Домой Здоровье Нейтрон делится на. Деление атомных ядер

Нейтрон делится на. Деление атомных ядер

Освобождение энергии при делении ядер. Так же как и в других ядерных реакциях, энергия, освобождающаяся при делении, эквивалентна разности масс взаимодействующих частиц и конечных продуктов. Так как энергия связи нуклона в уране а энергия связи одного нуклона в осколках при делении урана должна выделяться энергия

Таким образом, при делении ядра освобождается огромная энергия, подавляющая ее часть выделяется в виде кинетической энергии осколков деления.

Распределение продуктов деления по массам. Ядро урана в большинстве случаев делится несимметрично. Два ядерных осколка имеют соответственно разные скорости и разные массы.

Осколки по массам распадаются на две группы; одна вблизи криптона с другая вблизи ксенона Массы осколков относятся друг к другу в среднем как Из за-конов сохранения энергии и импульса можно получить, что кинетические энергии осколков должны быть обратно пропорциональны их массам:

Кривая выхода продуктов деления симметрична относительно вертикальной прямой, проходящей через точку Значительная ширина максимумов свидетельствует о многообразии путей деления.

Рис. 82. Распределение продуктов деления урана по массам

Перечисленные характеристики относятся главным образом к делению под действием тепловых нейтронов; в случае деления под действием нейтронов с энергией в несколько и больше, ядро распадается на два более симметричных по массам осколка.

Свойства продуктов деления. При делении атома урана происходит срыв очень многих электронов оболочки, и осколки деления представляют собой приблизительно -кратно ионизованные положительные ионы, которые при прохождении через вещество сильно ионизуют атомы. Поэтому пробеги осколков в воздухе небольшие и близки к 2 см.

Легко установить, что образующиеся при делении осколки должны быть радиоактивными, склонными к испусканию нейтронов. Действительно, у стабильных ядер отношение числа нейтронов и протонов меняется в зависимости от А следующим образом:

(см. скан)

Ядра, которые образовались при делении, лежат в середине таблицы и, следовательно, содержат больше нейтронов, чем это допустимо для их стабильности. Освобождаться от лишних нейтронов они могут как путем -распада, так и непосредственно испуская нейтроны.

Запаздывающие нейтроны. В одном из возможных вариантов деления образуется радиоактивный бром. На рис. 83 показана схема его распада, в конце которой находятся стабильные изотопы

Интересна особенность этой цепочки: криптон может освобождаться от лишнего нейтрона либо за счет -распада, либо если он образовался в возбужденном состоянии за счет прямого испускания нейтрона. Эти нейтроны появляются через 56 сек после деления (время жизни относительно -перехода в возбужденное состояние хотя сам испускает нейтроны практически мгновенно.

Рис. 83. Схема распада радиоактивного брома, образованного в возбужденном состоянии при делении урана

Они называются запаздывающими нейтронами. Со временем интенсивность запаздывающих нейтронов спадает по экспоненте, как при обычном радиоактивном распаде.

Энергия этих нейтронов равна энергии возбуждения ядра. Хотя они составляют лишь 0,75% от всех нейтронов, вылетающих при делении, в осуществлении цепной реакции запаздывающие нейтроны играют важную роль.

Мгновенные нейтроны. Свыше 99% нейтронов освобождается в течение чрезвычайно короткого времени; их называют мгновенными нейтронами.

При изучении процесса деления возникает фундаментальный вопрос, сколько нейтронов получается в одном акте деления; этот вопрос важен потому, что если их число в среднем велико они могут быть использованы для деления последующих ядер, т. е. возникает возможность создания цепной реакции. Над разрешением этого вопроса в 1939-1940 гг. работали практически во всех крупнейших ядерных лабораториях мира.

Если гипотетически соединить молибден с лантаном (см. табл. 1.2), то получится элементе массовым числом 235. Это уран-235. В такой реакции результирующий дефект массы не возрастает, а уменьшается, следовательно, для осуществления такой реакции следует затратить энергию. Из этого можно сделать вывод, что если осуществить реакцию деления ядра урана на молибден и лантан, то дефект массы при такой реакции увеличивается, а значит, реакция пойдет с выделением энергии.

После открытия английским ученым Джеймсом Чедвиком нейтрона в феврале 1932 года стало ясно, что новая частица может служить идеальным инструментом для осуществления ядерных реакций, поскольку в этом случае не будет электростатического отталкивания, препятствующего приближению частицы к ядру. Следовательно, даже нейтроны с очень низкой энергией смогут легко взаимодействовать с любым ядром.

В научных лабораториях было поставлено множество экспериментов по облучению нейтронами ядер разных элементов, в том числе урана. Считалось, что добавление нейтронов к ядру урана позволит получить так называемые трансурановые элементы, отсутствующие в природе . Однако в результате радиохимического анализа облученного нейтронами урана элементы с номеров выше 92 не обнаруживались, зато было отмечено появление радиоактивного бария (заряд ядра 56). Немецкие химики Отто Ган (1879-1968) и Фридрих Вильгельм Штрассман (1902-1980) несколько раз перепроверили результаты и чистоту исходного урана, поскольку появление бария могло свидетельствовать только о распаде урана на две части. Многие полагали, что такое невозможно.

Сообщая о своей работе в первых числах января 1939 г., О. Ган и Ф. Штрассман писали: «Мы пришли к следующему выводу: наши изотопы радия обладают свойствами бария... И следует заключить, что мы имеем здесь дело не с радием, а с барием». Однако вследствие неожиданности такого результата они не решились сделать окончательные выводы. «Как химики, - писали они, - мы должны заменить символы Ra, Ас и Th в нашей схеме... на Ва, La и Се, хотя как химики, работающие в области ядерной физики и тесно с ней связанные, мы не можем решиться на этот шаг, противоречащий предыдущим экспериментам» .

Австрийский радиохимик Лиза Мейтнер (1878-1968) и ее племянник Отто Роберт Фриш (1904-1979) обосновали возможность расщепления ядер урана с физической точки зрения сразу же после проведения Ганом и Штрассманом решающего опыта в декабре 1938 года. Мейтнер указала, что при расщеплении ядра урана образуются два более легких ядра, испускаются два-три нейтрона и выделяется огромная энергия.

Нейтронные реакции имеют особое значение для ядерных реакторов. В отличие от заряженных частиц нейтрону не требуется значительной энергии, чтобы проникнуть внутрь ядра. Рассмотрим некоторые типы взаимодействия нейтронов с веществом (нейтронные реакции), которые имеют важное практическое значение:

