Домой Личность Если при пересечении двух прямых третьей. Признаки параллельности двух прямых

Если при пересечении двух прямых третьей. Признаки параллельности двух прямых

Признаки параллельности двух прямых

Теорема 1. Если при пересечении двух прямых секущей:

    накрест лежащие углы равны, или

    соответственные углы равны, или

    сумма односторонних углов равна 180°, то

прямые параллельны (рис.1).

Доказательство. Ограничимся доказательством случая 1.

Пусть при пересечении прямых а и b секущей АВ накрест лежащие углы равны. Например, ∠ 4 = ∠ 6. Докажем, что а || b.

Предположим, что прямые а и b не параллельны. Тогда они пересекаются в некоторой точке М и, следовательно, один из углов 4 или 6 будет внешним углом треугольника АВМ. Пусть для определенности ∠ 4 - внешний угол треугольника АВМ, а ∠ 6 - внутренний. Из теоремы о внешнем угле треугольника следует, что ∠ 4 больше ∠ 6, а это противоречит условию, значит, прямые а и 6 не могут пересекаться, поэтому они параллельны.

Следствие 1 . Две различные прямые на плоскости, перпендикулярные одной и той же прямой, параллельны (рис.2).

Замечание. Способ, которым мы только что доказали случай 1 теоремы 1, называется методом доказательства от противного или приведением к нелепости. Первое название этот способ получил потому, что в начале рассуждения делается предположение, противное (противоположное) тому, что требуется доказать. Приведением к нелепости он называется вследствие того, что, рассуждая на основании сделанного предположения, мы приходим к нелепому выводу (к абсурду). Получение такого вывода заставляет нас отвергнуть сделанное вначале допущение и принять то, которое требовалось доказать.

Задача 1. Построить прямую, проходящую через данную точку М и параллельную данной прямой а, не проходящей через точку М.

Решение. Проводим через точку М прямую р перпендикулярно прямой а (рис. 3).

Затем проводим через точку М прямую b перпендикулярно прямой р. Прямая b параллельна прямой а согласно следствию из теоремы 1.

Из рассмотренной задачи следует важный вывод:
через точку, не лежащую на данной прямой, всегда можно провести прямую, параллельную данной .

Основное свойство параллельных прямых состоит в следующем.

Аксиома параллельных прямых. Через данную точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной.

Рассмотрим некоторые свойства параллельных прямых, которые следуют из этой аксиомы.

1) Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую (рис.4).

2) Если две различные прямые параллельны третьей прямой, то они параллельны (рис.5).

Справедлива и следующая теорема.

Теорема 2. Если две параллельные прямые пересечены секущей, то:

    накрест лежащие углы равны;

    соответственные углы равны;

    сумма односторонних углов равна 180°.

Следствие 2. Если прямая перпендикулярна к одной из двух параллельных прямых, то она перпендикулярна и к другой (см. рис.2).

Замечание. Теорема 2 называется обратной теореме 1. Заключение теоремы 1 является условием теоремы 2. А условие теоремы 1 является заключением теоремы 2. Не всякая теорема имеет обратную, т. е. если данная теорема верна, то обратная теорема может быть неверна.

Поясним это на примере теоремы о вертикальных углах. Эту теорему можно сформулировать так: если два угла вертикальные, то они равны. Обратная ей теорема была бы такой: если два угла равны, то они вертикальные. А это, конечно, неверно. Два равных угла вовсе не обязаны быть вертикальными.

Пример 1. Две параллельные прямые пересечены третьей. Известно, что разность двух внутренних односторонних углов равна 30°. Найти эти углы.

Решение. Пусть условию отвечает рисунок 6.

Эта глава посвящена изучению параллельных прямых. Так называются две прямые на плоскости, которые не пересекаются. Отрезки параллельных прямых мы видим в окружающей обстановке - это два края прямоугольного стола, два края обложки книги, две штанги троллейбуса и т. д. Параллельные прямые играют в геометрии очень важную роль. В этой главе вы узнаете о том, что такое аксиомы геометрии и в чём состоит аксиома параллельных прямых - одна из самых известных аксиом геометрии.

