Домой Развитие На чем основано использование рентгеновского излучения. Рентгеновское излучение

На чем основано использование рентгеновского излучения. Рентгеновское излучение

В изучении и практическом использовании атомных явлений одну из важнейших ролей играют рентгеновские лучи. Благодаря их исследованию было сделано множество открытий и разработаны методы анализа вещества, применяемые в самых разных областях. Здесь мы рассмотрим один из видов рентгеновских лучей - характеристическое рентгеновское излучение.

Природа и свойства рентгеновских лучей

Рентгеновское излучение - это высокочастотное изменение состояния электромагнитного поля, распространяющееся в пространстве со скоростью около 300 000 км/с, то есть электромагнитные волны. На шкале диапазона электромагнитного излучения рентген располагается в области длин волн от приблизительно 10 -8 до 5∙10 -12 метров, что на несколько порядков короче оптических волн. Это соответствует частотам от 3∙10 16 до 6∙10 19 Гц и энергиям от 10 эВ до 250 кэВ, или 1,6∙10 -18 до 4∙10 -14 Дж. Следует отметить, что границы частотных диапазонов электромагнитного излучения достаточно условны вследствие их перекрытия.

Является взаимодействие ускоренных заряженных частиц (электронов высоких энергий) с электрическими и магнитными полями и с атомами вещества.

Фотонам рентгеновских лучей свойственны высокие энергии и большая проникающая и ионизирующая способность, особенно для жесткого рентгена с длинами волн менее 1 нанометра (10 -9 м).

Рентгеновские лучи взаимодействуют с веществом, ионизируя его атомы, в процессах фотоэффекта (фотопоглощения) и некогерентного (комптоновского) рассеяния. При фотопоглощении рентгеновский фотон, поглощаясь электроном атома, передает ему энергию. Если ее величина превышает энергию связи электрона в атоме, то он покидает атом. Комптоновское рассеяние характерно для более жестких (энергичных) рентгеновских фотонов. Часть энергии поглощаемого фотона затрачивается на ионизацию; при этом под некоторым углом к направлению первичного фотона излучается вторичный, с меньшей частотой.

Виды рентгеновского излучения. Тормозное излучение

Для получения лучей используют представляющие собой стеклянные вакуумные баллоны с расположенными внутри электродами. Разность потенциалов на электродах нужна очень высокая - до сотен киловольт. На вольфрамовом катоде, подогреваемом током, происходит термоэлектронная эмиссия, то есть с него испускаются электроны, которые, ускоряясь разностью потенциалов, бомбардируют анод. В результате их взаимодействия с атомами анода (иногда его именуют антикатодом) рождаются фотоны рентгеновского диапазона.

В зависимости от того, какой процесс приводит к рождению фотона, различают такие виды рентгеновского излучения, как тормозное и характеристическое.

Электроны могут, встречаясь с анодом, тормозиться, то есть терять энергию в электрических полях его атомов. Эта энергия излучается в форме рентгеновских фотонов. Такое излучение называется тормозным.

Понятно, что условия торможения будут различаться для отдельных электронов. Это значит, что в рентгеновское излучение преобразуются разные количества их кинетической энергии. В результате тормозное излучение включает фотоны разных частот и, соответственно, длин волн. Поэтому спектр его является сплошным (непрерывным). Иногда по этой причине его еще называют «белым» рентгеновским излучением.

Энергия тормозного фотона не может превышать кинетическую энергию порождающего его электрона, так что максимальная частота (и наименьшая длина волны) тормозного излучения соответствует наибольшему значению кинетической энергии налетающих на анод электронов. Последняя же зависит от приложенной к электродам разности потенциалов.

Существует еще один тип рентгеновского излучения, источником которого является иной процесс. Это излучение именуют характеристическим, и мы остановимся на нем подробнее.

Как возникает характеристическое рентгеновское излучение

Достигнув антикатода, быстрый электрон может проникнуть внутрь атома и выбить какой-либо электрон с одной из нижних орбиталей, то есть передать ему энергию, достаточную для преодоления потенциального барьера. Однако при наличии в атоме более высоких энергетических уровней, занятых электронами, освободившееся место пустым не останется.

Необходимо помнить, что электронная структура атома, как и всякая энергетическая система, стремится минимизировать энергию. Образовавшаяся в результате выбивания вакансия заполняется электроном с одного из вышележащих уровней. Его энергия выше, и, занимая более низкий уровень, он излучает излишек в форме кванта характеристического рентгеновского излучения.

Электронная структура атома - это дискретный набор возможных энергетических состояний электронов. Поэтому рентгеновские фотоны, излучаемые в процессе замещения электронных вакансий, также могут иметь только строго определенные значения энергии, отражающие разность уровней. Вследствие этого характеристическое рентгеновское излучение обладает спектром не сплошного, а линейчатого вида. Такой спектр позволяет характеризовать вещество анода - отсюда и название этих лучей. Именно благодаря спектральным различиям ясно, что понимают под тормозным и характеристическим рентгеновским излучением.

Иногда излишек энергии не излучается атомом, а затрачивается на выбивание третьего электрона. Этот процесс - так называемый эффект Оже - с большей вероятностью происходит, когда энергия связи электрона не превышает 1 кэВ. Энергия освобождающегося оже-электрона зависит от структуры энергетических уровней атома, поэтому спектры таких электронов также носят дискретный характер.

Общий вид характеристического спектра

Узкие характеристические линии присутствуют в рентгеновской спектральной картине вместе со сплошным тормозным спектром. Если представить спектр в виде графика зависимости интенсивности от длины волны (частоты), в местах расположения линий мы увидим резкие пики. Их позиция зависит от материала анода. Эти максимумы присутствуют при любой разности потенциалов - если есть рентгеновские лучи, пики тоже всегда есть. При повышении напряжения на электродах трубки интенсивность и сплошного, и характеристического рентгеновского излучения нарастает, но расположение пиков и соотношение их интенсивностей не меняется.

Пики в рентгеновских спектрах имеют одинаковый вид независимо от материала облучаемого электронами антикатода, но у различных материалов располагаются на разных частотах, объединяясь в серии по близости значений частоты. Между самими сериями различие по частотам намного значительнее. Вид максимумов никак не зависит от того, представляет ли материал анода чистый химический элемент или же это сложное вещество. В последнем случае характеристические спектры рентгеновского излучения составляющих его элементов просто накладываются друг на друга.

