Домой Спорт и фитнес Как далеко от нас звезды. Как далеко от Земли надо оказаться, чтобы не чувствовать её гравитацию? Каким же образом измеряют расстояние до звезд

Как далеко от нас звезды. Как далеко от Земли надо оказаться, чтобы не чувствовать её гравитацию? Каким же образом измеряют расстояние до звезд

". Очень интересная и познавательная информация о том, каким образом можно определить расстояние до объекта на местности пользуясь только собственным глазомером. Всего описывается несколько способов определения расстояний на местности, но для нашей темы измерения расстояний до звезд нам важен всего лишь один из выводов, который гласит, что при удалении предмета в N раз дальше, чем он был от нас, он зрительно уменьшается в N раз; и наоборот, во сколько раз приблизим предмет, во столько раз он зрительно увеличится. Т.е. если взять предмет, измерить его физическую длину (пусть это будет палка длиной 1м), измерить расстояние до этого объекта (пусть будет 0,1 м), потом удалить этот объект на расстояние 4 м от того места, где он находился, то зрительно он станет меньше в 4 раза! Все очень просто. Зная эту зависимость, на местности можно довольно точно определять расстояния до объекта, правда, нужно знать его актуальный размер. Но это не проблема, если речь идет об автомобиле или подобном хорошо знакомом предмете.

Теперь мы, зная эту простую обратную зависимость расстояния и величины объекта , попробуем замахнуться на “основы основ” и посчитать примерное расстояние до ближайших звезд.

Скептики сразу скажут, что эти оптические законы могут не работать на космических расстояниях, поэтому сначала начнем с проверки известных фактов: Солнце больше Луны - в 400 раз. Расстояние от Земли до Солнца также хорошо известно - около 150 млн км. Т.к. у нас на небосклоне Солнце и Луна зрительно одинаковы (это прекрасно заметно при полном солнечном или лунном затмении), то получается, что Луна должна быть ближе к нам, чем Солнце в 400 раз. И это также подтверждается! Яндекс нам в помощь: от Земли до Луны 384 467 км! Проверим, работает ли формула зависимости, для этого 150 млн км разделим на 384467 и получим 390 раз! Т.е. получается, что небесная механика абсолютно точно работает и прекрасно соблюдается оптический закон обратной зависимости видимого размера объекта от расстояния.

Теперь нам нужно найти достойный объект для изучения. Конечно, это будет наше Солнце. Во-первых, мы знаем расстояние до Солнца. Во-вторых, как нам говорят ученые, наше Солнце является всего лишь “заурядным” желтым карликом и подобных звезд класса G2 на небосклоне огромное количество - примерно 10% от всех звезд. и .

Теперь самое важное: получается, что если у нас на небосклоне есть звезды (а они там есть), которые, как утверждают ученые примерно равны размерам нашего Солнца - сейчас отбросим условности, точные параметры нам не так важны, важно то, что звезда по своим размерам примерно такая же как Солнце - т.е. если мы будем знать, во сколько раз Солнце зрительно больше этой звезды, мы сможем посчитать реальное расстояние до этой звезды! Все просто! Полная аналогия с Луной и Солнцем.

Теперь берем звезду, которая имеет (по уверениям ученых) очень близкие параметры к нашему Солнцу: например, 18 Скорпиона ( 18 Scorpii ) - одиночная в созвездии , которая находится на расстоянии около 45,7 от Земли. Объект примечателен тем, что по своим характеристикам он очень похож на .

Итак, “По звезда относится к категории и является «двойником» : масса - 1,01 массы Солнца, радиус - 1,02 радиуса Солнца, светимость - 1,05 светимости Солнца”...

Поясню, эта звезду 18 Скорпиона можно различить на небосклоне невооруженным взглядом. В любом случае, если ученые смогли описать звезду - видимо по спектру - то и у нас не будет сомнений - эта звезда “двойник” нашего Солнца.

Есть еще много звезд, которые сравнимы по размеру с нашим дневным светилом. Например, Альфа-центавра, Дзета Сетки и т.д. Важно понять главное: на небосклоне есть много видимых звезд, размеры которых по утверждениям астрономов являются близкими к размерам Солнца.

