Домой Женские имена Как отложить вектор от данной точки. Урок "откладывание вектора от данной точки"

Как отложить вектор от данной точки. Урок "откладывание вектора от данной точки"

Стандартное определение: «Вектор - это направленный отрезок». Обычно этим и ограничиваются знания выпускника о векторах. Кому нужны какие-то «направленные отрезки»?

А в самом деле, что такое векторы и зачем они?
Прогноз погоды. «Ветер северо-западный, скорость 18 метров в секунду». Согласитесь, имеет значение и направление ветра (откуда он дует), и модуль (то есть абсолютная величина) его скорости.

Величины, не имеющие направления, называются скалярными. Масса, работа, электрический заряд никуда не направлены. Они характеризуются лишь числовым значением - «сколько килограмм» или «сколько джоулей».

Физические величины, имеющие не только абсолютное значение, но и направление, называются векторными.

Скорость, сила, ускорение - векторы. Для них важно «сколько» и важно «куда». Например, ускорение свободного падения направлено к поверхности Земли, а величина его равна 9,8 м/с 2 . Импульс, напряженность электрического поля, индукция магнитного поля - тоже векторные величины.

Вы помните, что физические величины обозначают буквами, латинскими или греческими. Стрелочка над буквой показывает, что величина является векторной:

Вот другой пример.
Автомобиль движется из A в B . Конечный результат - его перемещение из точки A в точку B , то есть перемещение на вектор .

Теперь понятно, почему вектор - это направленный отрезок. Обратите внимание, конец вектора - там, где стрелочка. Длиной вектора называется длина этого отрезка. Обозначается: или

До сих пор мы работали со скалярными величинами, по правилам арифметики и элементарной алгебры. Векторы - новое понятие. Это другой класс математических объектов. Для них свои правила.

Когда-то мы и о числах ничего не знали. Знакомство с ними началось в младших классах. Оказалось, что числа можно сравнивать друг с другом, складывать, вычитать, умножать и делить. Мы узнали, что есть число единица и число ноль.
Теперь мы знакомимся с векторами.

Понятия «больше» и «меньше» для векторов не существует - ведь направления их могут быть разными. Сравнивать можно только длины векторов.

А вот понятие равенства для векторов есть.
Равными называются векторы, имеющие одинаковые длины и одинаковое направление. Это значит, что вектор можно перенести параллельно себе в любую точку плоскости.
Единичным называется вектор, длина которого равна 1 . Нулевым - вектор, длина которого равна нулю, то есть его начало совпадает с концом.

Удобнее всего работать с векторами в прямоугольной системе координат - той самой, в которой рисуем графики функций. Каждой точке в системе координат соответствуют два числа - ее координаты по x и y , абсцисса и ордината.
Вектор также задается двумя координатами:

Здесь в скобках записаны координаты вектора - по x и по y .
Находятся они просто: координата конца вектора минус координата его начала.

Если координаты вектора заданы, его длина находится по формуле

Сложение векторов

Для сложения векторов есть два способа.

1 . Правило параллелограмма. Чтобы сложить векторы и , помещаем начала обоих в одну точку. Достраиваем до параллелограмма и из той же точки проводим диагональ параллелограмма. Это и будет сумма векторов и .

Помните басню про лебедя, рака и щуку? Они очень старались, но так и не сдвинули воз с места. Ведь векторная сумма сил, приложенных ими к возу, была равна нулю.

2 . Второй способ сложения векторов - правило треугольника. Возьмем те же векторы и . К концу первого вектора пристроим начало второго. Теперь соединим начало первого и конец второго. Это и есть сумма векторов и .

По тому же правилу можно сложить и несколько векторов. Пристраиваем их один за другим, а затем соединяем начало первого с концом последнего.

Представьте, что вы идете из пункта А в пункт В , из В в С , из С в D , затем в Е и в F . Конечный результат этих действий - перемещение из А в F .

При сложении векторов и получаем:

Вычитание векторов

Вектор направлен противоположно вектору . Длины векторов и равны.

Теперь понятно, что такое вычитание векторов. Разность векторов и - это сумма вектора и вектора .