  • упругое рассеяние zX(n,n)?X. При упругом рассеянии происходит перераспределение кинетической энергии: нейтрон отдает часть своей кинетической энергии ядру, кинетическая энергия ядра увеличивается после рассеяния именно на величину этой отдачи, а потенциальная энергия ядра (энергия связи нуклонов) остается прежней. Энергетическое состояние и структура ядра до и после рассеяния остаются неизменными. Упругое рассеяние в большей степени свойственно легким ядрам (с атомной массой менее 20 а. е. м.) при взаимодействии их с нейтронами сравнительно небольших кинетических (менее 0,1 МэВ) энергий (замедление нейтронов деления в замедлителе в активной зоне и в биологической защите, отражение в отражателе);
  • неупругое рассеяние уХ[п,п" иу)?Х. При неупругом рассеянии сумма кинетических энергий ядра и нейтрона после рассеяния оказывается меньше, чем до рассеяния. Разница сумм кинетических энергий затрачивается на изменение внутренней структуры исходного ядра, что равноценно переходу ядра в новое квантовое состояние, в котором всегда имеет место избыток энергии сверх уровня устойчивости, который «сбрасывается» ядром в виде испускаемого гамма-кванта. В результате неупругого рассеяния кинетическая энергия системы ядро-нейтрон становится меньше на энергию у-квантов. Неупругое рассеяние - пороговая реакция, происходит только в быстрой области и преимущественно на тяжелых ядрах (замедление нейтронов деления в активной зоне, конструкционных материалах, биологической защите);
  • радиационный захват -)Х (л,у) Л " 7 У. В этой реакции получается новый изотоп элемента, а энергия возбужденного составного ядра высвобождается в виде у-квантов. Легкие ядра обычно переходят в основное состояние, излучая один у-квант. Для тяжелых ядер характерен каскадный переход через многие промежуточные возбужденные уровни с излучением нескольких у-квантов различных энергий;
  • испускание заряженных частиц у X (л, р) 7 У ; 7 Х (л,а) ? У. В результате первой реакции образуется изобара исходного ядра, поскольку протон уносит один элементарный заряд, а масса ядра практически не меняется (нейтрон привнесен, а протон - унесен). Во втором случае реакция завершается испусканием возбужденным составным ядром а-частицы (лишенного электронной оболочки ядра атома гелия 4 Не);
  • деление?Х (я, несколько/? и у) - осколки деления. Основная реакция, в результате которой освобождается энергия, получаемая в ядерных реакторах, и поддерживается цепная реакция. Реакция деления происходит при бомбардировке ядер некоторых тяжелых элементов нейтронами, которые, не обладая даже большой кинетической энергией, вызывают деление этих ядер на два осколка с одновременным освобождением нескольких (обычно 2-3) нейтронов. К делению склонны лишь некоторые четно-нечетные ядра тяжелых элементов (например, 233 U, 235 U, 239 Pu, 24l Pu, 25l C0. При бомбардировке ядер урана или других тяжелых элементов нейтронами больших энергий (Е п > ЮМэВ), например нейтронами космического излучения, они могут разделить ядра на несколько осколков, и при этом вылетают (освобождаются) десятки нейтронов;
  • реакция удвоения нейтронов?Х (n,2n)zX. Реакция с испусканием возбужденным составным ядром двух нейтронов, в результате которой образуется изотоп исходного элемента, с массой ядра на единицу меньшей массы исходного ядра. Для того чтобы составное ядро смогло выбросить два нейтрона, его энергия возбуждения должна быть не меньше энергии связи двух нейтронов в ядре. Энергия порога (/?, 2п) - реакции особенно низка в реакции ""Be (л, 2/?) s Be: она равна 1,63 МэВ. Для большинства изотопов энергия порога лежит в интервале от 6 до 8 МэВ.

Процесс деления удобно рассматривать по капельной модели ядра. При поглощении нейтрона ядром внутренний баланс сил в ядре нарушается, так как нейтрон вносит помимо своей кинетической энергии еще и энергию связи Е св, которая является разностью энергий свободного нейтрона и нейтрона в ядре. Сферическая форма возбужденного составного ядра начинает деформироваться и может принять форму эллипсоида (см. рис. 1.4), при этом поверхностные силы стремятся вернуть ядро к исходной форме. Если это произойдет, то ядро испустит у-квант и перейдет в основное состояние, т. е. будет иметь место реакция радиационного захвата нейтрона.

Рис. 1.4.

Если же энергия связи (возбуждения) окажется больше энергии порога деления Е сп > Е лел, то ядро может принять форму гантели и под действием кулоновских сил отталкивания разорваться по перемычке на два новых ядра - осколки деления, представляющие собой ядра различных нуклидов, находящихся в средней части Периодической системы элементов. Если энергия связи меньше порога деления, то нейтрон должен иметь кинетическую энергию > Е яел -Е св, чтобы произошло деление ядра (табл. 1.3). В противном случае он будет просто захватываться ядром, не вызывая его деления.

Таблица 1.3

Ядерно-физические характеристики некоторых нуклидов

Энергия возбуждения каждого из новых ядер существенно больше энергии связи нейтрона в этих ядрах, поэтому при переходе в основное энергетическое состояние они испускают один или несколько нейтронов, а затем у-кванты. Нейтроны и у-кванты, испускаемые возбужденными ядрами, называют мгновенными.

Ядра делящихся изотопов, находящихся в конце Периодической системы, имеют нейтронов значительно больше, чем протонов, по сравнению с ядрами нуклидов, находящихся в середине системы (для 23;> и отношение числа нейтронов к числу протонов N/Z= 1,56, а для ядер нуклидов, где Л = 70-Н60, это отношение равно 1,3-1,45). Поэтому ядра продуктов деления перенасыщены нейтронами и являются (3‘-радиоактивными.

После (3" распада ядер продуктов деления возможно образование дочерних ядер с энергией возбуждения, превышающей энергию связи нейтронов в них. В результате возбужденные дочерние ядра испускают нейтроны, которые называют запаздывающими (см. рис. 1.5). Время их выхода после акта деления определяется периодами распада этих ядер и составляет от нескольких долей секунды до 1 мин. В настоящее время известно большое количество продуктов деления, испускающих при распаде запаздывающие нейтроны, из которых основными являются изотопы йода и брома. Для практических целей наибольшее распространение нашло использование шести групп запаздывающих нейтронов. Каждая из шести групп запаздывающих нейтронов характеризуется периодом полураспада Т„ или постоянной распада X, и долей запаздывающих нейтронов в данной группе р„ или относительным выходом запаздывающих нейтронов а,. Причем la, = 1, a ip, =р - физической доле запаздывающих нейтронов. Если представить все запаздывающие нейтроны одной эквивалентной группой, то свойства этой группы будут определяться средним временем жизни ее т 3 и долей всех запаздывающих нейтронов р. Для 235 U значение т 3 = 12,4 с и р = 0,0064.

Вклад запаздывающих нейтронов в среднее число нейтронов, выделяющихся в одном акте деления, мал. Однако запаздывающие нейтроны играют решающую роль в обеспечении безопасной работы и в управлении ядерных реакторов.

Появление при делении одного ядра двух-трех нейтронов создает условия для деления других ядер (см. рис. 1.6). Реакции с размножением нейтронов протекают аналогично цепным химическим реакциям, поэтому они также названы цепными.


Рис. 1.5.


Рис. 1.6.

Необходимое условие поддержания цепной реакции заключается в том, чтобы при делении каждого ядра производился в среднем по крайней мере один нейтрон, вызывающий деление другого ядра. Это условие удобно выразить, вводя коэффициент размножения к , определяемый как отношение числа нейтронов какого-либо одного поколения к числу нейтронов в предшествующем поколении. Если коэффициент размножения к равен единице или немного больше, то цепная реакция возможна; если же? к = 1 к началу второго поколения будет 200 нейтронов, третьего - 200 и т. д. Если к > 1, например к = 1,03, то, начав с 200 нейтронов, к началу второго поколения будет 200-1,03 = 206 нейтронов, третьего - 206-1,03 нейтронов, к началу п- го поколения - 200- (1,03)п - 1, т. е., например, в сотом поколении будет 3731 нейтрон. В ядерном реакторе среднее время существования нейтронов от момента рождения до их поглощения очень мало и составляет 10 -4 - 10 _3 с, т. е. за 1 с произойдут последовательно деления в 1 000-10000 поколениях нейтронов. Таким образом, нескольких нейтронов может быть достаточно для начала быстро растущей цепной реакции. Чтобы такая система не вышла из-под контроля, необходимо ввести в нее поглотитель нейтронов. Если же к 1 и равен, например, 0,9, то число нейтронов к следующему поколению уменьшится от 200 до 180, к третьему до 180-0,9, и т.д. К началу 50-го поколения останется один нейтрон, способный вызвать деление. Следовательно, цепная реакция при таких условиях протекать не может.

Однако в реальных условиях не все нейтроны вызывают деление. Часть нейтронов теряется при захвате неделящимися ядрами (урана-238, замедлителя, конструкционных материалов и т. п.), другая часть вылетает из объема делящегося материала наружу (утечка нейтронов). Эти потери нейтронов влияют на ход цепной реакции деления ядер.