Теперь, собственно, сам мысленный эксперимент:

Мы должны сравнить диск Солнца и диск звезды, которая как мы знаем по размерам является его близким аналогом. Во сколько раз диск Солнца больше звезды, во столько раз звезда дальше, чем солнце (проверено Луной)!

Давайте возьмем день, когда Солнце стоит в зените (это его наше зрительное восприятие) и попытаемся “прикинуть”, во сколько раз солнце будет больше своей "тезки" (которую видно только ночью).

Итак, предположим, что на видимом диске Солнца в зените можно отложить 1000 звездочек (от одного края диска до другого). На самом деле может быть и больше, но предположу, что т.к. Вики утверждает, что абсолютное большинство звезд гораздо меньше Солнца, это значит, что среди ярких ночных светил на ночном небе может быть довольно много “малышей”, а это автоматически уменьшает расстояние до них - например не в 1000 раз, а всего лишь в 100 или еще меньше!

Теперь посчитаем расстояние до звезды. 150 млн* 1000. Получим: 150.000.000.000 км. =150 млрд. км. Теперь давайте посчитаем, сколько потребуется свету, чтобы преодолеть это расстояние. Ведь нам говорят о минимум световых годах!!! Итак, мы знаем, что скорость света - 300000 км/сек. Значит, мы просто поделим 150.000.000.000 км на 300000 км/сек и получим время в секундах: 500000 сек. Это всего лишь 5.787 обычных дней! Т.е. свет от такой звезды до нас будет идти всего лишь несколько дней...

Теперь давайте посчитаем, сколько придется лететь на ракете при скорости, например в 10 км/сек. Ответ будет 15 млрд секунд. Если перевести в года, то это: 475.64 земных года! Конечно, цифра поражает, но это все равно не световой год! Это световая неделя максимум! Т.е. свет звезд, что мы видим на небе, самый что ни на есть "свежий". Иначе мы бы видели черное пустое небо. Но, если мы его видим все-таки в звездах, значит звезды намного ближе. Если же предположить, что на солнце поместится никак не больше сотни звезд вдоль диаметра, то лететь до ближайшей звезды всего лишь около 50 лет!

Оценка информации


Записи на схожие темы

Пренебречь воздействием взрывов сверхновых звезд .Например, о столкновениях Земли...лишь в том, насколько далеко в прошлом произошла последняя...«волосатая» или «лохматая» (звезда ). Между тем, это слово... не ввел…Так какое у нас нынче тысячелетье на...

При наблюдении за какой-нибудь звездой с двух противоположных точек земного шара практически невозможно заметить различия в направлениях на звезду. Звезды находятся от Земли во много раз дальше, чем Луна, планеты, Солнце. Определить расстояние до ближайшей к нам звезды удалось русскому ученому В. Я. Струве. Это было более ста лет назад. Для этого ему пришлось наблюдать ее не с концов земного диаметра, а с концов прямой линии, которая в 23600 раз длиннее. Где же он мог взять такую прямую линию, которая на земном шаре не может уместиться? Оказывается, эта линия существует в природе. Это диаметр земной орбиты. За полгода земной шар перенесет нас на другую сторону от Солнца. Зная диаметр земной орбиты (а он вдвое больше среднего расстояния до Солнца), измерив углы, под которыми наблюдается звезда, можно вычислить расстояние до нее.

Самые близкие к нам звезды — Проксима Центавра и Альфа Центавра — находятся в 270 000 раз дальше от Земли, чем Солнце. Лучу света от этих звезд приходится лететь до Земли 4,5 года.

Расстояния до звезд огромны и измерять их километрами неудобно. Получается слишком большое число километров. И ученые ввели более крупную единицу измерения: световой год. Это такое расстояние, которое свет проходит в течение одного года.

Во сколько раз эта единица измерения больше, чем километр? 300000 км/с надо умножить на число секунд в году. Получим приблизительно 10 триллионов километров. Значит, один световой год больше одного километра в 10 триллионов раз (10 000 000 000 000).

Звезды могут находиться от нас на расстояниях, равных десяткам, сотням, тысячам световых лет и более.