Умножение вектора на число

При умножении вектора на число k получается вектор, длина которого в k раз отличается от длины . Он сонаправлен с вектором , если k больше нуля, и направлен противоположно , если k меньше нуля.

Скалярное произведение векторов

Векторы можно умножать не только на числа, но и друг на друга.

Скалярным произведением векторов называется произведение длин векторов на косинус угла между ними.

Обратите внимание - перемножили два вектора, а получился скаляр, то есть число. Например, в физике механическая работа равна скалярному произведению двух векторов - силы и перемещения:

Если векторы перпендикулярны, их скалярное произведение равно нулю.
А вот так скалярное произведение выражается через координаты векторов и :

Из формулы для скалярного произведения можно найти угол между векторами:

Эта формула особенно удобна в стереометрии. Например, в задаче 14 Профильного ЕГЭ по математике нужно найти угол между скрещивающимися прямыми или между прямой и плоскостью. Часто задача 14 решается в несколько раз быстрее, чем классическим.

В школьной программе по математике изучают только скалярное произведение векторов.
Оказывается, кроме скалярного, есть еще и векторное произведение, когда в результате умножения двух векторов получается вектор. Кто сдает ЕГЭ по физике , знает, что такое сила Лоренца и сила Ампера. В формулы для нахождения этих сил входят именно векторные произведения.

Векторы - полезнейший математический инструмент. В этом вы убедитесь на первом курсе.

Страница 1 из 2

Вопрос 1. Что такое вектор? Как обозначаются векторы?
Ответ. Вектором мы будем называть направленный отрезок (рис. 211). Направление вектора определяется указанием его начала и конца. На чертеже направление вектора отмечается стрелкой. Для обозначения векторов будем пользоваться строчными латинскими буквами a, b, c, ... . Можно также обозначить вектор указанием его начала и конца. При этом начало вектора ставится на первом месте. Вместо слова "вектор" над буквенным обозначением вектора иногда ставится стрелка или черта. Вектор на рисунке 211 можно обозначить так:

\(\overline{a}\), \(\overrightarrow{a}\) или \(\overline{AB}\), \(\overrightarrow{AB}\).

Вопрос 2. Какие векторы называются одинаково направленными (противоположно направленными)?
Ответ. Векторы \(\overline{AB}\) и \(\overline{CD}\) называются одинаково направленными, если полупрямые AB и CD одинаково направлены.
Векторы \(\overline{AB}\) и \(\overline{CD}\) называются противоположно направленными, если полупрямые AB и CD противоположно направлены.
На рисунке 212 векторы \(\overline{a}\) и \(\overline{b}\) одинаково направлены, а векторы \(\overline{a}\) и \(\overline{c}\) противоположно направлены.

Вопрос 3. Что такое абсолютная величина вектора?
Ответ. Абсолютной величиной (или модулем) вектора называется длина отрезка, изображающего вектор. Абсолютная величина вектора \(\overline{a}\) обозначается |\(\overline{a}\)|.

Вопрос 4. Что такое нулевой вектор?
Ответ. Начало вектора может совпадать с его концом. Такой вектор будем называть нулевым вектором. Нулевой вектор обозначается нулём с чёрточкой (\(\overline{0}\)). О направлении нулевого вектора не говорят. Абсолютная величина нулевого вектора считается равной нулю.

Вопрос 5. Какие векторы называются равными?
Ответ. Два вектора называются равными, если они совмещаются параллельным переносом. Это означает, что существует параллельный перенос, который переводит начало и конец одного вектора соответственно в начало и конец другого вектора.

Вопрос 6. Докажите, что равные векторы одинаково направлены и равны по абсолютной величине. И обратно: одинаково направленные векторы, равные по абсолютной величине, равны.
Ответ. При параллельном переносе вектор сохраняет своё направление, а также свою абсолютную величину. Значит, равные векторы направлены одинаково и равны по абсолютной величине.
Пусть \(\overline{AB}\) и \(\overline{CD}\) – одинаково направленные векторы, равные по абсолютной величине (рис. 213). Параллельный перенос, переводящий точку C в точку A, совмещает полупрямую CD с полупрямой AB, так как они одинаково направлены. А так как отрезки AB и CD равны, то при этом точка D совмещается с точкой B, т.е. параллельный перенос переводит вектор \(\overline{CD}\) в вектор \(\overline{AB}\). Значит, векторы \(\overline{AB}\) и \(\overline{CD}\) равны, что и требовалось доказать.