Энергия нейтронов в момент их рождения очень высока - они движутся со скоростью несколько тысяч километров в секунду, поэтому их называют быстрыми нейтронами. Энергетический спектр нейтронов деления довольно широк - примерно от 0,01 до 10 МэВ. При этом средняя энергия вторичных нейтронов около 2 МэВ. В результате столкновений нейтронов с ядрами окружающих атомов их скорость быстро уменьшается. Этот процесс называется замедлением нейтронов. Особенно эффективно замедляются нейтроны при соударении с ядрами легких элементов (упругое столкновение). При взаимодействии с ядрами тяжелых элементов происходит неупругое столкновение, и нейтрон замедляется менее эффективно. Здесь для иллюстрации можно провести аналогию с теннисным шариком: при ударе о стенку он отскакивает почти с такой же скоростью, а при ударе о такой же шарик он сильно замедляет свою скорость. Вследствие этого в качестве замедлителей в ядерных реакторах 1 (в дальнейшем - реактор) используют воду, тяжелую воду или графит.

В результате столкновений с ядрами замедлителя нейтрон может замедлиться до скорости теплового движения атомов, т. е. до нескольких километров в секунду. Такие замедленные нейтроны в ядерной физике принято называть тепловыми или медленными. Чем медленнее нейтрон, тем больше вероятность того, что он не пролетит мимо ядра атома. Причина такой зависимости сечения ядра от скорости налетающих нейтронов лежит в двойственной природе самого нейтрона. В ряде явлений и процессов нейтрон ведет себя как частица, однако в некоторых случаях он представляет собой сгусток волн. При этом оказывается, что чем меньше его скорость, тем больше длина его волны и его размер. Если нейтрон очень медленный, то его размер может оказаться в несколько тысяч раз больше размера ядра, поэтому так сильно возрастает площадь, попав в которую нейтрон взаимодействует с ядром. Физики называют эту плошадь сечением ядра (а не налетающего нейтрона).

Тяжелая вода (D20) - разновидность воды, в которой обыкновенный водородзаменен его тяжелым изотопом - дейтерием, содержание которой в обычной водесоставляет 0,015%. Плотность тяжелой воды равна 1,108 (по сравнению с 1,000 дляобычной воды); тяжелая вода замерзает при 3,82 "С и кипит при 101,42 "С, тогда каксоответствующие температуры для обычной воды 0 и 100 °С. Таким образом, различие физических свойств легкой и тяжелой воды довольно значительно.

Деление ядер урана было открыто в 1938 г. немецкими учеными О. Ганом и Ф. Штрассманом. Им удалось установить, что при бомбардировке ядер урана нейтронами образуются элементы средней части периодической системы: барий, криптон и др. Правильное толкование этому факту дали австрийский физик Л. Мейтнер и английский физик О. Фриш. Они объяснили появление этих элементов распадом ядер урана, захватившего нейтрон, на две примерно равные части. Это явление получило название деления ядер, а образующиеся ядра - осколков деления.

См. также

  1. Васильев А. Деление урана: от Клапрота до Гана //Квант. - 2001. - № 4. - С. 20-21,30 .

Капельная модель ядра

Объяснить эту реакцию деления можно основываясь на капельной модели ядра. В этой модели ядро рассматривается как капля электрически заряженной несжимаемой жидкости. Кроме ядерных сил, действующих между всеми нуклонами ядра, протоны испытывают дополнительное электростатическое отталкивание, вследствие которого они располагаются на периферии ядра. В невозбужденном состоянии силы электростатического отталкивания скомпенсированы, поэтому ядро имеет сферическую форму (рис. 1, а).

После захвата ядром \(~^{235}_{92}U\) нейтрона образуется промежуточное ядро \(~(^{236}_{92}U)^*\), которое находится в возбужденном состоянии. При этом энергия нейтрона равномерно распределяется между всеми нуклонами, а само промежуточное ядро деформируется и начинает колебаться. Если возбуждение невелико, то ядро (рис. 1, б), освобождаясь от излишка энергии путем испускания γ -кванта или нейтрона, возвращается в устойчивое состояние. Если же энергия возбуждения достаточно велика, то деформация ядра при колебаниях может быть настолько большой, что в нем образуется перетяжка (рис. 1, в), аналогичная перетяжке между двумя частями раздваивающейся капли жидкости. Ядерные силы, действующие в узкой перетяжке, уже не могут противостоять значительной кулоновской силе отталкивания частей ядра. Перетяжка разрывается, и ядро распадается на два "осколка" (рис. 1, г), которые разлетаются в противоположные стороны.

uran.swf Flash: Деление урана Увеличить Flash Рис. 2.

В настоящее время известны около 100 различных изотопов с массовыми числами примерно от 90 до 145, возникающих при делении этого ядра. Две типичные реакции деления этого ядра имеют вид:

\(~^{235}_{92}U + \ ^1_0n \ ^{\nearrow}_{\searrow} \ \begin{matrix} ^{144}_{56}Ba + \ ^{89}_{36}Kr + \ 3^1_0n \\ ^{140}_{54}Xe + \ ^{94}_{38}Sr + \ 2^1_0n \end{matrix}\) .

Обратите внимание, что в результате деления ядра, инициированного нейтроном, возникают новые нейтроны, способные вызвать реакции деления других ядер. Продуктами деления ядер урана-235 могут быть и другие изотопы бария, ксенона, стронция, рубидия и т. д.

При делении ядер тяжелых атомов (\(~^{235}_{92}U\)) выделяется очень большая энергия - около 200 МэВ при делении каждого ядра. Около 80 % этой энергии выделяется в виде кинетической энергии осколков; остальные 20 % приходятся на энергию радиоактивного излучения осколков и кинетическую энергию мгновенных нейтронов.

Оценку выделяющей при делении ядра энергии можно сделать с помощью удельной энергии связи нуклонов в ядре. Удельная энергия связи нуклонов в ядрах с массовым числом A ≈ 240 порядка 7,6 МэВ/нуклон, в то время как в ядрах с массовыми числами A = 90 – 145 удельная энергия примерно равна 8,5 МэВ/нуклон. Следовательно, при делении ядра урана освобождается энергия порядка 0,9 МэВ/нуклон или приблизительно 210 МэВ на один атом урана. При полном делении всех ядер, содержащихся в 1 г урана, выделяется такая же энергия, как и при сгорании 3 т угля или 2,5 т нефти.

См. также

  1. Варламов А.А. Капельная модель ядра //Квант. - 1986. - № 5. - С. 23-24

Цепная реакция

Цепная реакция - ядерная реакция, в которой частицы, вызывающие реакцию, образуются как продукты этой реакции.

При делении ядра урана-235, которое вызвано столкновением с нейтроном, освобождается 2 или 3 нейтрона. При благоприятных условиях эти нейтроны могут попасть в другие ядра урана и вызвать их деление. На этом этапе появятся уже от 4 до 9 нейтронов, способных вызвать новые распады ядер урана и т. д. Такой лавинообразный процесс называется цепной реакцией. Схема развития цепной реакции деления ядер урана представлена на рис. 3.

reakcia.swf Flash: цепная реакция Увеличить Flash Рис. 4.

Уран встречается в природе в виде двух изотопов\[~^{238}_{92}U\] (99,3 %) и \(~^{235}_{92}U\) (0,7 %). При бомбардировке нейтронами ядра обоих изотопов могут расщепляться на два осколка. При этом реакция деления \(~^{235}_{92}U\) наиболее интенсивно идет на медленных (тепловых) нейтронах, в то время как ядра \(~^{238}_{92}U\) вступают в реакцию деления только с быстрыми нейтронами с энергией порядка 1 МэВ. Иначе энергия возбуждения образовавшихся ядер \(~^{239}_{92}U\) оказывается недостаточной для деления, и тогда вместо деления происходят ядерные реакции:

\(~^{238}_{92}U + \ ^1_0n \to \ ^{239}_{92}U \to \ ^{239}_{93}Np + \ ^0_{-1}e\) .