С повышением порядкового номера химического элемента все линии его рентгеновского спектра смещаются в сторону повышения частоты. Спектр при этом сохраняет свой вид.

Закон Мозли

Явление спектрального сдвига характеристических линий было экспериментально обнаружено английским физиком Генри Мозли в 1913 году. Это позволило ему связать частоты максимумов спектра с порядковыми номерами химических элементов. Таким образом, и длину волны характеристического рентгеновского излучения, как выяснилось, можно четко соотнести с определенным элементом. В общем виде закон Мозли можно записать следующим образом: √f = (Z - S n)/n√R, где f - частота, Z - порядковый номер элемента, S n - постоянная экранирования, n - главное квантовое число и R - постоянная Ридберга. Эта зависимость имеет линейный характер и на диаграмме Мозли выглядит как ряд прямых линий для каждого значения n.

Значения n соответствуют отдельным сериям пиков характеристического рентгеновского излучения. Закон Мозли позволяет по измеряемым значениям длин волн (они однозначно связаны с частотами) максимумов рентгеновского спектра устанавливать порядковый номер химического элемента, облучаемого жесткими электронами.

Структура электронных оболочек химических элементов идентична. На это указывает монотонность сдвигового изменения характеристического спектра рентгеновского излучения. Частотный сдвиг отражает не структурные, а энергетические различия между электронными оболочками, уникальные для каждого элемента.

Роль закона Мозли в атомной физике

Существуют небольшие отклонения от строгой линейной зависимости, выражаемой законом Мозли. Они связаны, во-первых, с особенностями порядка заполнения электронных оболочек у некоторых элементов, и, во-вторых, с релятивистскими эффектами движения электронов тяжелых атомов. Кроме того, при изменении количества нейтронов в ядре (так называемом изотопическом сдвиге) положение линий может слегка меняться. Этот эффект дал возможность детально изучить атомную структуру.

Значение закона Мозли чрезвычайно велико. Последовательное применение его к элементам периодической системы Менделеева установило закономерность увеличения порядкового номера соответственно каждому небольшому сдвигу характеристических максимумов. Это способствовало прояснению вопроса о физическом смысле порядкового номера элементов. Величина Z - это не просто номер: это положительный электрический заряд ядра, представляющий собой сумму единичных положительных зарядов частиц, входящих в его состав. Правильность размещения элементов в таблице и наличие в ней пустых позиций (тогда они еще существовали) получили мощное подтверждение. Была доказана справедливость периодического закона.

Закон Мозли, помимо этого, стал основой, на которой возникло целое направление экспериментальных исследований - рентгеновская спектрометрия.

Строение электронных оболочек атома

Вкратце вспомним, как устроена электронная Она состоит из оболочек, обозначаемых буквами K, L, M, N, O, P, Q либо цифрами от 1 до 7. Электроны в пределах оболочки характеризуются одинаковым главным квантовым числом n, определяющим возможные значения энергии. Во внешних оболочках энергия электронов выше, а потенциал ионизации для внешних электронов соответственно ниже.

Оболочка включает один или несколько подуровней: s, p, d, f, g, h, i. В каждой оболочке количество подуровней увеличивается на один по сравнению с предыдущей. Количество электронов в каждом подуровне и в каждой оболочке не может превышать определенного значения. Они характеризуются, помимо главного квантового числа, одинаковым значением орбитального определяющего форму электронного облака. Подуровни обозначаются с указанием оболочки, которой они принадлежат, например, 2s, 4d и так далее.

Подуровень содержит которые задаются, кроме главного и орбитального, еще одним квантовым числом - магнитным, определяющим проекцию орбитального момента электрона на направление магнитного поля. Одна орбиталь может иметь не более двух электронов, различающихся значением четвертого квантового числа - спинового.

Рассмотрим подробнее, как возникает характеристическое рентгеновское излучение. Так как происхождение этого типа электромагнитной эмиссии связано с явлениями, происходящими внутри атома, удобнее всего описывать его именно в приближении электронных конфигураций.

Механизм генерации характеристического рентгеновского излучения

Итак, причиной возникновения данного излучения является образование электронных вакансий во внутренних оболочках, обусловленное проникновением высокоэнергичных электронов глубоко внутрь атома. Вероятность того, что жесткий электрон вступит во взаимодействие, возрастает с увеличением плотности электронных облаков. Следовательно, наиболее вероятным будет столкновение в пределах плотно упакованных внутренних оболочек, например, самой нижней К-оболочки. Здесь атом ионизируется, и в оболочке 1s образуется вакансия.

Эта вакансия заполняется электроном из оболочки с большей энергией, избыток которой уносится рентгеновским фотоном. Этот электрон может «упасть» из второй оболочки L, из третьей М и так далее. Так формируется характеристическая серия, в данном примере - К-серия. Указание на то, откуда происходит заполнивший вакансию электрон, дается в виде греческого индекса при обозначении серии. «Альфа» означает, что он происходит из L-оболочки, «бета» - из М-оболочки. В настоящее время существует тенденция к замене греческих буквенных индексов латинскими, принятыми для обозначения оболочек.

Интенсивность альфа-линии в серии всегда наивысшая - это значит, что вероятность заполнения вакансии из соседней оболочки самая высокая.

Теперь мы можем ответить на вопрос, какова максимальная энергия кванта характеристического рентгеновского излучения. Она определяется разностью значений энергии уровней, между которыми совершается переход электрона, по формуле E = E n 2 - E n 1 , где E n 2 и E n 1 - энергии электронных состояний, между которыми произошел переход. Наивысшее значение этого параметра дают переходы К-серии с максимально высоких уровней атомов тяжелых элементов. Но интенсивность этих линий (высота пиков) самая малая, поскольку они наименее вероятны.

Если из-за недостаточности напряжения на электродах жесткий электрон не может достичь К-уровня, он образует вакансию на L-уровне, и формируется менее энергичная L-серия с большими длинами волн. Аналогичным образом рождаются последующие серии.

Кроме того, при заполнении вакансии в результате электронного перехода возникает новая вакансия в вышележащей оболочке. Это создает условия для генерирования следующей серии. Электронные вакансии перемещаются выше с уровня на уровень, и атом испускает каскад характеристических спектральных серий, оставаясь при этом ионизированным.

