков листов. У нас же основная задача - это применение теории вероятности на практике. Предлагаем вам прямо сейчас этим и заняться. Но перед этим рассмотрим аксиомы теории вероятностей, они будут основными помощниками при решении задач.

Аксиомы

С первой мы уже познакомились, когда говорили о невозможном событии. Давайте вспоминать: вероятность невозможного события равна нулю. Пример мы приводили очень яркий и запоминающийся: выпал снег при температуре воздуха тридцать градусов по Цельсию.

Вторая звучит следующим образом: достоверное событие происходит с вероятностью, равной единице. Теперь покажем, как это записать с помощью математического языка: Р(В)=1.

Третья: Случайное событие может произойти или нет, но возможность всегда варьируется в пределах от нуля до единицы. Чем ближе значение к единице, тем шансов больше; если значение приближается к нулю, вероятность очень мала. Запишем это математическим языком: 0<Р(С)<1.

Рассмотрим последнюю, четвертую аксиому, которая звучит так: вероятность суммы двух событий равняется сумме их вероятностей. Записываем математическим языком: Р(А+В)=Р(А)+Р(В).

Аксиомы теории вероятностей - это простейшие правила, которые не составит труда запомнить. Попробуем решить некоторые задачи, опираясь на уже полученные знания.

Лотерейный билет

Для начала рассмотрим простейший пример - лотерея. Представьте, что вы купили один лотерейный билет на удачу. Какова вероятность, что вы выиграете не менее двадцати рублей? Всего в тираже участвует тысяча билетов, один из которых имеет приз в пятьсот рублей, десять по сто рублей, пятьдесят по двадцать рублей, а сто - по пять. Задачи по теории вероятности основаны на том, чтобы найти возможность удачи. Сейчас вместе разберем решение выше представленного задания.

Если мы буквой А обозначим выигрыш в пятьсот рублей, то вероятность выпадения А будет равняться 0,001. Как мы это получили? Просто необходимо количество "счастливых" билетов разделить на общее их число (в данном случае: 1/1000).

В - это выигрыш в сто рублей, вероятность будет равняться 0,01. Сейчас мы действовали по тому же принципу, что и в прошлом действии (10/1000)

С - выигрыш равен двадцати рублям. Находим вероятность, она равняется 0,05.

Остальные билеты нас не интересуют, так как их призовой фонд меньше заданного в условии. Применим четвертую аксиому: Вероятность выиграть не менее двадцати рублей составляет Р(А)+Р(В)+Р(С). Буквой Р обозначается вероятность происхождения данного события, мы в предыдущих действиях уже их нашли. Осталось только сложить необходимые данные, в ответе мы получаем 0,061. Это число и будет являться ответом на вопрос задания.

Карточная колода

Задачи по теории вероятности бывают и более сложными, для примера возьмем следующее задание. Перед вами колода из тридцати шести карт. Ваша задача - вытянуть две карты подряд, не перемешивая стопку, первая и вторая карты должны быть тузами, масть значения не имеет.

Для начала найдем вероятность того, что первая карта будет тузом, для этого четыре делим на тридцать шесть. Отложили его в сторону. Достаем вторую карту, это будет туз с вероятностью три тридцать пятых. Вероятность второго события зависит от того, какую карту мы вытянули первой, нам интересно, был это туз или нет. Из этого следует, что событие В зависит от события А.

Следующим действием находим вероятность одновременного осуществления, то есть перемножаем А и В. Их произведение находится следующим образом: вероятность одного события умножаем на условную вероятность другого, которую мы вычисляем, предполагая, что первое событие произошло, то есть первой картой мы вытянули туз.

Для того чтобы стало все понятно, дадим обозначение такому элементу, как события. Вычисляется она, предполагая, что событие А произошло. Рассчитывается следующим образом: Р(В/А).

Продолжим решение нашей задачи: Р(А * В)=Р(А) * Р(В/А) или Р(А * В)=Р(В) * Р(А/В). Вероятность равняется (4/36) * ((3/35)/(4/36). Вычисляем, округляя до сотых. Мы имеем: 0,11 * (0,09/0,11)=0,11 * 0,82=0,09. Вероятность того, что мы вытянем два туза подряд, равна девяти сотым. Значение очень мало, из этого следует, что и вероятность происхождения события крайне мала.

Забытый номер

Предлагаем разобрать еще несколько вариантов заданий, которые изучает теория вероятности. Примеры решения некоторых из них вы уже видели в данной статье, попробуем решить следующую задачу: мальчик забыл последнюю цифру номера телефона своего друга, но так как звонок был очень важен, то начал набирать все по очереди. Нам необходимо вычислить вероятность того, что он позвонит не более трех раз. Решение задачи простейшее, если известны правила, законы и аксиомы теории вероятности.

Перед тем как смотреть решение, попробуйте решить самостоятельно. Нам известно, что последняя цифра может быть от нуля до девяти, то есть всего десять значений. Вероятность набрать нужную составляет 1/10.

Далее нам нужно рассматривать варианты происхождения события, предположим, что мальчик угадал и сразу набрал нужную, вероятность такого события равняется 1/10. Второй вариант: первый звонок промах, а второй в цель. Рассчитаем вероятность такого события: 9/10 умножаем на 1/9, в итоге получаем также 1/10. Третий вариант: первый и второй звонок оказались не по адресу, только с третьего мальчик попал туда, куда хотел. Вычисляем вероятность такого события: 9/10 умножаем на 8/9 и на 1/8, получаем в итоге 1/10. Другие варианты по условию задачи нас не интересуют, по этому нам осталось сложить полученные результаты, в итоге мы имеем 3/10. Ответ: вероятность того, что мальчик позвонит не более трех раз, равняется 0,3.

Карточки с числами

Перед вами девять карточек, на каждой из которых написано число от одного до девяти, цифры не повторяются. Их положили в коробку и тщательно перемешали. Вам необходимо рассчитать вероятность того, что

  • выпадет четное число;
  • двухзначное.

Перед тем как переходить к решению, оговорим, что m - это число удачных случаев, а n - это общее количество вариантов. Найдем вероятность того, что число будет четным. Не составит труда посчитать, что четных чисел четыре, это и будет наша m, всего возможно девять вариантов, то есть m=9. Тогда вероятность равняется 0,44 или 4/9.

Рассматриваем второй случай: количество вариантов девять, а удачных исходов быть вообще не может, то есть m равняется нулю. Вероятность того, что вытянутая карточка будет содержать двухзначное число, так же равняется нулю.

Новое на сайте

>

Самое популярное