Изотоп урана \(~^{238}_{92}U\) β -радиоактивен, период полураспада 23 мин. Изотоп нептуния \(~^{239}_{93}Np\) тоже радиоактивен, период полураспада около 2 дней.

\(~^{239}_{93}Np \to \ ^{239}_{94}Pu + \ ^0_{-1}e\) .

Изотоп плутония \(~^{239}_{94}Np\) относительно стабилен, период полураспада 24000 лет. Важнейшее свойство плутония состоит в том, что он делится под влиянием нейтронов так же, как \(~^{235}_{92}U\). Поэтому с помощью \(~^{239}_{94}Np\) может быть осуществлена цепная реакция.

Рассмотренная выше схема цепной реакции представляет собой идеальный случай. В реальных условиях не все образующиеся при делении нейтроны участвуют в делении других ядер. Часть их захватывается неделящимися ядрами посторонних атомов, другие вылетают из урана наружу (утечка нейтронов).

Поэтому цепная реакция деления тяжелых ядер возникает не всегда и не при любой массе урана.

Коэффициент размножения нейтронов

Развитие цепной реакции характеризуется так называемым коэффициентом размножения нейтронов К , который измеряется отношением числа N i нейтронов, вызывающих деление ядер вещества на одном из этапов реакции, к числу N i-1 нейтронов, вызвавших деление на предыдущем этапе реакции:

\(~K = \dfrac{N_i}{N_{i - 1}}\) .

Коэффициент размножения зависит от ряда факторов, в частности от природы и количества делящегося вещества, от геометрической формы занимаемого им объема. Одно и то же количество данного вещества имеет разное значение К . К максимально, если вещество имеет шарообразную форму, поскольку в этом случае потеря мгновенных нейтронов через поверхность будет наименьшей.

Масса делящегося вещества, в котором цепная реакция идет с коэффициентом размножения К = 1, называется критической массой. В небольших кусках урана большинство нейтронов, не попав ни в одно ядро, вылетают наружу.

Значение критической массы определяется геометрией физической системы, ее структурой и внешним окружением. Так, для шара из чистого урана \(~^{235}_{92}U\) критическая масса равна 47 кг (шар диаметром 17 см). Критическую массу урана можно во много раз уменьшить, если использовать так называемые замедлители нейтронов. Дело в том, что нейтроны, рождающиеся при распаде ядер урана, имеют слишком большие скорости, а вероятность захвата медленных нейтронов ядрами урана-235 в сотни раз больше, чем быстрых. Наилучшим замедлителем нейтронов является тяжелая вода D 2 O. Обычная вода при взаимодействии с нейтронами сама превращается в тяжелую воду.

Хорошим замедлителем является также графит, ядра которого не поглощают нейтронов. При упругом взаимодействии с ядрами дейтерия или углерода нейтроны замедляются до тепловых скоростей.

Применение замедлителей нейтронов и специальной оболочки из бериллия, которая отражает нейтроны, позволяет снизить критическую массу до 250 г.

При коэффициенте размножения К = 1 число делящихся ядер поддерживается на постоянном уровне. Такой режим обеспечивается в ядерных реакторах.

Если масса ядерного топлива меньше критической массы, то коэффициент размножения К < 1; каждое новое поколение вызывает все меньшее и меньшее число делений, и реакция без внешнего источника нейтронов быстро затухает.

Если же масса ядерного топлива больше критической, то коэффициент размножения К > 1 и каждое новое поколение нейтронов вызывает все большее число делений. Цепная реакция лавинообразно нарастает и имеет характер взрыва, сопровождающегося огромным выделением энергии и повышением температуры окружающей среды до нескольких миллионов градусов. Цепная реакция такого рода происходит при взрыве атомной бомбы.

Ядерная бомба

В обычном состоянии ядерная бомба не взрывается потому, что ядерный заряд в ней разделен на несколько небольших частей перегородками, поглощающими продукты распада урана, – нейтроны. Цепная ядерная реакция, являющаяся причиной ядерного взрыва, не может поддерживаться в таких условиях. Однако, если фрагменты ядерного заряда соединить вместе, то их суммарная масса станет достаточной для того, чтобы начала развиваться цепная реакция деления урана. В результате происходит ядерный взрыв. При этом мощность взрыва, развиваемая ядерной бомбой сравнительно небольших размеров, эквивалентна мощности, выделяющейся при взрыве миллионов и миллиардов тонн тротила.

Рис. 5. Атомная бомба



































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Вид занятия. Лекция.

Цель.

  • Дидактическая . Дать понятие о реакции деления атомных ядер, изучить физические основы получения ядерной энергии при делении тяжелых атомных ядер; рассмотреть управляемые цепные реакции, устройство и принцип действия ядерных реакторов; усвоить информацию о применении радиоактивных изотопов и биологическом действии радиоактивных излучений
  • Воспитательная . Воспитывать умение работать в коллективе, чувство ответственности за общее дело, воспитывать заинтересованность дисциплиною, стремление получить новые знания самостоятельно; способствовать формированию познавательного интереса, развитию технических навыков в процессе обучения.
  • Методическая . Применение компьютерных технологий: презентаций, интерактивных лекций, виртуальных моделей.

Методы: словесный, наглядный; эвристический, беседа; фронтальный опрос

Структура урока

№1 Организационная часть урока

1. Приветствие.

2. Проверка наличия учеников и готовности их к уроку.

№2. Сообщение темы, цели и основных задач урока.

План лекции

1. Деление ядер урана при облучении нейтронами.

1.1. Выделение энергии при делении ядер урана.

1.2.Цепная реакция и условия ее возникновения.

  1. Ядерный реактор. Атомная электростанция.
  2. 2.1. Основные элементы ядерного реактора и его виды.

    2.2. Применение ядерной энергии.

  3. Биологическое действие радиоактивных излучений.

№3. Актуализация опорных знаний учеников:

1.Состав ядра.

2.Радиоактивность.

3. Ядерные реакции.

4. - распад.

5. распад.

6. Энергетический выход реакции.

7. Дефект масс.

8. Энергия связи ядра.

9. Удельная энергия связи ядра.

Лист опроса (проверка знания формул, законов, закономерностей) (слайд №3 ).

№4. Мотивация учебной деятельности учеников

Структурные элементы урока

1. Деление ядер урана при облучении нейтронами

Атомные ядра, содержащие большое число нуклонов, неустойчивы и могут распадаться. В 1938 г. немецкие ученые Отто Ганн и Франц Штрассман наблюдали деление ядра урана U под действием медленных нейтронов. Однако правильное истолкование этого факта, именно как деление ядра урана захватившего, нейтрон, было дано в начале 1939 г. английским физиком О. Фришем совместно с австрийским физиком Л. Мейтнер. Делением ядра называется ядерная реакция деления тяжелого ядра, поглотившего нейтрон, на две приблизительно равные части (осколками деления).

Возможность деления тяжелых ядер можно также объяснить с помощью графика зависимости удельной энергии связи от массового числа А(слайд №4).

График зависимости удельной энергии связи от массового числа

Удельная энергия связи ядер атомов, занимающих в периодической системе последние места 200), примерно на 1 МэВ меньше удельной энергии связи в ядрах элементов, находящихся в середине периодической системы 100). Поэтому процесс деления тяжелых ядер на ядра элементов средней части периодической системы является “энергетически выгодным”. Система после деления переходит в состояние с минимальной внутренней энергией. Ведь чем больше энергия связи ядра, тем большая энергия должна выделяться при образовании ядра и, следовательно, тем меньше внутренняя энергия образовавшейся вновь системы.

При делении ядра энергия связи, приходящаяся на каждый нуклон, увеличивается на 1 МэВ и общая выделяющаяся энергия должна быть огромной - порядка 200 МэВ на ядро. Не при какой другой ядерной реакции (не связанной с делением) столь больших энергий не выделяется. Сопоставим эту энергию с энергией, выделяемой при сгорании топлива. При делении 1 кг урана-235 выделится, энергия, равная . При сгорании же 1 кг угля выделится энергия, равная 2,9·10 6 Дж, т.е. в 28 млн. раз меньше. Этот расчет хорошо иллюстрирует преимущество ядерной энергетики.