Тонкая структура характеристических спектров

Атомным рентген-спектрам характеристического рентгеновского излучения свойственна тонкая структура, выражающаяся, как и в оптических спектрах, в расщеплении линий.

Тонкая структура связана с тем, что энергетический уровень - электронная оболочка - представляет собой набор тесно расположенных компонентов - подоболочек. Для характеристики подоболочек введено еще одно, внутреннее квантовое число j, отражающее взаимодействие собственного и орбитального магнитных моментов электрона.

В связи с влиянием спин-орбитального взаимодействия энергетическая структура атома усложняется, и в результате характеристическое рентгеновское излучение имеет спектр, которому свойственны расщепленные линии с очень близко расположенными элементами.

Элементы тонкой структуры принято обозначать дополнительными цифровыми индексами.

Характеристическое рентгеновское излучение обладает особенностью, отраженной только в тонкой структуре спектра. Переход электрона на низший энергетический уровень не происходит с нижней подоболочки вышележащего уровня. Такое событие имеет пренебрежимо малую вероятность.

Использование рентгена в спектрометрии

Это излучение благодаря своим особенностям, описанным законом Мозли, лежит в основе различных рентгеноспектральных методов анализа веществ. При анализе рентгеновского спектра применяют либо дифракцию излучения на кристаллах (волнодисперсионный метод), либо чувствительные к энергии поглощенных рентгеновских фотонов детекторы (энергодисперсионный метод). Большинство электронных микроскопов оснащены теми или иными рентгеноспектрометрическими приставками.

Особенно высокой точностью отличается волнодисперсионная спектрометрия. При помощи особых фильтров выделяются наиболее интенсивные пики в спектре, благодаря чему можно получить практически монохроматическое излучение с точно известной частотой. Материал анода выбирается очень тщательно, чтобы обеспечить получение монохроматического пучка нужной частоты. Его дифракция на кристаллической решетке изучаемого вещества позволяет исследовать структуру решетки с большой точностью. Этот метод применяется также в изучении ДНК и других сложных молекул.

Одна из особенностей характеристического рентгеновского излучения учитывается и в гамма-спектрометрии. Это высокая интенсивность характеристических пиков. В гамма-спектрометрах применяется свинцовая защита от внешних фоновых излучений, вносящих помехи в измерения. Но свинец, поглощая гамма-кванты, испытывает внутреннюю ионизацию, в результате чего активно излучает в рентгеновском диапазоне. Для поглощения интенсивных максимумов характеристического рентгеновского излучения свинца используется дополнительная кадмиевая экранировка. Она, в свою очередь, ионизируется и также излучает в рентгене. Для нейтрализации характеристических пиков кадмия применяют третий экранирующий слой - медный, рентгеновские максимумы которого лежат вне рабочего диапазона частот гамма-спектрометра.

Спектрометрия использует и тормозное, и характеристическое рентгеновское излучение. Так, при анализе веществ исследуются спектры поглощения сплошного рентгена различными веществами.


Warning /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning : preg_match(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 1364

Warning /var/www/x-raydoctor..php on line 684

Warning /var/www/x-raydoctor..php on line 691

Warning : preg_match_all(): Compilation failed: invalid range in character class at offset 4 in /var/www/x-raydoctor..php on line 684

Warning : Invalid argument supplied for foreach() in /var/www/x-raydoctor..php on line 691

Огромную роль в современной медицине играет рентгеновское излучение, история открытия рентгена берет свое начало еще в 19 веке.

Рентгеновское излучение представляет собой электромагнитные волны, которые образуются при участии электронов. При сильном ускорении заряженных частиц создается искусственное рентгеновское излучение. Оно проходит через специальное оборудование:

  • ускорители заряженных частиц.

История открытия

Изобрел данные лучи 1895 году немецкий ученый Рентген: во время работы с катодолучевой трубкой он обнаружил эффект флуоресценции платино-цианистого бария. Тогда и произошло описание таких лучей и их удивительной способности проникать сквозь ткани организма. Лучи стали называться икс-лучами (х-лучи). Позже в России их стали именовать рентгеновскими.

Х-лучи способны проникать даже сквозь стены. Так Рентген осознал, что сделал величайшее открытие в области медицины. Именно с этого времени стали формироваться отдельные разделы в науке, такие как рентгенология и радиология.

Лучи способны проникать сквозь мягкие ткани, но задерживаются, длина их определяется препятствием твердой поверхности. Мягкие ткани в человеческом организме — это кожа, а твердые — это кости. В 1901 году ученому присудили Нобелевскую премию.

Однако еще до открытия Вильгельма Конрада Рентгена подобной темой были заинтересованы и другие ученые. В 1853 году французский физик Антуан-Филибер Масон изучал высоковольтный разряд между электродами в стеклянной трубке. Содержащийся в ней газ при низком давлении начал выпускать красноватое свечение. Откачивание лишнего газа из трубки привело к распаду свечения на сложную последовательность отдельных светящихся слоев, оттенок которых зависел от количества газа.

В 1878 году Уильям Крукс (английский физик) высказал предположение о том, что флуоресценция возникает вследствие ударения лучей о стеклянную поверхность трубки. Но все эти исследования не были нигде опубликованы, поэтому Рентген не догадывался о подобных открытиях. После опубликования своих открытий в 1895 году в научном журнале, где ученый писал о том, что все тела прозрачны для этих лучей, хотя и в весьма различной степени, подобными экспериментами заинтересовались и другие ученые. Они подтвердили изобретение Рентгена, и в дальнейшем начались разработки и усовершенствование икс-лучей.

Сам Вильгельм Рентген опубликовал еще две научные работы по теме икс-лучей в 1896 и 1897 годах, после чего занялся другой деятельностью. Таким образом, изобрели несколько ученых, но именно Рентген опубликовал научные труды по этому поводу.


