Домой Здоровье Способ определения меди. Способы определения меди в различных веществах Методика определения меди в воде

Способ определения меди. Способы определения меди в различных веществах Методика определения меди в воде

УДК 669.15/27-198:546.56.06:006.354 Группа В19

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Методы определения меди

Methods for determination of copper content

ФЕРРОВОЛЬФРАМ

|СТ СЭВ 4043-83)

ГОСТ 14638.9-69

Постановлением Государственного комитета СССР по стандартам от 22 мая 1984 г. № 1698 срок действия установлен

Настоящий стандарт устанавливает фотометрический, полярографический и атомно-абсорбционный методы определения в ферровольфраме массовой доли меди в диапазоне от 0,01 до 0,4%. Стандарт полностью соответствует СТ СЭВ 4043-83.

1.1. Общие требования к методам анализа - по ГОСТ 13020.0-75.

1.2. Лабораторная проба должна быть приготовлена в виде тонкого порошка с размером частиц, проходящих через сито с сеткой № 016 по ГОСТ 6613-73.

2.1. Сущность метода

Метод основан на образовании комплексного соединения меди с диэтилдитиокарбаматом натрия, окрашенного в коричневый цвет, и измерении его оптической плотности на спектрофотометре при длине волны 453 нм или фотоэлектроколориметре в диапазоне длин волн 400-480 нм.

2.2. Аппаратура, реактивы и растворы

Спектрофотометр или фотоэлектроколориметр со всеми принадлежностями.

Кислота соляная по ГОСТ 3118-77 и разбавленная 1: 50.

Издание официальное Перепечатка воспрещена

с 01.07.85 до 01.07.90

Несоблюдение стандарта преследуется по закону

1. ОБЩИЕ ТРЕБОВАНИЯ

2. ФОТОМЕТРИЧЕСКИЙ МЕТОД

Кислота азотная по ГОСТ 446Г-77 и разбавленная 1: 1.

Кислота серная по ГОСТ 4204-77 и разбавленная 1:1.

Калий-натрий виннокислый по ГОСТ 5845-79, 50%-ный раствор.

Крахмал по ГОСТ 10163-76, свежеприготовленный 0,25%-ный раствор.

Натрия N, N-диэтилдитиокарбамат по ГОСТ 8864-71,0,1%-ный раствор.

Стандартные растворы меди.

Раствор А: 0,1000 г металлической меди растворяют при нагревании в 10 см 3 разбавленной азотной кислоты. Добавляют 30 см 3 разбавленной серной кислоты и выпаривают до появления паров серной кислоты. Соли растворяют в 100 см 3 воды. Раствор переносят в мерную колбу вместимостью 1 дм 3 , доливают водой до метки и перемешивают.

Массовая концентрация меди в растворе Б равна 0,00001 г/см 3 ; готовят в день применения.

2.3. Проведение анализа

2.3.1. Массу навески ферровольфрама устанавливают в зависимости от ожидаемой массовой доли меди в соответствии с табл. 1.

Таблица I

Навеску помещают в фарфоровый тигель и прокаливают 2 ч при температуре 800° С. Во время прокаливания содержимое тигля 2-3 раза перемешивают. Прокаленный осадок переносят в коническую колбу вместимостью 250 см 3 , приливают 60 см 3 соляной кислоты и выпаривают раствор до объема 10-15 см 3 , затем приливают 10 см 3 азотной кислоты и снова выпаривают раствор до объ

ема 10-15 см 3 . Приливают 100 см 3 горячей воды и нагревают раствор до кипения. Осадку вольфрамовой кислоты дают отстояться в течение 2 ч.

При анализе алюминотермического ферровольфрама навеску помещают в платиновую чашку, смачивают водой, приливают 5 см 3 азотной кислоты, 5 см 3 раствора фтористоводородной кислоты, 10 см 3 серной кислоты и растворяют при нагревании.

Раствор выпаривают до появления паров серной кислоты. Соли растворяют в 20 см 3 воды. Раствор переносят в стакан вместимостью 250 см 3 , приливают 100 см 3 горячей воды и нагревают до кипения. Осадку вольфрамовой кислоты дают отстояться в течение 2 ч.

После разложения навески любым из вышеуказанных способов раствор фильтруют в колбу через плотный фильтр, осадок на фильтре промывают 3-4 раза горячей разбавленной соляной кислотой и отбрасывают.

К фильтрату приливают 10 см 3 серной кислоты (в случае анализа алюминотермического ферровольфрама серную кислоту не приливают) и выпаривают содержимое колбы до появления паров серной кислоты. Ополаскивают стенки колбы водой и снова выпаривают раствор до появления паров серной кислоты.

Раствор охлаждают, приливают 20 см 3 воды, нагревают до растворения солей и переливают в мерную колбу вместимостью 100 см 3 , после чего доливают до метки водой и перемешивают.

В две мерные колбы вместимостью по 100 см 3 отбирают аликвотные части раствора в соответствии с табл. 1. В каждую мерную колбу приливают по 5 см 3 раствора виннокислого калия-наг-рия, по 5 см 3 раствора крахмала или желатина, по 10 см 3 аммиака. Содержимое колб охлаждают, в одну из колб добавляют 4 см 3 раствора дизтилдитиокарбамата натрия, доливают колбы до метки водой и перемешивают.