Непосредственные измерения энергии, выделяющейся при делении ядра урана U, подтвердили приведенные соображения и дали величину 200 МэВ . Причем большая часть этой энергии (168 МэВ) приходится на кинетическую энергию осколков.

Выделяющаяся при делении ядра энергия имеет электростатическое, а не ядерное происхождение. Большая кинетическая энергия, которую имеют осколки, возникает вследствие их кулоновского отталкивания.

Использование именно нейтронов для деления ядер обусловлено их электро нейтральностью. Отсутствие кулоновского отталкивания протонами ядра позволяет нейтронам беспрепятственно проникать в атомное ядро. Временный захват нейтрона нарушает хрупкую стабильность ядра, обусловленную тонким балансом сил кулоновского отталкивания и ядерного притяжения. Возникающие пространственные колебания нуклонов возбужденного ядра (обозначим U*) являются неустойчивыми. Избыток нейтронов в центре ядра означает избыток протонов на периферии. Их взаимное отталкивание приводит к искусственной радиоактивности изотопа U*, т. е. к его делению на ядра меньшей массы, называемые осколками деления. Причем наиболее вероятным оказывается деление на осколки, массы которых относятся примерно как 2:3. Большинство крупных осколков имеют массовое число А в пределах 135-145, а мелкие от 90 до 100. В результате реакции деления ядра урана U образуются два или три нейтрона. Одна из возможных реакций деления ядра урана протекает по схеме:

Эта реакция протекает с образованием трех нейтронов. Возможна реакция с образованием двух нейтронов:

1. Задание ученикам: восстановить реакцию.

2. Задание ученикам : подпишите элементы рисунка.

1.1 Выделение энергии при деления ядер урану

Выделяющаяся при делении ядра энергия имеет электростатическое, а не ядерное происхождение. Большая кинетическая энергия, которую имеют осколки, возникает вследствие их кулоновского отталкивания. При полном делении всех ядер, имеющихся в 1 г урана, выделяется столько энергии, сколько выделяется при сгорании 2,5 т нефти.

Процесс деления атомного ядра можно объяснить на основе капельной модели ядра. Согласно этой модели сгусток нуклонов напоминает капельку заряженной жидкости. Ядерные силы между нуклонами являются короткодействующими подобно силам, действующим между молекулами жидкости. Наряду с большими силами электростатического отталкивания между протонами, стремящимися разорвать ядро на части, действуют еще большие ядерные силы притяжения. Эти силы удерживают ядро от распада.

Ядро урана-235 имеет форму шара. Поглотив лишний нейтрон, ядро начинает деформироваться, приобретая вытянутую форму (слайд №5 ). Ядро растягивается до тех пор, пока силы электрического отталкивания между половинками вытянутого ядра не начинают преобладать над силами ядерного притяжения, действующими в перешейке. После этого ядро разрывается на две части. Под действием кулоновских сил отталкивания эти осколки разлетаются со скоростью, равной 1/30 скорости света. (видеофрагмент №6 )

1.2 Цепная реакция и условия её возникновения

Любой из нейтронов, вылетающий из ядра в процессе деления, может в свою очередь вызвать деление соседнего ядра, которое также испускает нейтроны, способные вызвать дальнейшее деление. В результате число делящихся ядер очень быстро увеличивается. Возникает цепная реакция. Цепной ядерной реакцией называется реакция, в которой нейтроны образуются как продукты этой реакции, способные вызывать деление других ядер. (слайд №7 ).

Суть этой реакции заключается в том, что испущенные при делении одного ядра N нейтронов могут вызвать деление N ядер, в результате чего будет испущено N 2 новых нейтронов, которые вызовут деление N 2 ядер, и т. д. Следовательно, число нейтронов, рождающихся в каждом поколении, нарастает в геометрической прогрессии. В целом процесс носит лавинообразный характер, протекает весьма быстро и сопровождается выделением огромного количества энергии.

Скорость цепной реакции деления ядер характеризуют коэффициентом размножения нейтронов.

Коэффициент размножения нейтронов k- отношение числа нейтронов в данном этапе цепной реакции к их числу в предыдущем этапе.

Если k 1, то число нейтронов увеличивается с течением времени или остаётся постоянным и цепная реакция идет.

Если k < 1, то число нейтронов убывает и цепная реакция невозможна.

При k = 1 реакция протекает стационарно: число нейтронов сохраняется неизменным. Коэффициент размножения k может стать равным единице лишь при условии, что размеры реактора и соответственно масса урана превышают некоторые критические значения.

Критической массой называют наименьшую массу делящегося вещества, при которой может протекать цепная реакция.

Это равенство k = 1 необходимо поддерживать с большой точностью. Уже при k = 1,01 почти мгновенно произойдет взрыв. Число нейтронов, образующихся при делении ядер, зависит от объема урановой среды. Чем больше этот объем, тем большее число нейтронов выделяется при делении ядер. Начиная с некоторого минимально-критического объема урана, имеющего определенную критическую массу, реакция деления ядер становится самоподдерживающейся. Очень важным фактором, влияющим на ход ядерной реакции, является наличие замедлителя нейтронов. Дело в том, что ядра урана-235 делятся под действием медленных нейтронов. А при делении ядер образуются быстрые нейтроны. Если быстрые нейтроны замедлить, то большая их часть захватится ядрами урана-235 с последующим делением ядер. В качестве замедлителей используются такие вещества, как графит, вода, тяжелая вода и некоторые другие.

Для чистого урана U, имеющего форму шара, критическая масса приблизительно равна 50 кг. При этом радиус шара равен примерно 9 см. Применяя замедлитель нейтронов и отражающую нейтроны оболочку из бериллия, удалось снизить критическую массу до 250 г.

(видеофрагмент №8 )

2. Ядерный реактор

2.1. Основные элементы ядерного реактора него виды

Ядерным реактором называется устройство, в котором выделяется тепловая энергия в результате управляемой цепной реакции деления ядер.

Впервые управляемая цепная реакция деления ядер урана была осуществлена в 1942 году в США под руководством итальянского физика Ферми. Цепная реакция с коэффициентом размножения нейтроновk= 1,0006 длилась в течение 28 минут, после чего реактор был остановлен.

Основными элементами ядерного реактора являются:

Ядерное топливо располагается в активной зоне в виде вертикальных стержней, называемых тепловыделяющими элементами (ТВЭЛ). ТВЭЛы предназначены для регулирования мощности реактора. Масса каждого топливного стержня значительно меньше критической, поэму в одном стержне цепная реакция происходить не может. Она начинается после погружения в активную зону всех урановых стержней. Активная зона окружена слоем вещества, отражающего нейтроны (отражатель), и защитной оболочкой из бетона, задерживающего нейтроны и другие частицы.

Управление реактором осуществляется при помощи стержней, содержащих кадмий или бор. При выдвинутых из активной зоны реактора стержнях k > 1, а при полностью вдвинутых - к < 1. Вдвигая стержни внутрь активной зоны, можно в любой момент времени приостановить развитие цепной реакции. Управление ядерными реакторами осуществляется дистанционно с помощью ЭВМ.

Реактор на медленных нейтронах. Наиболее эффективное деление ядер U происходит под действием медленных нейтронов. Такие реакторы называются реакторами на медленных нейтронах. Вторичные нейтроны, образующиеся в результате реакции деления, являются быстрыми. Для того чтобы их последующее взаимодействие с ядрами U в цепной реакции было наиболее эффективно, их замедляют, вводя в активную зону замедлитель - вещество (тяжелая вода, графит)

Вопрос ученикам: Почему применяются именно эти вещества? Тяжелая вода – содержит большое количество нейтронов, которые сталкиваясь с быстрыми нейтронами, выделяющимися в результате деления, замедляют их в соответствии с законом сохранения импульса.