Принципы получения изображения

Особенности этого излучения определены самой природой их появления. Излучение происходит за счет электромагнитной волны. К основным ее свойствам относятся:

  1. Отражение. Если волна попадет на поверхность перпендикулярно, то она не отразится. В некоторых ситуациях свойством отражения обладает алмаз.
  2. Способность проникать в ткани. Помимо этого, лучи могут проходить сквозь непрозрачные поверхности таких материалов, как дерево, бумага и т.п.
  3. Поглощаемость. Поглощаемость зависит от плотности материала: чем он плотнее, тем икс-лучи больше его поглощают.
  4. У некоторых веществ происходит флуоресценция, то есть свечение. Как только излучение прекращается, свечение тоже проходит. Если оно продолжается и после прекращения действия лучей, то этот эффект имеет название фосфоресценция.
  5. Рентгеновские лучи могут засветить фотопленку, так же как и видимый свет.
  6. Если луч прошел сквозь воздух, то происходит ионизация в атмосфере. Такое состояние называют электропроводным, и определяется оно с помощью дозиметра, которым устанавливается норма дозировки облучения.

Излучение — вред и польза

Когда было сделано открытие, ученый-физик Рентген не мог и представить, насколько опасно его изобретение. В былые времена все устройства, которые продуцировали излучение, были далеки от совершенства и в итоге получались большие дозы выпущенных лучей. Люди не понимали опасности такого излучения. Хотя некоторые ученые уже тогда выдвигали версии о вреде рентгеновских лучей.


Х-лучи, проникая в ткани, оказывают на них действие биологического характера. Единица измерения дозы радиации — рентген в час. Основное влияние оказывается на ионизирующие атомы, которые находятся внутри тканей. Действуют эти лучи непосредственно на структуру ДНК живой клетки. К последствиям неконтролируемого излучения можно отнести:

  • мутация клеток;
  • появление опухолей;
  • лучевые ожоги;
  • лучевая болезнь.

Противопоказания к проведению рентгенологических исследований:

  1. Больные в тяжелом состоянии.
  2. Период беременности из-за негативного влияния на плод.
  3. Больные с кровотечением или открытым пневмотораксом.

Как работает рентген и где применяется

  1. В медицине. Рентгенодиагностика применяется для просвечивания живых тканей с целью выявления некоторых нарушений внутри организма. Рентгенотерапия проводится для устранения опухолевых образований.
  2. В науке. Выявляется строение веществ и природа рентгеновских лучей. Этими вопросами занимаются такие науки, как химия, биохимия, кристаллография.
  3. В промышленности. Для выявления нарушений в металлических изделиях.
  4. Для безопасности населения. Рентгенологические лучи установлены в аэропортах и других общественных местах с целью просвечивания багажа.


Медицинское использование рентгенологического излучения. В медицине и стоматологии широко применяются рентгеновские лучи в следующих целях:

  1. Для диагностирования болезней.
  2. Для мониторинга метаболических процессов.
  3. Для лечения многих заболеваний.

Применение рентген-лучей в лечебных целях

Помимо выявления переломов костей, рентгеновские лучи широко применяются и в лечебных целях. Специализированное применение х-лучей заключается в достижении следующих целей:

  1. Для уничтожения раковых клеток.
  2. Для уменьшения размера опухоли.
  3. Для снижения болевых ощущений.

Например, радиоактивный йод, применяемый при эндокринологических заболеваниях, активно используется при раке щитовидной железы, тем самым помогая многим людям избавиться от этой страшной болезни. В настоящее время для диагностики сложных заболеваний рентгеновские лучи подключаются к компьютерам, в итоге появляются новейшие методы исследования, такие как и компьютерная осевая томография.

Такое сканирование предоставляет врачам цветные снимки, на которых можно увидеть внутренние органы человека. Для выявления работы внутренних органов достаточно небольшой дозы излучения. Также широкое применение рентгеновские лучи нашли и в физиопроцедурах.


Основные свойства рентгеновских лучей

  1. Проникающая способность. Все тела для рентгеновского луча прозрачны, и степень прозрачности зависит от толщины тела. Именно благодаря этому свойству луч стал применяться в медицине для выявления работы органов, наличия переломов и инородных тел в организме.
  2. Они способны вызывать свечение некоторых предметов. Например, если на картон нанести барий и платину, то, пройдя через сканирование лучами, он будет светиться зеленовато-желтым. Если поместить руку между трубкой рентгена и экраном, то свет проникнет больше в кость, чем в ткани, поэтому на экране высветится ярче всего костная ткань, а мышечная менее ярко.
  3. Действие на фотопленку. Х-лучи могут подобно свету делать пленку темной, это позволяет фотографировать ту теневую сторону, которая получается при исследовании рентгеновскими лучами тел.
  4. Рентгеновские лучи могут ионизировать газы. Это позволяет не только находить лучи, но и выявлять их интенсивность, измеряя ток ионизации в газе.
  5. Оказывают биохимическое воздействие на организм живых существ. Благодаря этому свойству рентгеновские лучи нашли свое широкое применение в медицине: они могут лечить как кожные заболевания, так и болезни внутренних органов. В этом случае выбирается нужная дозировка излучения и срок действия лучей. Длительное и чрезмерное применение такого лечения весьма вредно и губительно для организма.

Следствием использования рентгеновских лучей стало спасение множества человеческих жизней. Рентген помогает не только своевременно диагностировать заболевание, методики лечения с применением лучевой терапии избавляют больных от различных патологий, начиная с гиперфункции щитовидной железы и заканчивая злокачественными опухолями костных тканей.

Рентгеновское излучение возникает при взаимодействии электронов, движущихся с большими скоростями, с веществом. Когда электроны соударяются с атомами какого-либо вещества, они быстро теряют свою кинетическую энергию. При этом большая ее часть переходит в тепло, а небольшая доля, обычно менее 1%, преобразуется в энергию рентгеновского излучения. Эта энергия высвобождается в форме квантов - частиц, называемых фотонами, которые обладают энергией, но масса покоя которых равна нулю. Рентгеновские фотоны различаются своей энергией, обратно пропорциональной их длине волны. При обычном способе получения рентгеновского излучения получают широкий диапазон длин волн, который называют рентгеновским спектром. В спектре присутствуют ярко выраженные компоненты, как это показано на рис. 1.

Рис. 1. ОБЫЧНЫЙ РЕНТГЕНОВСКИЙ СПЕКТР состоит из непрерывного спектра (континуума) и характеристических линий (острые пики). Линии Кia и Кib возникают вследствие взаимодействий ускоренных электронов с электронами внутренней К-оболочки.