Вопрос 7. Докажите, что от любой точки можно отложить вектор, равный данному вектору, и только один.
Ответ. Пусть CD – прямая, а вектор \(\overline{CD}\) – часть прямой CD. Пусть AB – прямая, в которую переходит прямая CD при параллельном переносе, \(\overline{AB}\) – вектор, в который при параллельном переносе переходит вектор \(\overline{CD}\), а значит, векторы \(\overline{AB}\) и \(\overline{CD}\) равны, а прямые AB и CD параллельны (см. рис. 213). Как мы знаем, через точку не лежащую на данной прямой, можно провести на плоскости не более одной прямой, параллельной данной (аксиома параллельных прямых). Значит, через точку A можно провести одну прямую, параллельную прямой CD. Так как вектор \(\overline{AB}\) – часть прямой AB, то через точку A можно провести один вектор \(\overline{AB}\), равный вектору \(\overline{CD}\).

Вопрос 8. Что такое координаты вектора? Чему равна абсолютная величина вектора с координатами a 1 , a 2 ?
Ответ. Пусть вектор \(\overline{a}\) имеет началом точку A 1 (x 1 ; y 1), а концом точку A 2 (x 2 ; y 2). Координатами вектора \(\overline{a}\) будем называть числа a 1 = x 2 - x 1 , a 2 = y 2 - y 1 . Координаты вектора будем ставить рядом с буквенным обозначением вектора, в данном случае \(\overline{a}\) (a 1 ; a 2) или просто \((\overline{a 1 ; a 2 })\). Координаты нулевого вектора равны нулю.
Из формулы, выражающей расстояние между двумя точками через их координаты, следует, что абсолютная величина вектора с координатами a 1 , a 2 равна \(\sqrt{a^2 1 + a^2 2 }\).

Вопрос 9. Докажите, что равные векторы имеют соответственно равные координаты, а векторы с соответственно равными координатами равны.
Ответ. Пусть A 1 (x 1 ; y 1) и A 2 (x 2 ; y 2) – начало и конец вектора \(\overline{a}\). Так как равный ему вектор \(\overline{a"}\) получается из вектора \(\overline{a}\) параллельным переносом, то его началом и концом будут соответственно A" 1 (x 1 + c; y 1 + d), A" 2 (x 2 + c; y 2 + d). Отсюда видно, что оба вектора \(\overline{a}\) и \(\overline{a"}\) имеют одни и те же координаты: x 2 - x 1 , y 2 - y 1 .
Докажем теперь обратное утверждение. Пусть соответствующие координаты векторов \(\overline{A 1 A 2 }\) и \(\overline{A" 1 A" 2 }\) равны. Докажем, что векторы равны.
Пусть x" 1 и y" 1 - координаты точки A" 1 , а x" 2 , y" 2 - координаты точки A" 2 . По условию теоремы x 2 - x 1 = x" 2 - x" 1 , y 2 - y 1 = y" 2 - y" 1 . Отсюда x" 2 = x 2 + x" 1 - x 1 , y" 2 = y 2 + y" 1 - y 1 . Параллельный перенос, заданный формулами

x" = x + x" 1 - x 1 , y" = y + y" 1 - y 1 ,

переводит точку A 1 в точку A" 1 , а точку A 2 в точку A" 2 , т.е. векторы \(\overline{A 1 A 2 }\) и \(\overline{A" 1 A" 2 }\) равны, что и требовалось доказать.

Вопрос 10. Дайте определение суммы векторов.
Ответ. Суммой векторов \(\overline{a}\) и \(\overline{b}\) с координатами a 1 , a 2 и b 1 , b 2 называется вектор \(\overline{c}\) с координатами a 1 + b 1 , a 2 + b a 2 , т.е.