Измеряют оптическую плотность раствора на спектрофотометре при длине волны 453 нм или на фотоэлектроколориметре в диапазоне длин волн 400-480 нм.

В качестве раствора сравнения применяют раствор второй колбы, не содержащей раствора дизтилдитиокарбамата натрия. По результатам, полученным путем вычитания значения оптической плотности раствора контрольного опыта, из значения оптической плотности раствора пробы находят массу меди по градуировочному графику.

2.3.2. Построение градуировочного графика

В шесть из семи мерных колб вместимостью по 100 см 3 помещают 1,0; 3,0; 6,0; 8,0; 10,0 и 12,0 см 3 стандартного раствора Б, что соответствует 0,00001; 0,00003; 0,00006; 0,00008;

0,00010 и 0,00012 г меди. В седьмую колбу стандартный раствор не помещают. Во все колбы добавляют по 5 см 3 раствора виннокис

лого калия-натрия, по 5 см 3 раствора крахмала или желатина и по 10 см 3 аммиака. Содержимое колб охлаждают, приливают до 4 см 3 раствора диэтилдитиокарбамата натрия, доливают до метки водой и перемешивают. Измеряют оптическую плотность растворов на спектрофотометре при длине волны 453 нм или фотоэлектроколориметре в диапазоне длин волн 400-480 нм. Раствором сравнения служит раствор, не содержащий стандартного раствора меди. По полученным значениям оптических плотностей и соответствующим им содержаниям меди строят градуировочный график.

2.4. Обработка результатов

2.4.1. Массовую долю меди (X) в процентах вычисляют по формуле

Х= ■ 100,

где тI - масса меди в растворе пробы, найденная по градуировочному графику, г;

т - масса навески, соответствующая аликвотной части раствора пробы, г,

2.4.2. Абсолютные допускаемые расхождения результатов параллельных определений не должны превышать значений, приведенных в табл. 2.

Таблица 2

3. полярографический метод

3.1. Сущность метода

Метод основан на полярографировании меди на аммиачно-хло-ридном фоне при потенциале восстановления минус 0,35 В относительно ртутного анода. Режим полярографировании - переменнотоковый или осциллографический.

3.2 Аппаратура, реактивы и растворы

Полярограф переменнотоковый или осциллографический со всеми принадлежностями.

Кислота фтористоводородная по ГОСТ 10484-78.

Кислота азотная по ГОСТ 4461-77, разбавленная 1: 1.

Кислота серная по ГОСТ 4204-77, разбавленная 1:1.

Аммоний хлористый по ГОСТ 3773 -72.

Аммиак водный по ГОСТ 3760-79.

Натрий сернистокислый по ГОСТ 195-77.

Желатин по ГОСТ 23058-78, свежеприготовленный 1%-ный раствор.

Медь металлическая по ГОСТ 859-78.

Стандартный раствор меди: 0,1000 г меди при нагревании растворяют в 15 см 3 азотной кислоты. Раствор переносят в мерную колбу вместимостью 1 дм 3 , доливают водой до метки и перемешивают.

Массовая концентрация меди в стандартном растворе равна 0,0001 г/см 3 .

3.3. Проведение анализа

3.3. L Навеску ферровольфрама массой 0,5 г при массовой доле меди 0,01-0,1% и массой 0,25 г при массовой доле меди свыше 0,1% помещают в платиновую чашку, прибавляют 5-10 см 3 раствора фтористоводородной кислоты, 20 см 3 азотной кислоты и растворяют при нагревании. После растворения навески приливают 10 см 3 серной кислоты и выпаривают раствор до появления паров серной кислоты, которым дают выделяться 3-5 мин. Содержимое чашки охлаждают, приливают 25 см 3 воды, нагревают до растворения солей и переносят в мерную колбу вместимостью 100 см 3 . К полученному раствору прибавляют 3 г хлористого аммония, приливают при непрерывном перемешивании 30 см 3 аммиака и оставляют на 10 мин. Затем добавляют 5 см 3 раствора желатина (в случае переменнотокового режима желатин не добавляют), доводят объем раствора до метки водой и перемешивают. Аммиачный раствор отфильтровывают через фильтр средней плотности в сухую колбу. Первые порции фильтрата отбрасывают. К фильтрату прибавляют 1 г сернистокислого натрия и оставляют на 10 мин, периодически перемешивая.

Часть раствора наливают в электролизер и полярографируют при потенциале восстановления минус 0,35 В относительно ртутного анода.

3 3.2. Массовую долю меди определяют методом сравнения со стандартным образцом или методом добавок.

3.3.2.1. При применении метода сравнения одновременно с проведением анализа испытуемых проб по п. 3.3.1 проводят анализ стандартного образца, близкого по составу и массовой доле меди.

3.3.2.2. При применении метода добавок к навеске пробы добавляют такое количество стандартного раствора меди, при котором масса добавки меди составляла не менее половины массы меди в анализируемой пробе. Далее анализ проводят по п. 3.3.1.