Днем воздух так же прозрачен, как и ночью, однако звезды не видны. Все дело в том, что в дневное время атмосфера рассеивает солнечный свет. Попробуйте вечером из хорошо освещенной комнаты посмотреть на улицу. Сквозь оконное стекло яркие фонари, расположенные снаружи, видны достаточно хорошо, а слабо освещенные предметы разглядеть почти невозможно. Но стоит только выключить свет…

Река тихо и плавно течет по равнине, а на крутых обрывах ускоряет свое движение. Поток глубоко врезается в почву и образует узкие ущелья с крутыми и высокими стенами. Особенно быстро размывает вода берега, состоящие из рыхлых пород. Если же путь реке преграждают горы, она или огибает их, или пробивает, создавая глубокие ущелья и каньоны. Иногда…

Самое чистое и глубокое озеро — Байкал. Его длина 620 километров при ширине от 32 до 74 километров. Глубина озера в самом глубоком месте — трещине Ольхон — равна 1940 метрам. Объем пресной воды в озере составляет 2300 кубических километров. Африканской сестрой Байкала называют географы озеро Таньганьику. Оно возникло на территории Восточной Африки много миллионов…

Народная русская мудрость гласит: “Ставь дом там, где овцы легли”. А в Китае существует обычай не приступать к строительству дома, пока не убедишься в том, что место застройки свободно от “глубинных демонов”. Именно поэтому большинство старинных городов и сел как у нас на Руси, так во многих других странах, расположены очень удачно. Хотя есть, конечно,…

Потребность измерять время возникла у людей уже в глубокой древности. Первые календари появились много тысяч лет назад на заре человеческой цивилизации. Люди научились измерять промежутки времени, сопоставлять их с явлениями, которые повторялись периодически (смена дня и ночи, смена фаз Луны, смена времен года). Без использования единиц измерения времени люди не могли жить, общаться между собой,…

В этом созвездии две яркие звезды находятся очень близко одна от другой. Свое название они получили в честь аргонавтов Диоскуров — Кастора и Поллукса — близнецов, сыновей 3евса, самого могущественного из олимпийских богов, и Леды, легкомысленной земной красавицы, братьев Елены прекрасной — виновницы Троянской войны. Кастор славился как искусный возничий, а Поллукс как непревзойденный кулачный…

Великий итальянец Галилео Галилей (1564—1642), много сделавший для развития математики, механики, физики, достиг поразительных успехов в изучении небесных тел. Он прославился не только рядом астрономических открытий, но и огромной смелостью, с которой он встал на защиту учения Коперника, запрещенного всесильной церковью. В 1609 году Галилей узнал, что в Голландии появился прибор-дальновидец (так переводится с греческого…

Солнечное и лунное затмения знакомы человеку с глубокой древности. Когда человек еще не знал, отчего происходят эти явления, угасание Солнца средь бела дня вызывало у него панический страх. Это действительно таинственное и величественное зрелище. Яркое Солнце сияет на синем небел и постепенно солнечный свет начинает ослабевать. На правом краю Солнца появляется ущерб. Он медленно увеличивается,…

А что если и наша звезда — Солнце — вдруг вспыхнет сверхновой? Исчезнет сама и нас вычеркнет из Вселенной навсегда? Как говорят ученые, это событие хотя и возможно, но вероятность его очень мала. Свою энергию звезда получает, постепенно превращая водород в гелий, затем в более тяжелые элементы (углерод, кислород, неон и другие) с помощью цепочки…

Самая крупная планета носит имя верховного бога Олимпа. По объему Юпитер больше Земли в 1310 раз, а по массе — в 318 раз. По расстоянию от Солнца Юпитер на пятом месте, а по блеску он занимает на небе четвертое место после Солнца, Луны и Венеры. В телескоп видна сжатая у полюсов планета с заметным рядом…

Древние считали, что все звезды находятся на одинаковом расстоянии от Земли, прикрепленные к хрустальной сфере. В античные времена Земля считалась неподвижным центром Вселенной, вокруг которого вращались Солнце, Луна, планеты и звезды. Природа небесных тел в то время была неизвестна, и лишь очень немногие философы полагали, что звезды являются, по сути, далекими солнцами.