Широкий «континуум» называют непрерывным спектром или белым излучением. Налагающиеся на него острые пики называются характеристическими рентгеновскими линиями испускания. Хотя весь спектр есть результат столкновений электронов с веществом, механизмы возникновения его широкой части и линий разные. Вещество состоит из большого числа атомов, каждый из которых имеет ядро, окруженное электронными оболочками, причем каждый электрон в оболочке атома данного элемента занимает некоторый дискретный уровень энергии. Обычно эти оболочки, или энергетические уровни, обозначают символами K, L, M и т.д., начиная от ближайшей к ядру оболочки. Когда налетающий электрон, обладающий достаточно большой энергией, соударяется с одним из связанных с атомом электронов, он выбивает этот электрон с его оболочки. Опустевшее место занимает другой электрон с оболочки, которой соответствует большая энергия. Этот последний отдает избыток энергии, испуская рентгеновский фотон. Поскольку электроны оболочек имеют дискретные значения энергии, возникающие рентгеновские фотоны тоже обладают дискретным спектром. Этому соответствуют острые пики для определенных длин волн, конкретные значения которых зависят от элемента-мишени. Характеристические линии образуют K-, L- и M-серии, в зависимости от того, с какой оболочки (K, L или M) был удален электрон. Соотношение между длиной волны рентгеновского излучения и атомным номером называется законом Мозли (рис. 2).

Рис. 2. ДЛИНА ВОЛНЫ ХАРАКТЕРИСТИЧЕСКОГО РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ, испускаемого химическими элементами, зависит от атомного номера элемента. Кривая соответствует закону Мозли: чем больше атомный номер элемента, тем меньше длина волны характеристической линии.

Если электрон наталкивается на относительно тяжелое ядро, то он тормозится, а его кинетическая энергия выделяется в виде рентгеновского фотона примерно той же энергии. Если же он пролетит мимо ядра, то потеряет лишь часть своей энергии, а остальную будет передавать попадающимся на его пути другим атомам. Каждый акт потери энергии ведет к излучению фотона с какой-то энергией. Возникает непрерывный рентгеновский спектр, верхняя граница которого соответствует энергии самого быстрого электрона. Таков механизм образования непрерывного спектра, а максимальная энергия (или минимальная длина волны), фиксирующая границу непрерывного спектра, пропорциональна ускоряющему напряжению, которым определяется скорость налетающих электронов. Спектральные линии характеризуют материал бомбардируемой мишени, а непрерывный спектр определяется энергией электронного пучка и практически не зависит от материала мишени.

Рентгеновское излучение можно получать не только электронной бомбардировкой, но и облучением мишени рентгеновским же излучением от другого источника. В этом случае, однако, бльшая часть энергии падающего пучка переходит в характеристический рентгеновский спектр и очень малая ее доля приходится на непрерывный. Очевидно, что пучок падающего рентгеновского излучения должен содержать фотоны, энергия которых достаточна для возбуждения характеристических линий бомбардируемого элемента. Высокий процент энергии, приходящейся на характеристический спектр, делает такой способ возбуждения рентгеновского излучения удобным для научных исследований.

Рентгеновские трубки. Чтобы получать рентгеновское излучение за счет взаимодействия электронов с веществом, нужно иметь источник электронов, средства их ускорения до больших скоростей и мишень, способную выдерживать электронную бомбардировку и давать рентгеновское излучение нужной интенсивности. Устройство, в котором все это есть, называется рентгеновской трубкой. Ранние исследователи пользовались «глубоко вакуумированными» трубками типа современных газоразрядных. Вакуум в них был не очень высоким.

В газоразрядных трубках содержится небольшое количество газа, и когда на электроды трубки подается большая разность потенциалов, атомы газа превращаются в положительные и отрицательные ионы. Положительные движутся к отрицательному электроду (катоду) и, падая на него, выбивают из него электроны, а они, в свою очередь, движутся к положительному электроду (аноду) и, бомбардируя его, создают поток рентгеновских фотонов.

В современной рентгеновской трубке, разработанной Кулиджем (рис. 3), источником электронов является вольфрамовый катод, нагреваемый до высокой температуры. Электроны ускоряются до больших скоростей высокой разностью потенциалов между анодом (или антикатодом) и катодом. Поскольку электроны должны достичь анода без столкновений с атомами, необходим очень высокий вакуум, для чего нужно хорошо откачать трубку. Этим также снижаются вероятность ионизации оставшихся атомов газа и обусловленные ею побочные токи.

Рис. 3. РЕНТГЕНОВСКАЯ ТРУБКА КУЛИДЖА. При бомбардировке электронами вольфрамовой антикатод испускает характеристическое рентгеновское излучение. Поперечное сечение рентгеновского пучка меньше реально облучаемой площади. 1 - электронный пучок; 2 - катод с фокусирующим электродом; 3 - стеклянная оболочка (трубка); 4 - вольфрамовая мишень (антикатод); 5 - нить накала катода; 6 - реально облучаемая площадь; 7 - эффективное фокальное пятно; 8 - медный анод; 9 - окно; 10 - рассеянное рентгеновское излучение.

Электроны фокусируются на аноде с помощью электрода особой формы, окружающего катод. Этот электрод называется фокусирующим и вместе с катодом образует «электронный прожектор» трубки. Подвергаемый электронной бомбардировке анод должен быть изготовлен из тугоплавкого материала, поскольку бульшая часть кинетической энергии бомбардирующих электронов превращается в тепло. Кроме того, желательно, чтобы анод был из материала с большим атомным номером, т.к. выход рентгеновского излучения растет с увеличением атомного номера. В качестве материала анода чаще всего выбирается вольфрам, атомный номер которого равен 74.

Конструкция рентгеновских трубок может быть разной в зависимости от условий применения и предъявляемых требований.

Рентгеновским излучением называют электромагнитные волны с длиной приблизительно от 80 до 10 -5 нм. Наиболее длинноволновое рентгеновское излучение перекрывается коротковолновым ультрафиолетовым, коротковолновое - длинноволновым γ-излучением. По способу возбуждения рентгеновское излучение подразделяют на тормозное и характеристическое.