В п. 1 мы отмечали, что две прямые либо имеют одну общую точку, т. е. пересекаются, либо не имеют ни одной общей точки, т. е. не пересекаются.

Определение

Параллельность прямых а и b обозначают так: а || b.

На рисунке 98 изображены прямые а и b, перпендикулярные к прямой с. В п. 12 мы установили, что такие прямые а и b не пересекаются, т. е. они параллельны.

Рис. 98

Наряду с параллельными прямыми часто рассматривают параллельные отрезки. Два отрезка называются параллельными , если они лежат на параллельных прямых. На рисунке 99, а отрезки АВ и CD параллельны (АВ || CD), а отрезки MN и CD не параллельны. Аналогично определяется параллельность отрезка и прямой (рис. 99, б), луча и прямой, отрезка и луча, двух лучей (рис. 99, в).


Рис. 99 Признаки параллельности двух прямых

Прямая с называется секущей по отношению к прямым а и b, если она пересекает их в двух точках (рис. 100). При пересечении прямых а и b секущей с образуется восемь углов, которые на рисунке 100 обозначены цифрами. Некоторые пары этих углов имеют специальные названия:

    накрест лежащие углы : 3 и 5, 4 и 6;
    односторонние углы : 4 и 5, 3 и 6;
    соответственные углы : 1 и 5, 4 и 8, 2 и 6, 3 и 7.


Рис. 100

Рассмотрим три признака параллельности двух прямых, связанные с этими парами углов.

Теорема

Доказательство

Пусть при пересечении прямых а и b секущей АВ накрест лежащие углы равны: ∠1 = ∠2 (рис. 101, а).

Докажем, что а || b. Если углы 1 и 2 прямые (рис. 101, б), то прямые а и b перпендикулярны к прямой АВ и, следовательно, параллельны.


Рис. 101

Рассмотрим случай, когда углы 1 и 2 не прямые.

Из середины О отрезка АВ проведём перпендикуляр ОН к прямой а (рис. 101, в). На прямой b от точки В отложим отрезок ВН 1 , равный отрезку АН, как показано на рисунке 101, в, и проведём отрезок ОН 1 . Треугольники ОНА и ОН 1 В равны по двум сторонам и углу между ними (АО = ВО, АН = ВН 1 , ∠1 = ∠2), поэтому ∠3 = ∠4 и ∠5 = ∠6. Из равенства ∠3 = ∠4 следует, что точка Н 1 лежит на продолжении луча ОН, т. е. точки Н, О и Н 1 лежат на одной прямой, а из равенства ∠5 = ∠6 следует, что угол 6 - прямой (так как угол 5 - прямой). Итак, прямые а и b перпендикулярны к прямой HH 1 поэтому они параллельны. Теорема доказана.

Теорема

Доказательство

Пусть при пересечении прямых а и b секущей с соответственные углы равны, например ∠1 =∠2 (рис. 102).


Рис. 102

Так как углы 2 и 3 - вертикальные, то ∠2 = ∠3. Из этих двух равенств следует, что ∠1 = ∠3. Но углы 1 и 3 - накрест лежащие, поэтому прямые а и b параллельны. Теорема доказана.

Теорема

Доказательство

    Пусть при пересечении прямых а и b секущей с сумма односторонних углов равна 180°, например ∠1 + ∠4 = 180° (см. рис. 102).

    Так как углы 3 и 4 - смежные, то ∠3 + ∠4 = 180°. Из этих двух равенств следует, что накрест лежащие углы 1 и 3 равны, поэтому прямые а и b параллельны. Теорема доказана.