Реактор на быстрых нейтронах. Природного урана-235 на Земле очень мало, всего лишь 0,715% от всей массы урана. Основную часть природного урана (99,28%) составляет изотоп урана-238, который непригоден в качестве “ядерного топлива”.

В реакторах на тепловых (т. е. медленных) нейтронах уран используется лишь на 1-2%. Полное использование урана достигается в реакторах на быстрых нейтронах, в которых обеспечивается также воспроизводство нового ядерного горючего в виде плутония.

Преимущество реакторов на быстрых нейтронах в том, что при работе образуется значительное количество плутония Pu, важнейшее свойство изотопа Pu - его способность делиться под действием тепловых нейтронов, как и изотопU , который затем можно использовать в качестве ядерного топлива. Эти реакторы называются реакторами-размножителями, так как они воспроизводят делящийся материал. Поэтому очень важной задачей ядерной энергетики ближайшего будущего является переход от обычных реакторов к реакторам-размножителям (бридерам), которые служат не только источниками энергии, но и “фабриками плутония”. Перерабатывая уран-238 в плутоний, эти реакторы резко увеличивают запасы “ядерного топлива”.

С помощью ядерных реакций получены трансурановые элементы (следующие за ураном), т. е. элементы более тяжелые, чем уран. Эти элементы не существуют в природе, они получены искусственным путем.

Первый элемент с зарядовым числом, которое больше 92, получили в 1940 г. американские ученые в Калифорнийском университете, когда облучали уран нейтронами. Получение трансурановых элементов рассмотрим на примере получения нептуния и плутония:

Период полураспада нептуния - 2,3 суток, плутония – 2,44·10 4 лет, поэму его можно накапливать в больших количествах, что имеет большое значение при использовании ядерной энергии. На сегодняшний день получены следующие трансурановые элементы: америций (95), берклий (97), калифорний (98), эйнштейний (99), фермий (100), м (101), нобелий (102), лоуренсий (103), курчатовий (104).

2.2. Применение ядерной энергии

Преобразование внутренней энергии атомных ядер в электрическую энергию. Ядерный реактор является основным элементом атомной электростанции (АЭС), преобразующей тепловую ядерную энергию в электрическую. В результате деления ядер в реакторе выделяется тепловая энергия. Эта энергия преобразуется в энергию пара, вращающего паровую турбину. Паровая турбина в свою очередь вращает ротор генератора, вырабатывающего электрический ток.

Таким образом, преобразование энергии происходит по следующей схеме:

внутренняя энергия ядер урана кинетическая энергия нейтронов и осколков ядер внутренняя энергия воды внутренняя энергия пара кинетическая энергия пара кинетическая энергия ротора турбины и ротора генератора электрическая энергия.(видеофрагмент №11 ).

Задание ученикам: подпишите основные элементы реактора.(слайд №12 )

Проверка задания (слайд №13 )

При каждом акте деления выделяется энергия около 3,2·10 -11 Дж. Тогда мощности 3000 МВт соответствует примерно 10 18 актов деления в секунду. При делении ядер стенки ТВЭЛов сильно нагреваются. Отвод тепла из активной зоны осуществляется теплоносителем – водой. В мощных реакторах зона нагревается до температуры 300 °С. Во избежание закипания вода выводится из активной зоны в теплообмен под давлением порядка 10 7 Па (100 атм). В теплообменнике радиоактивная вода(теплоноситель), циркулирующая в первом контуре, отдает тепло обычной воде, циркулирующей во втором контуре. Передаваемое тепло превращает воду во втором контуре в пар. Этот пар с температурой около 230 °С под давлением 3·10 6 Па направляется на лопатки паровой турбины, а она вращает ротор генератора электрической энергии. Применение ядерной энергии для преобразования ее в электрическую впервые было осушествлено в1954 году в СССР в г. Обнинске. В 1980 г. на Белоярской АЭС состоялся пуск первого в мире реактора на быстрых нейтронах

Успехи и перспективы развития атомной энергетики

Сравнение экологического действия от работы ЭС разных видов.

Экологическое влияние ГЭС (слайд №14 ):

  • затопление больших площадей плодородных земель;
  • подъйом уровня грунтовых вод;
  • заболоченность территорий и выведение из посевных значительных площадей земли;
  • “цветение” водойомов, что приводит к гибели рыб и других жителей водойомов.

Экологическое влияние ТЭС (слайд №15 ):

  • выделение большого количества теплоты;
  • загрязнение атмосферы газообразными выбросами;
  • радиоактивное загрязнение;
  • загрязнение земной поверхности шлаками и карьерами.

Экологическое влияние АЭС(слайд №16 ):

  • добыча и переработка урановых руд;
  • утилизация радиоактивных отходов;
  • значительное тепловое загрязнение воды, вследствие её нагревания.

На слайде №17 размещена таблица, показывающая распределение электроэнергии, которую вырабатывают разные электростанции.

Невозможно не вспомнить о событиях 1986 року (слайд №18 ). Последствия взрыва (слайд №19-22 )

Ядерные реакторы устанавливаются на атомных подводных лодках и ледоколах(К 19).

Ядерное оружие

Неуправляемая цепная реакция с большим коэффициентом размножения нейтронов осуществляется в ядерной бомбе. Для того, чтобы происходило почти мгновенное выделение энергии (взрыв), реакция должна идти на быстрых нейтронах (без применения замедлителей). Взрывчатым веществом служит чистый уран U или плутоний Pu.

При взрыве бомбы температура достигает миллионов кельвин. При такой температуре резко повышается давление и образуется мощная взрывная волна. Одновременно возникает мощное излучение. Продукты цепной реакции при взрыве бомбы сильно радиоактивны и опасны для жизни.

В 1945 г. США применили атомные бомбы против Японии (видеофрагмент №23-25 ). Последствия испытаний атомного оружия (видеофрагмент №26 )

Медицина

1. Биологическое действие радиоактивных излучений.

Радиоактивное излучение включает в себя гамма- и рентгеновское излучение, электроны, протоны, частицы, ионы тяжелых элементов. Его называют также ионизирующим излучением, так как, проходя через живую ткань, оно вызывает ионизацию атомов.

Даже слабые излучения радиоактивных веществ оказывают очень сильное воздействие на все живые организмы, нарушая жизнедеятельность клеток. При большой интенсивности излучения живые организмы погибают. Опасность излучения усугубляется тем, что они не вызывают никаких болевых ощущений даже при смертельных дозах. Инновации в медицине (слайд №27-29 )

Механизм поражающего биологические объекты действия еще недостаточно изучен. Но ясно, что оно сводится к ионизации атомов и молекул и это приводит к изменению их химической активности. Наиболее чувствительны к излучениям ядра клеток, особенно клеток, которые быстро делятся. Поэтому в первую очередь излучения поражают костный мозг, из-за чего нарушается процесс образования крови. Далее наступает поражение клеток пищеварительного тракта и других органов.

Доза излучения. Характер воздействия ионизирующего излучения зависит от дозы поглощенного излучения и его вида.

Доза поглощенного излучения - отношение энергии излучения поглощенной облучаемым телом, к его массе: .

В СИ дозу поглощенного излучения выражают в греях (1 Гр):

1 Гр равен дозе поглощенного излучения, при которой облученному веществу массой 1 кг передается энергия ионизирующего излучения 1 Дж.

Естественный фон радиации (космические лучи, радиоактивность окружающей среды и человеческого тела) составляет за год дозу излучения около 2·10 -3 Гр на человека. Международная комиссия по радиационной защите установила для лиц, работающих с излучением, предельно допустимую за год дозу 0,05 Гр. Доза излучения в 3 - 10 Гр, полученная за короткое время, смертельна.

На практике широко используется внесистемная единица дозы излучения – рентген (1 Р). 1 Гр соответствует примерно 100 Р.

Эквивалентная доза.