\(\overline{a} (a 1 ; a 2) + \overline{b}(b 1 ; b 2) = \overline{c} (a 1 + b 1 ; a 2 + b 2)\).


Некоторые физические величины, например, сила или скорость характеризуются не только числовым значением, но и направлением. Такие величины называются векторными: F ⃗ – сила, v ⃗ – скорость.
Дадим геометрическое определение вектора.
Вектором называется отрезок, для которого указано, какая из его граничных точек считается началом, а какая – концом.
На чертежах вектор изображается отрезком со стрелкой, указывающей конец вектора. Вектор обозначают двумя заглавными латинскими буквами со стрелкой над ними. Первая буква обозначает начало вектора, вторая – конец.

Вектор можно обозначить и одной строчной латинской буквой со стрелкой над ней.

Длиной вектора называется длина отрезка, который изображает этот вектор. Для обозначения длины вектора используют вертикальные скобки.
Вектор, у которого конец совпадает с началом, называется нулевым вектором. Нулевой вектор изображается точкой и обозначается двумя одинаковыми буквами или нулём со стрелкой над ним. Длина нулевого вектора равна нулю: |0 ⃗|= 0.

Введём понятие коллинеарных векторов. Ненулевые векторы называются коллинеарными, если они лежат на одной прямой или на параллельных прямых. Нулевой вектор считают коллинеарным любому вектору.

Если ненулевые коллинеарные векторы имеют одинаковое направление, то такие векторы будут сонаправленными. Если их направления противоположны – они называются противоположно направленными.
Для обозначения сонаправленных и противоположно направленных векторов существуют специальные обозначения:
- m р ⃗, если векторы m ⃗ и р ⃗ сонаправлены;
- m ⃗ ↓ n ⃗ , если векторы m ⃗ и n ⃗ противоположно направлены.
Рассмотрим движение автомобиля. Скорость каждой его точки является векторной величиной и изображается направленным отрезком. Так как все точки автомобиля движутся с одинаковой скоростью, то все направленные отрезки, изображающие скорости разных точек, имеют одинаковое направление и их длины равны. Этот пример даёт нам подсказку, как определить равенство векторов.
Два вектора называются равными, если они сонаправлены и их длины равны. Равенство векторов можно записать с помощью знака равно: a ⃗ = b ⃗, KH ⃗ = OE
Если точка Р начало вектора р ⃗, то считают, что вектор р ⃗ отложен от точки Р .

Докажем, что от любой точки О можно отложить вектор, равный данному вектору р ⃗, и притом только один.

Доказательство:
1) Если р ⃗ – нулевой вектор, то ОО ⃗ = р ⃗.
2) Если вектор р ⃗ ненулевой, точка Р – начало этого вектора, а точка Т – конец.
Проведём через точку О прямую, параллельную РТ . На построенной прямой отложим отрезки ОА 1 и ОА 2 , равные отрезку РТ .

Выберем из векторов ОА 1 и ОА 2 вектор, который сонаправлен с вектором р ⃗. На нашем чертеже это вектор ОА 1 . Этот вектор будет равен вектору р ⃗. Из построения следует, что такой вектор единственный.

Вектор это направленный прямолинейный отрезок, то есть отрезок, имеющий определенную длину и определенное направление. Пусть точка А – начало вектора, а точка B – его конец, тогда вектор обозначается символом или . Вектор называется противоположным вектору и может быть обозначен .

Сформулируем ряд базовых определений.

Длиной или модулем вектора называется длина отрезка и обозначается . Вектор нулевой длины (его суть - точка) называется нулевым и направления не имеет. Вектор единичной длины, называется единичным . Единичный вектор, направление которого совпадает с направлением вектора , называется ортом вектора .

Векторы называются коллинеарными , если они лежат на одной прямой или на параллельных прямых, записывают . Коллинеарные векторы могут иметь совпадающие или противоположные направления. Нулевой вектор считают коллинеарным любому вектору.