31.1. УСТРОЙСТВО РЕНТГЕНОВСКОЙ ТРУБКИ. ТОРМОЗНОЕ РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ

Наиболее распространенным источником рентгеновского излучения является рентгеновская трубка, которая представляет собой двух-электродный ваккумный прибор (рис. 31.1). Подогревный катод 1 испускает электроны 4. Анод 2, называемый часто антикатодом, имеет наклонную поверхность, для того чтобы направить возникающее рентгеновское излучение 3 под углом к оси трубки. Анод изготовлен из хорошо теплопрово-дящего материала для отвода теплоты, образующейся при ударе электронов. Поверхность анода выполнена из тугоплавких материалов, имеющих большой порядковый номер атома в таблице Менделеева, например из вольфрама. В отдельных случаях анод специально охлаждают водой или маслом.

Для диагностических трубок важна точечность источника рентгеновских лучей, чего можно достигнуть, фокусируя электроны в одном месте антикатода. Поэтому конструктивно приходится учитывать две противоположные задачи: с одной стороны, электроны должны попадать на одно место анода, с другой стороны, чтобы не допустить перегрева, желательно распределение электронов по разным участкам анода. В качестве одного из интересных технических решений является рентгеновская трубка с вращающимся анодом (рис. 31.2).

В результате торможения электрона (или иной заряженной частицы) электростатическим полем атомного ядра и атомарных электронов вещества антикатода возникает тормозное рентгеновское излучение.

Механизм его можно пояснить следующим образом. С движущимся электрическим зарядом связано магнитное поле, индукция которого зависит от скорости электрона. При торможении уменьшается магнитная

индукция и в соответствии с теорией Максвелла появляется электромагнитная волна.

При торможении электронов лишь часть энергии идет на создание фотона рентгеновского излучения, другая часть расходуется на нагревание анода. Так как соотношение между этими частями случайно, то при торможении большого количества электронов образуется непрерывный спектр рентгеновского излучения. В связи с этим тормозное излучение называют еще сплошным. На рис. 31.3 представлены зависимости потока рентгеновского излучения от длины волны λ (спектры) при разных напряжениях в рентгеновской трубке: U 1 < U 2 < U 3 .

В каждом из спектров наиболее коротковолновое тормозное излучение λ ηίη возникает тогда, когда энергия, приобретенная электроном в ускоряющем поле, полностью переходит в энергию фотона:

Заметим, что на основе (31.2) разработан один из наиболее точных способов экспериментального определения постоянной Планка.

Коротковолновое рентгеновское излучение обычно обладает большей проникающей способностью, чем длинноволновое, и называется жестким, а длинноволновое - мягким.

Увеличивая напряжение на рентгеновской трубке, изменяют спектральный состав излучения, как это видно из рис. 31.3 и формулы (31.3), и увеличивают жесткость.

Если увеличить температуру накала катода, то возрастут эмиссия электронов и сила тока в трубке. Это приведет к увеличению числа фотонов рентгеновского излучения, испускаемых каждую секунду. Спектральный состав его не изменится. На рис. 31.4 показаны спектры тормозного рентгеновского излучения при одном напряжении, но при разной силе тока накала катода: / н1 < / н2 .

Поток рентгеновского излучения вычисляется по формуле:

где U и I - напряжение и сила тока в рентгеновской трубке; Z - порядковый номер атома вещества анода; k - коэффициент пропорциональности. Спектры, полученные от разных антикатодов при одинаковых U и I H , изображены на рис. 31.5.

31.2. ХАРАКТЕРИСТИЧЕСКОЕ РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ. АТОМНЫЕ РЕНТГЕНОВСКИЕ СПЕКТРЫ

Увеличивая напряжение на рентгеновской трубке, можно заметить на фоне сплошного спектра появление линейчатого, который соответствует

характеристическому рентгеновскому излучению (рис. 31.6). Он возникает вследствие того, что ускоренные электроны проникают в глубь атома и из внутренних слоев выбивают электроны. На свободные места переходят электроны с верхних уровней (рис. 31.7), в результате высвечиваются фотоны характеристического излучения. Как видно из рисунка, характеристическое рентгеновское излучение состоит из серий K, L, М и т.д., наименование которых и послужило для обозначения электронных слоев. Так как при излучении K-серии освобождаются места в более высоких слоях, то одновременно испускаются и линии других серий.

В отличие от оптических спектров характеристические рентгеновские спектры разных атомов однотипны. На рис. 31.8 показаны спектры различных элементов. Однотипность этих спектров обусловлена тем, что внутренние слои у разных атомов одинаковы и отличаются лишь энергетически, так как силовое воздействие со стороны ядра увеличивается по мере возрастания порядкового номера элемента. Это обстоятельство приводит к тому, что характеристические спектры сдвигаются в сторону больших частот с увеличением заряда ядра. Такая закономерность видна из рис. 31.8 и известна как закон Мозли:

где v - частота спектральной линии; Z- атомный номер испускающего элемента; А и В - постоянные.

Есть еще одна разница между оптическими и рентгеновскими спектрами.

Характеристический рентгеновский спектр атома не зависит от химического соединения, в которое этот атом входит. Так, например, рентгеновский спектр атома кислорода одинаков для О, O 2 и Н 2 О, в то время как оптические спектры этих соединений существенно различны. Эта особенность рентгеновского спектра атома послужила основанием для названия характеристическое.

Характеристическое излучение возникает всегда при наличии свободного места во внутренних слоях атома независимо от причины, которая его вызвала. Так, например, характеристическое излучение сопровождает один из видов радиоактивного распада (см. 32.1), который заключается в захвате ядром электрона с внутреннего слоя.

31.3. ВЗАИМОДЕЙСТВИЕ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ С ВЕЩЕСТВОМ

Регистрация и использование рентгеновского излучения, а также воздействие его на биологические объекты определяются первичными процессами взаимодействия рентгеновского фотона с электронами атомов и молекул вещества.

В зависимости от соотношения энергии hv фотона и энергии иони-зации 1 А и имеют место три главных процесса.

Когерентное (классическое) рассеяние

Рассеяние длинноволнового рентгеновского излучения происходит в основном без изменения длины волны, и его называют когерентным. Оно возникает, если энергия фотона меньше энергии ионизации: hv < А и.