В связи с тем, что при одной и той же дозе поглощения разные излучения вызывают различные биологические эффекты, для оценки этих эффектов была введена величина, называемая эквивалентной дозой (Н).

Эквивалентная доза поглощенного излучения определяется как произведение дозы поглощенного излучения на коэффициент качества:

Единица эквивалентной дозы - зиверт (1 Зв).

1Зв равен эквивалентной дозе, при которой доза поглощенного -излучения равна 1 Гр.

Величина эквивалентной дозы определяет относительно безопасные и очень опасные для живого организма дозы облучения.

При оценке воздействий ионизирующих излучений на живой организм учитывают и то, что одни части тела (органы, ткани) более чувствительны, чем другие. Например, при одинаковой эквивалентной дозе возникновение рака в легких более вероятно, чем в щитовидной железе.

Другими словами, каждый орган и ткань имеет определенный коэффициент радиационного риска (для легких, например, он равен 0,12, а для щитовидной железы - 0,03).

Поглощенная и эквивалентная дозы зависят от времени облучения. При прочих равных условиях эти дозы тем больше, чем больше время облучения.

Пищевые продукты, которые поддаются радиационной обработке (слайд №30 ).

Полулетальная поглощенная доза* для некоторых живых организмов (слайд №31 ).

Биологическое действие ионизированного облучения на человека (слайд №32 ).

Уровень радиационного облучения населения (слайд №33 ).

Защитное действие от ионизированного излучения сооружений и материалов (слайд №34 )

2. Защита организмов от излучения.

При работе с любым источником радиации необходимо принимать меры по радиационной защите.

Самый простой метод защиты - это удаление персонала от источника излучения на достаточно большое расстояние. Ампулы с радиоактивными препаратами не следует брать руками. Надо пользоваться специальными щипцами с длинной ручкой.

Для защиты от излучения используют преграды из поглощающих материалов. Например, защитой от -излучения может служить слой алюминия толщиной в несколько миллиметров. Наиболее сложна защита от излучения и нейтронов из-за большой проникающей способности. Лучшим поглотителем лучей является свинец. Медленные нейтроны хорошо поглощаются бором и кадмием. Быстрые нейтроны предварительно замедляются с помощью графита.(видеофрагмент №35 ).

Вопросы к ученикам в ходе изложения нового материала

1. Почему нейтроны оказываются наиболее удобными частицами для бомбардировки атомных ядер?

2. Что происходит при попадании нейтрона в ядро урана?

3. Почему при делении ядер урана выделяется энергия?

4. От чего зависит коэффициент размножения нейтронов?

5. В чем заключается управление ядерной реакцией?

6. Для чего нужно, чтобы масса каждого уранового стержня была меньше критической массы?

7. Для чего нужны регулирующие стержни? Как ими пользуются?

8. Для чего в ядерном реакторе используется замедлитель нейтронов?

9. В чем причина негативного воздействия радиации на живые организмы?

10. Какие факторы следует учитывать при оценке воздействий ионизирующих излучений на живой организм?

№5. Подведение итогов урока

Изучение взаимодействия нейтронов с веществом привело к открытию ядерных реакций нового типа. В 1939 г. О. Ган и Ф. Штрассман исследовали химические продукты, получающиеся при бомбардировке нейтронами ядер урана. Среди продуктов реакции был обнаружен барий - химический элемент с массой много меньше, чем масса урана. Задача была решена немецкими физиками Л. Мейтнерома и О. Фришем, показавшими, что при поглощении нейтронов ураном происходит деление ядра на два осколка:

где k > 1.

При делении ядра урана тепловой нейтрон с энергией ~ 0,1 эВ освобождает энергию ~ 200 МэВ. Существенным моментом является то, что этот процесс сопровождается появлением нейтронов, способных вызывать деление других ядер урана, – цепная реакция деления . Таким образом, один нейтрон может дать начало разветвленной цепи делений ядер, причем число ядер, участвующих в реакции деления будет экспоненциально возрастать. Открылись перспективы использования цепной реакции деления в двух направлениях :

· управляемая ядерная реакция деления – создание атомных реакторов;

· неуправляемая ядерная реакция деления – создание ядерного оружия.

В 1942 г. в США был построен первый ядерный реактор. В СССР первый реактор был запущен в 1946 г. В настоящее время тепловая и электрическая энергия вырабатывается в сотнях ядерных реакторов, работающих в различных странах мира.

Как видно из рис. 4.2, с ростом значения А удельная энергия связи увеличивается вплоть до А » 50. Это поведение можно объяснить сложением сил; энергия связи отдельного нуклона усиливается, если его притягивают не один или два, а несколько других нуклонов. Однако в элементах со значениями массового числа больше А » 50 удельная энергия связи постепенно уменьшается с ростом А. Это связано, с тем, что ядерные силы притяжения являются короткодействующими радиусом действия порядка размеров отдельного нуклона. За пределами этого радиуса преобладают силы электростатического отталкивания. Если два протона удаляются более чем на 2,5×10 - 15 м, то между ними преобладают силы кулоновского отталкивания, а не ядерного притяжения.

Следствием такого поведения удельной энергии связи в зависимости от А является существование двух процессов - синтеза и деления ядер . Рассмотрим взаимодействие электрона и протона. При образовании атома водорода высвобождается энергия 13,6 эВ и масса атома водорода оказы­вается на 13,6 эВ меньше суммы масс свободного электрона и протона. Аналогично, масса двух легких ядер превышает мaccу после их соединения на DМ . Если их соединить, то они сольются с выделением энергии DМс 2 . Этот процесс называется синтезом ядер . Разность масс может превышать 0,5 %.

Если расщепляется тяжелое ядро на два более легких ядра, то их масса будет меньше массы родительского ядра на 0,1 %. У тяжелых ядер существует тенденция к делению на два более легких ядра с выделением энергии . Энергия атомной бомбы и ядерного реактора представляет собой энергию , высвобождающуюся при делении ядер . Энергия водородной бомбы - это энергия, выделяющаяся при ядерном синтезе. Альфа-распад можно рассматривать как сильно асимметричное деление, при котором родительское ядро М расщепляется на маленькую альфа-частицу и большое остаточное ядро . Альфа-распад возможен, только если в реакции

масса М оказывается больше суммы масс и альфа-частицы. У всех ядер с Z > 82 (свинец) .При Z > 92 (уран) полупериоды альфа-распада оказываются значительно длиннее возраста Земли, и такие элементы не встречаются в природе. Однако их можно создать искусственно. Например, плутоний (Z = 94) можно получить из урана в ядерном реакторе. Эта процедура стала обычной и обходится всего в 15 долларов за 1 г. До сих пор удалось получить элементы вплоть до Z = 118, однако гораздо более дорогой ценой и, как правило, в ничтожных количествах. Можно надеяться, что радиохимики научатся получать, хотя и в небольших количествах, новые элементы сZ > 118.

Если бы массивное ядро урана удалось разделить на две группы нуклонов, то эти группы нуклонов перестроились бы в ядра с более сильной связью. В процессе перестройки выделилась бы энергия. Спонтанное деление ядер разрешено законом сохранения энергии. Однако потенциальный барьер в реакции деления у встречающихся в природе ядер настолько высок, что вероятность спонтанного деления оказывается много меньше вероятности альфа-распада. Период полураспада ядер 238 U относительно спонтанного деления составляет 8×10 15 лет. Это более чем в миллион раз превышает возраст Земли. Если нейтрон сталкивается с тяжелымядром, то оно может перейти на более высокий энергетический уровень вблизи вершины электростатического потенциального барьера, в результате возрастет вероятность деления. Ядро в возбужденном состоянии может обладать значительным моментом импульса и приобрести овальную форму. Участки на периферии ядра легче проникают сквозь барьер, поскольку они частично уже находятся за барьером. У ядра овальной формы роль барьера еще больше ослабляется. При захвате ядром или медленного нейтрона образуются состояния с очень короткими временами жизни относительно деления. Разность масс ядра урана и типичных продуктов деления такова, что в среднем при делении урана высвобождается энергия 200 МэВ. Масса покоя ядра урана 2,2×10 5 МэВ. В энергию превращается около 0,1 % этой массы, что равно отношению 200 МэВ к величине 2,2×10 5 МэВ.