Векторы называются равными , если они коллинеарны, одинаково направлены и имеют одинаковые длины.

Три вектора в пространстве называются компланарными , если они лежат в одной плоскости или на параллельных плоскостях. Если среди трех векторов хотя бы один нулевой или два любые коллинеарны, то такие векторы компланарны.

Рассмотрим в пространстве прямоугольную систему координат 0xyz . Выделим на осях координат 0x , 0y , 0z единичные векторы (орты) и обозначим их через соответственно. Выберем произвольный вектор пространства и совместим его начало с началом координат. Спроектируем вектор на координатные оси и обозначим проекции через a x , a y , a z соответственно. Тогда нетрудно показать, что

. (2.25)

Эта формула является основной в векторном исчислении и называется разложением вектора по ортам координатных осей . Числа a x , a y , a z называются координатами вектора . Таким образом, координаты вектора являются его проекциями на оси координат. Векторное равенство (2.25) часто записывают в виде

Мы будем использовать обозначение вектора в фигурных скобках, чтобы визуально легче различать координаты вектора и координаты точки. С использованием формулы длины отрезка, известной из школьной геометрии, можно найти выражение для вычисления модуля вектора :

, (2.26)

то есть модуль вектора равен корню квадратному из суммы квадратов его координат.

Обозначим углы между вектором и осями координат через α, β, γ соответственно. Косинусы этих углов называются для вектора направляющими , и для них выполняется соотношение: Верность данного равенства можно показать с помощью свойства проекции вектора на ось, которое будет рассмотрено в нижеследующем пункте 4.

Пусть в трехмерном пространстве заданы векторы своими координатами. Имеют место следующие операции над ними: линейные (сложение, вычитание, умножение на число и проектирование вектора на ось или другой вектор); не линейные – различные произведения векторов (скалярное, векторное, смешанное).

1. Сложение двух векторов производится покоординатно, то есть если

Данная формула имеет место для произвольного конечного числа слагаемых.

Геометрически два вектора складываются по двум правилам:

а) правило треугольника – результирующий вектор суммы двух векторов соединяет начало первого из них с концом второго при условии, что начало второго совпадает с концом первого вектора; для суммы векторов – результирующий вектор суммы соединяет начало первого из них с концом последнего вектора-слагаемого при условии, что начало последующего слагаемого совпадает с концом предыдущего;

б) правило параллелограмма (для двух векторов) – параллелограмм строится на векторах-слагаемых как на сторонах, приведенных к одному началу; диагональ параллелограмма исходящая из их общего начала, является суммой векторов.

2. Вычитание двух векторов производится покоординатно, аналогично сложению, то есть если , то

Геометрически два вектора складываются по уже упомянутому правилу параллелограмма с учетом того, что разностью векторов является диагональ, соединяющая концы векторов, причем результирующий вектор направлен из конца вычитаемого в конец уменьшаемого вектора.

Важным следствием вычитания векторов является тот факт, что если известны координаты начала и конца вектора, то для вычисления координат вектора необходимо из координат его конца вычесть координаты его начала . Действительно, любой вектор пространства может быть представлен в виде разности двух векторов, исходящих из начала координат: . Координаты векторов и совпадают с координатами точек А и В , так как начало координат О (0;0;0). Таким образом, по правилу вычитания векторов следует произвести вычитание координат точки А из координат точки В .

3. У множение вектора на число λ покоординатно: .

При λ> 0 – вектор сонаправлен ; λ< 0 – вектор противоположно направлен ; | λ|> 1 – длина вектора увеличивается в λ раз; | λ|< 1 – длина вектора уменьшается в λ раз.

4. Пусть в пространстве задана направленная прямая (ось l ), вектор задан координатами конца и начала. Обозначим проекции точек A и B на ось l соответственно через A и B .

Проекцией вектора на ось l называется длина вектора , взятая со знаком «+», если вектор и ось l сонаправлены, и со знаком «–», если и l противоположно направлены .

Если в качестве оси l взять некоторый другой вектор , то получим проекцию вектора на векто р .