Это представление стало распространяться только после появления учения Коперника в XVI веке. Чтобы объяснить неравномерности в движении планет по небу, Коперник предположил, что в центре Вселенной находится не Земля, но Солнце, вокруг которого вращались планеты. Земля, лишившись статуса центра, стала всего лишь одной из планет: теперь она не покоилась неподвижно, но обращалась вокруг Солнца по орбите. Тогда у некоторых ученых появилась идея измерить расстояния до звезд. Метод, который они предложили, называется методом годичного параллакса.

Идея была проста и заключалась в следующем. Если постоянно измерять положение звезды на небе, то можно заметить, как звезда описывает в пространстве крохотные эллипсы с периодом в 1 год. Смещение звезды должно происходить из-за движения Земли по орбите вокруг Солнца, и величина его будет тем больше, чем ближе к нам располагается звезда. Зная величину угла смещения или, иначе, параллакс звезды, можно без труда найти расстояние до нее по формуле D=a/sin(p), где a – большая полуось земной орбиты, а p – величина параллакса, измеряемая в секундах дуги.

Несмотря на простоту метода, ученым долгое время не удавалось обнаружить у звезд параллаксы. Некоторые считали это доказательством ошибочности теории Коперника, но большинство полагало, что звезды просто очень далеки от нас, чтобы надеяться определить их параллакс.

Только в XIX веке с появлением нового поколения телескопов, позволявших измерять очень малые углы, ученые смогли надежно определить расстояния до некоторых звезд. Первым параллакс измерил великий русский астроном, первый директор Пулковской обсерватории, Василий Яковлевич Струве в 1837 году. Наблюдая звезду Вегу, он нашел, что ее параллакс равен 0”,125. Это совершенно ничтожный угол. Достаточно сказать, что под таким углом будет виден невооруженному глазу человек с расстояния в 3000 километров!

Теперь можно было вычислить и расстояние до этой звезды. Если расстояние от Земли до Солнца (а) принять за 1, то D=1/sin(0”,125), что равно 1650000. Эта цифра показывает, во сколько раз Вега дальше от Земли, чем Солнце. Такие колоссальные расстояния неудобно измерять в километрах, поэтому астрономы пользуются парсеками. Парсек – это расстояние, с которого большая полуось земной орбиты, перпендикулярная к лучу зрения, видна под углом в 1". Расстояние в парсеках равно обратной величине параллакса. Так как параллакс Веги составляет всего лишь 1/8 угловой секунды, то расстояние до звезды равно 8 парсекам.

Это очень большая величина. Свет, двигаясь со скоростью 300000 км/с, преодолеет это расстояние за 26 лет. Это значит, что наблюдаемый нами свет Веги был испущен звездой 26 лет назад!

На сегодняшний день ученым известны параллаксы более сотни тысяч звезд. Метод годичных параллаксов позволил астрономам определить точные расстояния до звезд в радиусе примерно сотни парсек или 320 световых лет от Солнца. Расстояния до более далеких звезд определяются другими, косвенными методами. Но в их основании находится все тот же метод годичного параллакса.

Представляя себе далекие звезды, мы обычно думаем о расстояниях в десятки, сотни или тысячи световых лет. Все эти светила принадлежат к нашей Галактике - Млечному Пути. Современные телескопы способны разрешить звезды в ближайших галактиках - расстояние до них может достигать десятков миллионов световых лет. Но насколько далеко простираются возможности наблюдательной техники, особенно когда ей помогает природа? Недавнее удивительное открытие Икара - самой далекой звезды во Вселенной из числа известных на сегодняшний день - свидетельствует о возможности наблюдения чрезвычайно удаленных космических феноменов.

Помощь природы

Существует явление, благодаря которому астрономам может быть доступно наблюдение наиболее дальних объектов Вселенной. Называется оно является одним из следствий общей теории относительности и связано с отклонением светового луча в поле гравитации.

Эффект линзирования заключается в том, что если между наблюдателем и источником света на луче зрения располагается какой-либо массивный объект, то , искривляясь в его гравитационном поле, создают искаженное или множественное изображение источника. Строго говоря, лучи отклоняются в поле тяготения любого тела, но наиболее заметный эффект дают, конечно, самые массивные образования во Вселенной - скопления галактик.