Оценка энергии , освобождающейся при делении , может быть получена из формулы Вайцзеккера :

При делении ядра на два осколка изменяется поверхностная энергия и кулоновская энергия , причем поверхностная энергия увеличивается, а кулоновская энергия уменьшается. Деление возможно в том случае, когда энергия, высвобождающаяся при делении, Е > 0.

.

Здесь A 1 = A /2, Z 1 = Z /2. Отсюда получим, что деление энергетически выгодно, когда Z 2 /A > 17. Величина Z 2 /A называется параметром делимости . Энергия Е , освобождающаяся при делении, растет с увеличением Z 2 /A .

В процессе деления ядро изменяет форму - последовательно проходит черезследующие стадии (рис. 9.4): шар, эллипсоид, гантель, два грушевидных осколка, два сферических осколка.

После того как деление произошло, и осколки находятся друг от друга на расстоянии много большем их радиуса, потенциальную энергию осколков, определяемую кулоновским взаимодействием между ними, можно считать равной нулю.

Вследствие эволюции формы ядра, изменение его потенциальной энергии определяется изменением суммы поверхностной и кулоновской энергий . Предполагается, что объем ядра в процессе деформации остается неизменным. Поверхностная энергия при этом возрастает, так как увеличивается площадь поверхности ядра. Кулоновская энергия уменьшается, так как увеличивается среднее расстояние между нуклонами. В случае малых эллипсоидальных деформаций рост поверхностной энергии происходит быстрее, чем уменьшение кулоновской энергии.

В области тяжелых ядер сумма поверхностной и кулоновской энергий увеличивается с увеличением деформации. При малых эллипсоидальных деформациях рост поверхностной энергии препятствует дальнейшему изменению формы ядра, а следовательно и делению. Наличие потенциального барьера препятствует мгновенному самопроизвольному делению ядер. Для того чтобы ядро мгновенно разделилось, ему необходимо сообщить энергию, превышающую высоту барьера деления Н .

Высота барьера Н тем больше, чем меньше отношение кулоновской и поверхностной энергии в начальном ядре. Это отношение, в свою очередь, увеличивается с увеличением параметра делимости Z 2 /А. Чем тяжелее ядро, тем меньше высота барьера Н , так как параметр делимости увеличивается с ростом массового числа:

Более тяжелым ядрам, как правило, нужно сообщить меньшую энергию, чтобы вызвать деление. Из формулы Вайцзеккера следует, что высота барьера деления обращается в нуль при . Т.е. согласно капельной модели в природе должны отсутствовать ядра с , так как они практически мгновенно (за характерное ядерное время порядка 10 –22 с) самопроизвольно делятся. Существование атомных ядер с («остров стабильности ») объясняется оболочечной структурой атомных ядер. Самопроизвольное деление ядер с , для которых высота барьера Н не равна нулю, с точки зрения классической физики невозможно. С точки зрения квантовой механики такое деление возможно в результате прохождения осколков через потенциальный барьер и носит название спонтанного деления . Вероятность спонтанного деления растет с увеличением параметра делимости , т.е. с уменьшением высоты барьера деления.

Вынужденное деление ядер с может быть вызвано любыми частицами: фотонами, нейтронами, протонами, дейтронами, α-частицами и т.д., если энергия, которую они вносят в ядро, достаточна для преодоления барьера деления.

Массы осколков, образующихся при делении тепловыми нейтронами, не равны. Ядро стремится разделиться таким образом, чтобы основная часть нуклонов осколка образовала устойчивый магический остов. На рис. 9.5 приведено распределение по массам при делении . Наиболее вероятная комбинация массовых чисел - 95 и 139.

Отношение числа нейтронов к числу протонов в ядре равно 1,55, в то время как у стабильных элементов, имеющих массу, близкую к массе осколков деления, это отношение 1,25 - 1,45. Следовательно, осколки деления сильно перегружены нейтронами и неустойчивы к β-распаду - радиоактивны.

В результате деления высвобождается энергия ~ 200 МэВ. Около 80 % ее приходится на энергию осколков. За один акт деления образуется более двух нейтронов деления со средней энергией ~ 2 МэВ.

В 1 г любого вещества содержится . Деление 1 г урана сопровождается выделением ~ 9×10 10 Дж. Это почти в 3 млн раз превосходит энергию сжигания 1 г угля (2,9×10 4 Дж). Конечно, 1 г урана обходится значительно дороже 1 г угля, ностоимость 1 Дж энергии, полученной сжиганием угля, оказывается в 400 раз выше, чем в случае уранового топлива. Выработка 1 кВт×ч энергии обходилась в 1,7 цента на электростанциях, работающих на угле, и в 1,05 цента на ядерных электростанциях.

Благодаря цепной реакции процесс деления ядер можно сделать самоподдерживающимся . При каждом делении вылетают 2 или 3 нейтрона (рис. 9.6). Если одному из этих нейтронов удастся вызвать деление другого ядра урана, то процесс будет самоподдерживающимся.

Совокупность делящегося вещества, удовлетворяющая этому требованию, называется критической сборкой . Первая такая сборка, названная ядерным реактором , была построена в 1942 г. под руководством Энрико Ферми на территории Чикагского университета. Первый ядерный реактор был запущен в 1946 г. под руководством И. Курчатова в Москве. Первая атомная электростанция мощностью 5 МВт была пущена в СССР в 1954 г. в г. Обнинске (рис. 9.7).

Массу и можно также сделать надкритической . В этом случае возникающие при делении нейтроны будут вызывать несколько вторичных делений. Поскольку нейтроны движутся со скоростями, превышающими 10 8 см/с, надкритическая сборка может полностью прореагировать (или разлететься) быстрее, чем за тысячную долю секунды. Такое устройство называется атомной бомбой . Ядерный заряд из плутония или урана переводят в надкритическое состояние обычно с помощью взрыва. Подкритическую массу окружают химической взрывчаткой. При ее взрыве плутониевая или урановая масса подвергается мгновенному сжатию. Поскольку плотность сферы при этом значительно возрастает, скорость поглощения нейтронов оказывается выше скорости потери нейтронов за счет их вылета наружу. В этом и заключается условие надкритичности.

На рис. 9.8 изображена схема атомной бомбы «Малыш», сброшенной на Хиросиму. Ядерной взрывчаткой в бомбе служил , разделенный на две части, масса которых была меньше критической. Необходимая для взрыва критическая масса создавалась в результате соединения обеих частей «методом пушки» с помощью обычной взрывчатки.

При взрыве 1 т тринитротолуола (ТНТ) высвобождается 10 9 кал, или 4×10 9 Дж. При взрыве атомной бомбы, расходующей 1 кг плутония , высвобождается около 8×10 13 Дж энергии.

Или это почти в 20 000 раз больше, чем при взрыве 1 т ТНТ. Такая бомба называется 20-килотонной бомбой. Современные бомбы мощностью в мегатонны в миллионы раз мощнее обычной ТНТ-взрывчатки.

Производство плутония основано на облучении 238 U нейтронами, ведущем к образованию изотопа 239 U, который в результате бета-распада превращается в 239 Np, а затем после еще одного бета-распада в 239 Рu. При поглощении нейтрона с малой энергией оба изотопа 235 U и 239 Рu испытывают деление. Продукты деления характеризуются более сильной связью (~ 1 МэВ на нуклон), благодаря чему в результате деления высвобождается примерно 200 МэВ энергии.

Каждый грамм израсходованного плутония или урана порождает почти грамм радиоактивных продуктов деления, обладающих огромной радиоактивностью.

Для просмотра демонстраций щелкните по соответствующей гиперссылке:

Новое на сайте

>

Самое популярное