Рассмотрим некоторые основные свойства проекций:

1)проекция вектора на ось l равна произведению модуля вектора на косинус угла между вектором и осью, то есть ;

2.)проекция вектора на ось положительна (отрицательна), если вектор образует с осью острый (тупой) угол, и равна нулю, если этот угол – прямой;

3)проекция суммы нескольких векторов на одну и ту же ось равна сумме проекций на эту ось.

Сформулируем определения и теоремы о произведениях векторов, представляющих нелинейные операции над векторами.

5. Скалярным произведением векторов и называется число (скаляр), равное произведению длин этих векторов на косинус угла φ между ними, то есть

. (2.27)

Очевидно, что скалярный квадрат любого ненулевого вектора равен квадрату его длины, так как в этом случае угол , поэтому его косинус (в 2.27) равен 1.

Теорема 2.2. Необходимым и достаточным условием перпендикулярности двух векторов является равенство нулю их скалярного произведения

Следствие. Попарные скалярные произведения единичных орт равны нулю, то есть

Теорема 2.3. Скалярное произведение двух векторов , заданных своими координатами, равно сумме произведений их одноименных координат, то есть

(2.28)

С помощью скалярного произведения векторов можно вычислить угол между ними. Если заданы два ненулевых вектора своими координатами , то косинус угла φ между ними:

(2.29)

Отсюда следует условие перпендикулярности ненулевых векторов и :

(2.30)

Нахождение проекции вектора на направление, заданное вектором , может осуществляться по формуле

(2.31)

С помощью скалярного произведения векторов находят работу постоянной силы на прямолинейном участке пути.

Предположим, что под действием постоянной силы материальная точка перемещается прямолинейно из положения А в положение B. Вектор силы образует угол φ с вектором перемещения (рис. 2.14). Физика утверждает, что работа силы при перемещении равна .

Следовательно, работа постоянной силы при прямолинейном перемещении точки ее приложения равна скалярному произведению вектора силы на вектор перемещения.

Пример 2.9. С помощью скалярного произведения векторов найти угол при вершине A параллелограмма ABCD , постро енного на векторах

Решение. Вычислим модули векторов и их скалярное произведение по теореме (2.3):

Отсюда согласно формуле (2.29) получим косинус искомого угла


Пример 2.10. Затраты сырьевых и материальных ресурсов, используемых на производство одной тонны творога, заданы в таблице 2.2 (руб.).

Какова общая цена этих ресурсов, затрачиваемых на изготовление одной тонны творога?

Таблица 2.2

Решение . Введем в рассмотрение два вектора: вектор затрат ресурсов на тонну продукции и вектор цены единицы соответствующего ресурса .

Тогда . Общая цена ресурсов , что представляет собой скалярное произведение векторов . Вычислим его по формуле (2.28) согласно теореме 2.3:

Таким образом, общая цена затрат на производство одной тонны творога составляет 279 541,5 рублей

Примечание . Действия с векторами, осуществленные в примере 2.10, можно выполнить на персональном компьютере. Для нахождения скалярного произведения векторов в MS Excel используют функцию СУММПРОИЗВ(), где в качестве аргументов указываются адреса диапазонов элементов матриц, сумму произведений которых необходимо найти. В MathCAD скалярное произведение двух векторов выполняется при помощи соответствующего оператора панели инструментов Matrix

Пример 2.11. Вычислить работу, произведенную силой , если точка ее приложения перемещается прямолинейно из положения A (2;4;6) в положение A (4;2;7). Под каким углом к AB направлена сила ?

Решение. Находим вектор перемещения, вычитая из координат его конца координаты начала

. По формуле (2.28) (единиц работы).

Угол φ между и находим по формуле (2.29), то есть

6. Три некомпланарных вектора , взятые в указанном порядке, образуют правую тройку , если при наблюдении из конца третьего вектора кратчайший поворот от первого вектора ко второму вектору совершается против часовой стрелки, и левую , если по часовой стрелке.

Векторным произведением вектора на вектор называется вектор , удовлетворяющий следующим условиям:

перпендикулярен векторам и ;

– имеет длину, равную , где φ – угол, образованный векторами и ;

– векторы образуют правую тройку (рис. 2.15).