Практические способы построения параллельных прямых

Признаки параллельности прямых лежат в основе способов построения параллельных прямых с помощью различных инструментов, используемых на практике. Рассмотрим, например, способ построения параллельных прямых с помощью чертёжного угольника и линейки. Чтобы построить прямую, проходящую через точку М и параллельную данной прямой а, приложим чертёжный угольник к прямой а, а к нему линейку так, как показано на рисунке 103. Затем, передвигая угольник вдоль линейки, добьёмся того, чтобы точка М оказалась на стороне угольника, и проведём прямую b. Прямые а и b параллельны, так как соответственные углы, обозначенные на рисунке 103 буквами α и β, равны.


Рис. 103 На рисунке 104 показан способ построения параллельных прямых при помощи рейсшины. Этим способом пользуются в чертёжной практике.


Рис. 104 Аналогичный способ применяется при выполнении столярных работ, где для разметки параллельных прямых используется малка (две деревянные планки, скреплённые шарниром, рис. 105).


Рис. 105

Задачи

186. На рисунке 106 прямые а и b пересечены прямой с. Докажите, что а || b, если:

    а) ∠1 = 37°, ∠7 = 143°;
    б) ∠1 = ∠6;
    в) ∠l = 45°, а угол 7 в три раза больше угла 3.


Рис. 106

187. По данным рисунка 107 докажите, что АВ || DE.


Рис. 107

188. Отрезки АВ и CD пересекаются в их общей середине. Докажите, что прямые АС и BD параллельны.

189. Используя данные рисунка 108, докажите, что ВС || AD.


Рис. 108

190. На рисунке 109 АВ = ВС, AD = DE, ∠C = 70°, ∠EAC = 35°. Докажите, что DE || АС.


Рис. 109

191. Отрезок ВК - биссектриса треугольника АВС. Через точку К проведена прямая, пересекающая сторону ВС в точке М так, что ВМ = МК. Докажите, что прямые КМ и АВ параллельны.

192. В треугольнике АВС угол А равен 40°, а угол ВСЕ, смежный с углом АСВ, равен 80°. Докажите, что биссектриса угла ВСЕ параллельна прямой АВ.

193. В треугольнике ABC ∠A = 40°, ∠B = 70°. Через вершину В проведена прямая BD так, что луч ВС - биссектриса угла ABD. Докажите, что прямые АС и BD параллельны.

194. Начертите треугольник. Через каждую вершину этого треугольника с помощью чертёжного угольника и линейки проведите прямую, параллельную противоположной стороне.

195. Начертите треугольник АВС и отметьте точку D на стороне АС. Через точку D с помощью чертёжного угольника и линейки проведите прямые, параллельные двум другим сторонам треугольника.

AB и С D пересечены третьей прямой MN , то образовавшиеся при этом углы получают попарно такие названия:

соответственные углы : 1 и 5, 4 и 8, 2 и 6, 3 и 7;

внутренние накрест лежащие углы : 3 и 5, 4 и 6;

внешние накрест лежащие углы : 1 и 7, 2 и 8;

внутренние односторонние углы : 3 и 6, 4 и 5;

внешние односторонние углы : 1 и 8, 2 и 7.

Так, ∠ 2 = ∠ 4 и ∠ 8 = ∠ 6, но по доказанному ∠ 4 = ∠ 6.

Следовательно, ∠ 2 =∠ 8.

3. Соответственные углы 2 и 6 одинаковы, поскольку ∠ 2 = ∠ 4, а ∠ 4 = ∠ 6. Также убедимся в равенстве других соответственных углов.

4. Сумма внутренних односторонних углов 3 и 6 будет 2d, потому что сумма смежных углов 3 и 4 равна 2d = 180 0 , а ∠ 4 можно заменить идентичным ему ∠ 6. Также убедимся, что сумма углов 4 и 5 равна 2d.

5. Сумма внешних односторонних углов будет 2d, потому что эти углы равны соответственно внутренним односторонним углам , как углы вертикальные .

Из выше доказанного обоснования получаем обратные теоремы.