Так как в этом случае энергия фотона рентгеновского излучения и атома не изменяется, то когерентное рассеяние само по себе не вызывает биологического действия. Однако при создании защиты от рентгеновского излучения следует учитывать возможность изменения направления первичного пучка. Этот вид взаимодействия имеет значение для рентгеноструктурного анализа (см. 24.7).

Некогерентное рассеяние (эффект Комптона)

В 1922 г. А.Х. Комптон, наблюдая рассеяние жестких рентгеновских лучей, обнаружил уменьшение проникающей способности рассеянного пучка по сравнению с падающим. Это означало, что длина волны рассеянного рентгеновского излучения больше, чем падающего. Рассеяние рентгеновского излучения с изменением длины волны называют некогерент ным, а само явление - эффектом Комптона. Он возникает, если энергия фотона рентгеновского излучения больше энергии ионизации: hv > А и.

Это явление обусловлено тем, что при взаимодействии с атомом энергия hv фотона расходуется на образование нового рассеянного фотона рентгеновского излучения с энергией hv", на отрыв электрона от атома (энергия ионизации А и) и сообщение электрону кинетической энергии Е к:

hv= hv" + А и +Е к. (31.6)

1 Здесь под энергией ионизации понимают энергию, необходимую для удаления внутренних электронов за пределы атома или молекулы.

Так как во многих случаях hv >> А и и эффект Комптона происходит на свободных электронах, то можно записать приближенно:

hv = hv"+ E K . (31.7)

Существенно, что в этом явлении (рис. 31.9) наряду с вторичным рентгеновским излучением (энергия hv " фотона) появляются электроны отдачи (кинетическая энергия Е к электрона). Атомы или молекулы при этом становятся ионами.

Фотоэффект

При фотоэффекте рентгеновское излучение поглощается атомом, в результате чего вылетает электрон, а атом ионизируется (фотоионизация).

Три основных процесса взаимодействия, рассмотренные выше, являются первичными, они приводят к последующим вторичным, третичным и т.д. явлениям. Так, например, ионизированные атомы могут излучать характеристический спектр, возбужденные атомы могут стать источниками видимого света (рентгенолюминесценция) и т.п.

На рис. 31.10 приводится схема возможных процессов, возникающих при попадании рентгеновского излучения в вещество. Может происходить несколько десятков процессов, подобных изображенному, прежде чем энергия рентгеновского фотона перейдет в энергию молекулярно-теплового движения. В итоге произойдут изменения молекулярного состава вещества.

Процессы, представленные схемой рис. 31.10, лежат в основе явлений, наблюдаемых при действии рентгеновского излучения на вещество. Перечислим некоторые из них.

Рентгенолюминесценция - свечение ряда веществ при рентгеновском облучении. Такое свечение платиносинеродистого бария позволило Рентгену открыть лучи. Это явление используют для создания специальных светящихся экранов с целью визуального наблюдения рентгеновского излучения, иногда для усиления действия рентгеновских лучей на фотопластинку.

Известно химическое действие рентгеновского излучения, например образование перекиси водорода в воде. Практически важный пример - воздействие на фотопластинку, что позволяет фиксировать такие лучи.

Ионизирующее действие проявляется в увеличении электропроводимости под воздействием рентгеновских лучей. Это свойство используют


в дозиметрии для количественной оценки действия этого вида излучения.

В результате многих процессов первичный пучок рентгеновского излучения ослабляется в соответствии с законом (29.3). Запишем его в виде:

I = I 0 е-/", (31.8)

где μ - линейный коэффициент ослабления. Его можно представить состоящим из трех слагаемых, соответствующих когерентному рассеянию μ κ , некогерентному μ ΗΚ и фотоэффекту μф:

μ = μ к + μ hk + μ ф. (31.9)

Интенсивность рентгеновского излучения ослабляется пропорционально числу атомов вещества, через которое этот поток проходит. Если сжать вещество вдоль оси X, например, в b раз, увеличив в b раз его плотность, то

31.4. ФИЗИЧЕСКИЕ ОСНОВЫ ПРИМЕНЕНИЯ РЕНТГЕНОВСКОГО ИЗЛУЧЕНИЯ В МЕДИЦИНЕ

Одно из наиболее важных медицинских применений рентгеновского излучения - просвечивание внутренних органов с диагностической целью (рентгенодиагностика).

Для диагностики используют фотоны с энергией порядка 60-120 кэВ. При этой энергии массовый коэффициент ослабления в основном определяется фотоэффектом. Его значение обратно пропорционально третьей степени энергии фотона (пропорционально λ 3), в чем проявляется большая проникающая способность жесткого излучения, и пропорционально третьей степени атомного номера вещества-поглотителя:

Существенное различие поглощения рентгеновского излучения разными тканями позволяет в теневой проекции видеть изображения внутренних органов тела человека.

Рентгенодиагностику используют в двух вариантах: рентгеноскопия - изображение рассматривают на рентгенолюминесцирующем экране, рентгенография - изображение фиксируется на фотопленке.

Если исследуемый орган и окружающие ткани примерно одинаково ослабляют рентгеновское излучение, то применяют специальные контрастные вещества. Так, например, наполнив желудок и кишечник кашеобразной массой сульфата бария, можно видеть их теневое изображение.

Яркость изображения на экране и время экспозиции на фотопленке зависят от интенсивности рентгеновского излучения. Если его используют для диагностики, то интенсивность не может быть большой, чтобы не вызвать нежелательных биологических последствий. Поэтому имеется ряд технических приспособлений, улучшающих изображение при малых интенсивностях рентгеновского излучения. В качестве примера такого приспособления можно указать электронно-оптические преобразователи (см. 27.8). При массовом обследовании населения широко используется вариант рентгенографии - флюорография, при которой на чувствительной малоформатной пленке фиксируется изображение с большого рентгенолюминесцирующего экрана. При съемке используют линзу большой светосилы, готовые снимки рассматривают на специальном увеличителе.

Интересным и перспективным вариантом рентгенографии является метод, называемый рентгеновской томографией, и его «машинный вариант» - компьютерная томография.

Рассмотрим этот вопрос.