В случаях, когда в качестве линзы выступает малое космическое тело, например одиночная звезда, визуальное искажение источника практически невозможно зафиксировать, но яркость его может существенно возрасти. Такое событие называют микролинзированием. В истории открытия самой далекой от Земли звезды сыграли роль оба типа гравитационного линзирования.

Как произошло открытие

Обнаружению Икара способствовала счастливая случайность. Астрономы вели наблюдение одного из удаленных MACS J1149.5+2223, находящегося приблизительно в пяти миллиардах световых лет от нас. Оно интересно как гравитационная линза, благодаря особой конфигурации которой световые лучи искривляются по-разному и проходят в итоге разные расстояния до наблюдателя. Вследствие этого отдельные элементы линзированного изображения источника света должны запаздывать.

В 2015 году астрономы ждали предсказанной в рамках данного эффекта повторной вспышки сверхновой Рефсдаль в очень далекой галактике, свет от которой достигает Земли за 9,34 миллиарда лет. Ожидаемое событие действительно произошло. Но на снимках 2016-2017 годов, полученных телескопом «Хаббл», помимо сверхновой, обнаружилось еще кое-что, не менее интересное, а именно изображение звезды, принадлежащей к той же удаленной галактике. По характеру блеска определили, что это - не сверхновая, не гамма-всплеск, а обычная звезда.

Увидеть отдельное светило на таком огромном расстоянии стало возможно благодаря событию микролинзирования в самой галактике. Случайным образом перед звездой прошел объект - скорее всего, другая звезда - с массой порядка солнечной. Сам он, конечно, остался невидимым, но его поле гравитации усилило блеск источника света. В сочетании с линзирующим эффектом кластера MACS J1149.5+2223 это явление дало усиление яркости самой далекой видимой звезды в 2000 раз!

Звезда по имени Икар

Новооткрытому светилу было присвоено официальное наименование MACS J1149.5+2223 LS1 (Lensed Star 1) и собственное имя - Икар. Предыдущий рекордсмен, носивший гордый титул самой далекой звезды, которую удалось наблюдать, расположен в сто раз ближе.

Икар чрезвычайно ярок и горяч. Это голубой сверхгигант спектрального класса В. Астрономам удалось определить основные характеристики звезды, такие как:

  • масса - не менее 33 масс Солнца;
  • светимость - превышает солнечную приблизительно в 850 000 раз;
  • температура - от 11 до 14 тысяч кельвин;
  • металличность (содержание химических элементов тяжелее гелия) - около 0,006 солнечной.

Судьба самой далекой звезды

Событие микролинзирования, позволившее увидеть Икар, произошло, как мы уже знаем, 9,34 миллиарда лет назад. Возраст Вселенной составлял тогда всего около 4,4 миллиарда лет. Снимок этой звезды - своего рода мелкомасштабный стоп-кадр той давней эпохи.

За время, в течение которого свет, испущенный 9 с лишним миллиардов лет назад, преодолел расстояние до Земли, космологическое расширение Вселенной отодвинуло галактику, в которой жила самая далекая звезда, до расстояния в 14,4 миллиарда световых лет.

Сам же Икар, согласно современным представлениям об эволюции звезд, давно прекратил существование, ведь чем массивнее звезда, тем короче должно быть время ее жизни. Не исключено, что часть вещества Икара послужила строительным материалом для новых светил и, вполне возможно, их планет.

Увидим ли мы его снова

Несмотря на то что случайный акт микролинзирования - очень кратковременное событие, ученые имеют шанс увидеть Икара снова, и даже с большей яркостью, поскольку в крупном линзирующем скоплении MACS J1149.5+2223 множество звезд должно находиться вблизи луча зрения Икар - Земля, и пересечь этот луч может любая из них. Разумеется, есть вероятность увидеть таким же образом и другие удаленные звезды.

А может быть, когда-нибудь астрономам повезет зафиксировать грандиозный взрыв - вспышку сверхновой, которой завершила свою жизнь самая далекая звезда.

Как часто мы зачарованно смотрим в небо, пораженные красотой мерцающих звезд! Они как бы рассыпаны по небосклону и манят нас своим загадочным свечением. Множество вопросов при этом возникает у нас, но одно ясно: звезды находятся очень далеко. Но что стоит за словом «очень»? Как далеко находятся от нас звезды? Как можно измерить расстояние до них?