Когда при пересечении двух прямых произвольной третьей прямой получим, что:

1. Внутренние накрест лежащие углы одинаковы;

или 2. Внешние накрест лежащие углы одинаковые;

или 3. Соответственные углы одинаковые;

или 4. Сумма внутренних односторонних углов равна 2d = 180 0 ;

или 5. Сумма внешних односторонних равна 2d = 180 0 ,

то первые две прямые параллельны.

Два угла называются вертикальными, если стороны одного угла являются продолжением сторон другого.

На рисунке углы 1 и 3 , а также углы 2 и 4 - вертикальные. Угол2 является смежным как с углом 1 , так и с углом 3. По свойству смежных углов 1 +2 =180 0 и 3 +2 =180 0 . Отсюда получаем: 1=180 0 -2 , 3=180 0 -2. Таким образом, градусные меры углов 1 и 3 равны. Отсюда следует, что и сами углы равны. Итак, вертикальные углы равны.

2.Признаки равенства треугольников.

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

3.Если три стороны одного треугольника соответственно равны трём сторонам другого треугольника, то такие треугольники равны.

1 признак равенства треугольников:

Рассмотрим треугольники АВС и А 1 В 1 С 1 , у которых АВ=А 1 В 1 , АС=А 1 С 1 , углы А и А 1 равны. Докажем, что АВС=А 1 В 1 С 1 .
Так как (у)А=(у)А 1 , то треугольник АВС можно наложить на треугольник А 1 В 1 С 1 так, что вершина А совместится с вершиной А1, а стороны АВ и АС наложатся соответственно на лучи А 1 В 1 и А 1 С 1 . Поскольку АВ=А 1 В 1 , АС=А 1 С 1 , то сторона АВ совместится со стороной А 1 В 1 , а сторона АС - со стороной А 1 С 1 ; в частности, совместятся точки В и В 1 , С и С 1 . Следовательно, совместятся стороны ВС и В 1 С 1 . Итак, треугольники АВС и А 1 В 1 С 1 полностью совместятся, значит они равны. ЧТД

3.Теорема о биссектрисе равнобедренного треугольника.

В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

Обратимся к рисунку, на котором АВС - равнобедренный треугольник с основанием ВС, АD - его биссектриса.

Из равенства треугольников АВD и АСD (по 2 признаку равенства треугольников: AD – общая; углы 1 и 2 равны т.к. AD-биссектриса; AB=AC, т.к. треугольник равнобедренный) следует, что ВD = DC и 3 = 4. Равенство ВD = DC означает, что точка D - середина стороны ВС и поэтому АD - медиана треугольника АВС. Так как углы 3 и 4 смежные и равны друг другу, то они прямые. Следовательно, отрезок АО является также высотой треугольника АВС. ЧТД.

4. Если прямые параллельны -> угол…. (на выбор)

5. Если угол…..-> прямые параллельны (на выбор)

Если при пересечении двух прямых секущей соответственные углы равны, то прямые параллельны.

Пусть при пересечении прямых а и б секущей с соответственные углы равны, например 1=2.

Так как углы 2 и 3 – вертикальные, то 2=3. Из этих двух равенств следует, что 1=3. Но углы 1 и 3 – накрест лежащие, поэтому прямые а и б параллельные. ЧТД.

6. Теорема о сумме углов треугольника.

Сумма углов треугольника равна 180 0 .

Рассмотрим произвольные треугольник АВС и докажем, что А+В+С=180 0 .

Проведем через вершину В прямую а, параллельную стороне АС. Углы 1 и 4 являются накрест лежащими углами про пересечении параллельных прямых а и АС секущей АВ, а углы 3 и 5 – накрест лежащими углами при пересечении тех же параллельных прямых секущей ВС. Поэтому (1)4=1; 5=3.

Очевидно, сумма углов 4, 2 и 5 равна развёрнутому углу с вершиной В, т.е. 4+2+5=180 0 . Отсюда, учитывая равенства (1), получаем: 1+2+3=180 0 или А+В+С=180 0 .ЧТД.

7.Признак равенства прямоугольных треугольников.

Новое на сайте

>

Самое популярное