Теорема 2.4. Необходимым и достаточным условием коллинеарности двух векторов является равенство нулю их векторного произведения

Теорема 2.5. Векторное произведение векторов , заданных своими координатами, равно определителю третьего порядка вида

(2.32)

Примечание. Определитель (2.25) раскладывается по свойству 7 определителей

Следствие 1. Необходимым и достаточным условием коллинеарности двух векторов является пропорциональность их соответствующих координат

Следствие 2. Векторные произведения единичных орт равны

Следствие 3. Векторный квадрат любого вектора равен нулю

Геометрическая интерпретация векторного произведения состоит в том, что длина результирующего вектора численно равна площади S параллелограмма, построенного на векторах–сомножителях как на сторонах, приведенных к одному началу. Действительно, согласно определению, модуль векторного произведения векторов равен . С другой стороны, площадь параллелограмма, построенного на векторах и , также равна . Следовательно,

. (2.33)


Также с помощью векторного произведения можно определить момент силы относительно точки и линейную скорость вращения.

Пусть в точке A приложена сила и пусть O – некоторая точка пространства (рис. 2.16). Из курса физики известно, что моментом силы относительно точки O называется вектор , который проходит через точку O и удовлетворяет следующим условиям:

Перпендикулярен плоскости, проходящей через точки O , A , B ;

Его модуль численно равен произведению силы на плечо .

- образует правую тройку с векторами и .

Следовательно, момент силы относительно точки O представляет собой векторное произведение

. (2.34)

Линейная скорость точки М твердого тела, вращающегося с угловой скоростью вокруг неподвижной оси, определяется формулой Эйлера , O – некоторая неподвижная

точка оси (рис. 2.17).


Пример 2.12. С помощью векторного произведения найти площадь треугольника ABC , построенного на векторах , приведенных к одному началу.

Знания и навыки, полученные на данном уроке, пригодятся обучающимся не только на уроках геометрии, но и на занятиях по другим наукам. В ходе урока школьники научатся откладывать вектор от заданной точки. Это может быть обычный урок геометрии, а также внеклассное или факультативное занятие по математике. Данная разработка поможет учителю сэкономить свое время на подготовку к уроку по теме «Откладывание вектора от данной точки». Ему будет достаточно воспроизвести видеоурок на занятии, а затем закрепить материал собственной подборкой упражнений.

Урок по продолжительности занимаем всего 1:44 минуты. Но этого достаточно, чтобы научить школьников откладывать вектор от заданной точки.

Урок начинается с демонстрации вектора, начало которого находится в некоторой точке. Говорят, что вектор от нее отложен. Затем автор предлагает доказать вместе с ним утверждение, согласно которому от любой точки можно отложить вектор, равный данному и, притом, единственный. В ходе доказательства автор подробно рассматривает каждый случай. Во-первых, он берет ситуацию, когда данный вектор нулевой, во-вторых, когда вектор - ненулевой. Во время доказательства используются иллюстрации в виде рисунков и построения, математическая запись, которые формируют у школьников математическую грамотность. Автор рассказывает, не торопясь, что позволяет обучающимся вести записи параллельно, пока идет комментирование. Построение, которое вел автор в ходе доказательства ранее сформулированного утверждения, показывает, как от некоторой точки можно построить вектор, равный данному.

Если обучающиеся будут внимательно смотреть урок и параллельно вести записи, то они легко усвоят материал. Тем более, что автор рассказывает подробно, размеренно и достаточно полно. Если по каким-то причинам что-то не услышали, то можно вернуться и посмотреть урок еще раз.

После просмотра видеоурока желательно приступить к закреплению материала. Учителю рекомендуется подобрать задания по данной теме, чтобы отработать навык откладывания вектора от данной точки.

Данный урок можно использовать для самостоятельного изучения темы школьниками. Но для закрепления необходимо обратиться к учителю, чтобы он подобрал соответствующие задания. Ведь без закрепления материала сложно добиться положительного результата в обучении.

Новое на сайте

>

Самое популярное