Но сначала давайте разберемся с самим понятием «звезды».

Что обозначает слово «звезда»

Звезда – это небесное тело (материальный объект, естественным образом сформировавшийся в космическом пространстве), в котором идут термоядерные реакции. Термоядерная реакция – это разновидность ядерной реакции, при которой лёгкие атомные ядра объединяются в более тяжёлые за счет кинетической энергии их теплового движения.

Типичной звездой является наше Солнце .

Проще говоря, звезды – это огромные светящиеся газовые (плазменные) шары. Они образуются в основном из водорода и гелия путем взаимодействия - гравитационного сжатия. Температура в глубине звезд огромна, она измеряется миллионами кельвинов. Если хотите, можете перевести эту температуру в градусы Цельсия, где °С = K−273,15. На поверхности она, конечно, ниже и составляет тысячи кельвинов.

Звезды – это главные тела Вселенной, потому что в именно в них заключена основная масса светящегося вещества в природе.

Невооруженным глазом мы можем видеть около 6000 звезд. Все эти видимые звезды (в том числе видимые при помощи телескопов) находятся в местной группе галактик (т.е. галактики Млечный Путь, Андромеды и Треугольника).

Ближе всех к Солнцу находится звезда Проксима Центавра. Она расположена в 4,2 светового года от центра Солнечной системы. Если это расстояние перевести в километры, то это будет 39 триллионов километров (3,9·10 13 км). Световой год равен расстоянию, проходимому светом за один год - 9 460 730 472 580 800 метрам (или 200000 км/сек.).

Каким же образом измеряют расстояние до звезд?

Как мы уже убедились, звезды находятся от нас очень далеко, поэтому эти огромные светящиеся шары кажутся нам маленькими светящимися точками, хотя многие из них могут быть во много раз больше нашего Солнца. Оперировать такими огромными цифрами очень неудобно, поэтому ученые выбрали другой, относительно простой способ измерения расстояния до звезд, но менее точный. Для этого наблюдают за определенной звездой с двух полюсов Земли: южного и северного. При таком наблюдении звезда смещается на небольшое расстояние для противоположного наблюдения. Такое изменение называется параллаксом. Итак, параллакс – это изменение видимого положения объекта относительно удалённого фона в зависимости от положения наблюдателя.

Это мы видим на схеме.

На фотографии – явление параллакса: отражение фонаря в воде значительно сдвинуто относительно практически не сместившегося Солнца.

Зная расстояние между точками наблюдения D (база ) и угол смещения α в радианах, можно определить расстояние до объекта:

Для малых углов:

Для измерения расстояния до звезд удобнее использовать годичный параллакс. Годичный параллакс - угол, под которым со звезды видна большая полуось земной орбиты, перпендикулярная направлению на звезду.

Годичные параллаксы являются показателями расстояний до звёзд. Расстояния до звезд удобно выражать в парсеках (пс). Расстояние, годичный параллакс которого равен 1 угловой секунде, называется парсек (1 парсек = 3,085678·10 16 м). Ближайшая звезда Проксима Центавра имеет параллакс 0,77″, следовательно, расстояние до неё составляет 1,298 пк. Расстояние до звезды α Центавра равно 4/3 пс.

Еще Галилео Галилей предположил, что если Земля вращается вокруг Солнца, то это можно заметить по непостоянству параллакса для удалённых звёзд. Но существовавшими тогда приборами невозможно было обнаружить параллактическое смещение звезд и определение расстояний до них. А радиус Земли слишком мал, чтобы служить базисом для измерения параллактического смещения.

Первые успешные попытки наблюдения годичного параллакса звёзд были выполнены выдающимся российским астрономом В. Я. Струве для звезды Вега (α Лиры), эти результаты опубликованы в 1837 г. Однако научно достоверные измерения годичного параллакса были впервые проведены немецким математиком и астрономом Ф. В. Бесселем в 1838 г. для звезды 61 Лебедя. Поэтому приоритет открытия годичного параллакса звёзд признается за Бесселем.

Измерением годичного параллакса можно надежно установить расстояния до звезд, находящихся не далее 100 пс, или 300 световых лет. Расстояния до более далеких звезд в настоящее время определяют другими методами.

Новое на сайте

>

Самое популярное