Обычная рентгенограмма охватывает большой участок тела, причем различные органы и ткани затеняют друг друга. Можно избежать этого, если периодически совместно (рис. 31.11) в противофазе перемещать рентгеновскую трубку РТ и фотопленку Фп относительно объекта Об исследования. В теле имеется ряд непрозрачных для рентгеновских лучей включений, они показаны кружочками на рисунке. Как видно, рентгеновские лучи при любом положении рентгеновской трубки (1, 2 и т.д.) проходят че-

рез одну и ту же точку объекта, являющуюся центром, относительно которого совершается периодическое движение РТ и Фп. Эта точка, точнее небольшое непрозрачное включение, показана темным кружком. Его теневое изображение перемещается вместе с Фп, занимая последовательно положения 1, 2 и т.д. Остальные включения в теле (кости, уплотнения и др.) создают на Фп некоторый общий фон, так как рентгеновские лучи не постоянно затеняются ими. Изменяя положение центра качания, можно получить послойное рентгеновское изображение тела. Отсюда и название - томография (послойная запись).

Можно, используя тонкий пучок рентгеновского излучения, экран (вместо Фп), состоящий из полупроводниковых детекторов ионизирующего излучения (см. 32.5), и ЭВМ, обработать теневое рентгеновское изображение при томографии. Такой современный вариант томографии (вычислительная или компьютерная рентгеновская томография) позволяет получать послойные изображения тела на экране электронно-лучевой трубки или на бумаге с деталями менее 2 мм при различии поглощения рентгеновского излучения до 0,1%. Это позволяет, например, различать серое и белое вещество мозга и видеть очень маленькие опухолевые образования.

РЕНТГЕНОВСКОЕ ИЗЛУЧЕНИЕ

Рентгеновское излучение занимает область электромагнитного спектра между гамма- и ультрафиолетовым излучениями и представляет собой электромагнитное излучение с длиной волны от 10 -14 до 10 -7 м. В медицине используется рентгеновское излучение с длиной волны от 5 х 10 -12 до 2,5 х 10 -10 м, то есть 0,05 – 2,5 ангсмтрема, а собственно для рентгенодиагностики – 0,1 ангстрема. Излучение представляет собой поток квантов (фотонов), распространяющихся прямолинейно со скоростью света (300 000 км/с). Эти кванты не имеют электрического заряда. Масса кванта со­ставляет ничтожную часть атомной единицы массы.

Энергию квантов измеряют в Джоулях (Дж), но на практике часто пользуются внесистемной единицей "электрон-вольт" (эВ) . Один электрон-вольт - это энергия, которую приобретает один электрон, пройдя в электриче­ском поле разность потенциалов в 1 вольт. 1 эВ = 1,6 10~ 19 Дж. Производными являются килоэлектрон-вольт (кэВ), равный тысяче эВ, и мегаэлектрон-вольт (МэВ), равный миллиону эВ.

Рентгеновские лучи получают с помощью рентгеновских трубок, линейных ускорителей и бетатронов. В рентгеновской трубке разность потенциалов между катодом и анодом-мишенью (десятки киловольт) ускоряет электроны, бомбардирующие анод. Рентгеновское излучение возникает при торможении быстрых электронов в электрическом поле атомов вещества анода (тормозное излучение) или при перестрой­ке внутренних оболочек атомов (характеристическое излучение ) . Характеристическое рентгеновское излучение имеет дискретный характер и возникает при переходе электронов атомов вещества анода с одного энергетического уровня на другой под воздействием внеш­них электронов или квантов излучения. Тормозное рентгеновское излучение имеет непрерывный спектр, зависящий от анодного напря­жения на рентгеновской трубке. При торможении в веществе анода электроны большую часть своей энергии расходуют на нагрев анода (99%) и лишь малая доля (1%) превра­щается в энергию рентгеновского излучения. В рентгенодиагностике чаще всего используется тормозное излучение.

Основные свойства рентгеновских лучей характерны для всех электромагнитных излучений, однако существуют некоторые особенности. Рентгеновские лучи обладают следующими свойствами:

- невидимость - чувствительные клетки сетчатки глаза человека не реа­гируют на рентгеновские лучи, так как длина их волны в тысячи раз меньше, чем у видимого света;

- прямолинейное распространение – лучи преломляются, поляризуются (распространяются в определенной плоскости) и дифрагируют, как и видимый свет. Коэффициент преломления очень мало отличается от единицы;



- проникающая способность - проникают без существенного поглощения через значительные слои вещества, непрозрачного для видимого света. Чем короче длина волны, тем большей проникающей способностью обладает рентгеновское излучение;

- способность к поглощению - обладают способностью поглощаться тканями организма, на этом основана вся рентгенодиагностика. Способность к поглощению зависит от удельного веса тканей (чем больше, тем больше поглощение); от толщины объекта; от жесткости излучения;

- фотографическое действие - разлагают галоидные соеди­нения серебра, в том числе находящиеся в фотоэмульсиях, что позволяет полу­чать рентгеновские снимки;

- люминесцирующее действие - вызывают люминесценцию ряда химических соединений (люминофоров), на этом осно­вана методика рентгеновского просвечивания. Интенсивность свечения зависит от строения флюоресцирующего вещества, его количества и расстояния от источника рентгеновского излучения. Люминофоры используют не только для получения изображения исследуемых объектов на рентгеноскопическом экране, но и при рентгенографии, где они позволяют увеличить лучевое воздействие на рентгенографическую пленку в кассете благодаря примене­нию усиливающих экранов, поверхностный слой которых выполнен из флюо­ресцирующих веществ;

- ионизационное действие - обладают способностью вызывать распад нейтральных атомов на положительно и отрицательно заряженные частицы, на этом основана дозиметрия. Эффект ионизации любой среды заключается в образовании в ней положительных и отрицательных ионов, а также свободных электронов из нейтральных атомов и молекул вещества. Ионизация воздуха в рентгеновском кабинете при работе рентгеновской трубки приводит к увеличению электрической проводимости воздуха, усилению статических электрических зарядов на предметах кабинета. С целью устранения такого нежелательного влияния их в рентгеновских кабинетах предусмотрена принудительная приточно-вытяжная вентиляция;

- биологическое действие - оказывают воздействие на биологические объекты, в большинстве случаев это воздействие является вредным;

- закон обратных квадратов - для точечного источника рентгеновского излучения интенсивность убывает пропорционально квадра­ту расстояния до источника.

Новое на сайте

>

Самое популярное