3.4. Обработка результатов

3.4.1. Массовую долю меди в процентах вычисляют по формулам:

для метода сравнения (X)

где с - массовая доля меди в стандартном растворе, %; h - высота пика анализируемой пробы, мм; hi - высота пика стандартного образца, мм; для метода добавок (X*)

Х х ~ - hrm3 100,

где h 2 - высота пика, полученная при полярографировании раствора пробы без добавки стандартного раствора меди* мм;

h 3 - высота пика, полученная при полярографировании раствора пробы с добавкой стандартного раствора меди, мм; т 2 - масса меди в добавленном стандартном растворе меди, г; т - масса навески пробы, г.

3.4.2. Абсолютные допускаемые расхождения результатов параллельных определений не должны превышать значений, приведенных в табл. 2.

4. АТОМНО-АБСОРБЦИОННЫЙ МЕТОД

4.1. Сущность метода

Метод основан на измерении поглощения меди при резонансной линии 324,7 нм в пламени ацетилен-воздух. Определение меди проводят методом добавок,

4.2. Аппаратура, реактивы и растворы

Спектрофотометр атомно-абсорбционный любого типа со всеми

принадлежностями.

Кислота соляная по ГОСТ 3118-77.

Кислота азотная по ГОСТ 4461-77 и разбавленная 1: 1.

Кислота серная по ГОСТ 4204-77 и разбавленная 1: 1.

Кислота фтористоводородная по ГОСТ 10484-78.

Стандартные растворы меди.

Раствор А: 0,1000 г металлической меди растворяют при нагревании в 10 см 3 разбавленной азотной кислоты. Добавляют 30 см 3 серной кислоты и выпаривают до паров серной кислоты. Соли растворяют в 100 см 3 воды. Раствор переносят в мерную колбу вместимостью 1 дм 3 , доливают до метки водой и перемешивают.

Массовая концентрация меди в растворе А равна 0,0001 г/см 3 .

Раствор Б: 10 см 3 раствора А помещают в мерную колбу вместимостью 100 см 3 , доливают водой до метки и перемешивают.

Массовая концентрация меди в растворе Б равна 0,00001 г/см 3 .

4.3. Проведение анализа

4.3.1. Навеску ферровольфрама массой 0,5 г помещают в фарфоровый тигель и прокаливают 2 ч при температуре 800° С. Во время прокаливания содержимое тигля 2-3 раза перемешивают. Прокаленный осадок переносят в стакан вместимостью 250 см 3 , приливают 60 см 3 соляной кислоты и выпаривают раствор до объема 10-15 см 3 , затем приливают 10 см 3 азотной кислоты и снова выпаривают раствор до объема 10-15 см 3 . Приливают 10 см 3 разбавленной серной кислоты и выпаривают до появления паров серной кислоты. Стенки стакана ополаскивают водой и снова выпаривают раствор до паров серной кислоты. Приливают воды до объема 90 см 3 и нагревают раствор до кипения. Охлажденный раствор с осадком переносят в мерную колбу вместимостью 100 см 3 , доливают водой до метки и перемешивают. Осадку вольфрамовой кислоты дают отстояться в течение 2 ч.

При анализе алюминотермического ферровольфрама навеску массой 0,5 г помещают в платиновую чашку, смачивают водой, приливают 5 см 3 азотной кислоты, 5 см 3 раствора фтористоводородной кислоты, 10 см 3 разбавленной серной кислоты и растворяют при нагревании. Раствор выпаривают до появления паров серной кислоты. Стенки чашки ополаскивают водой и снова выпаривают до паров серной кислоты. Соли растворяют в 20 см 3 воды, раствор переносят в стакан вместимостью 250 см 3 , приливают горячей воды до объема 90 см 3 и нагревают до кипения. Охлажденный раствор с осадком переносят в мерную колбу вместимостью 100 см 3 , доливают водой до метки и перемешивают. Осадку вольфрамовой кислоты дают отстояться в течение 2 ч.

После разложения навески любым из вышеуказанных способов раствор фильтруют через плотный фильтр в сухой стакан вместимостью 100 см 3 , отбрасывая первые порции фильтрата. Полученный раствор вводят распылением в пламя горелки и измеряют атомную абсорбцию при длине волны 324,7 нм и строго постоянном давлении воздуха и ацетилена.

Одновременно с проведением анализа в тех же условиях проводят контрольный опыт на загрязнение реактивов медью.

4.3.2. Массовую долю меди определяют методом добавок. Для этого к раствору пробы, полученному после разложения одним из вышеуказанных способов, добавляют такое количество стандартного раствора меди, при котором масса добавки меди составляла не менее половины массы меди в анализируемой пробе. Затем приливают 10 см 3 разбавленной серной кислоты и раствор выпа

4.4. Обработка результатов

4.4.1. Массовую долю меди (X) в процентах вычисляют по

ЛГ= -■ . ]00

где т - масса меди в добавленном стандартном растворе, г;

D - значение атомного поглощения раствора пробы;

Di - значение атомного поглощения раствора контрольного опыта на загрязнение реактивов медью;

D 2 - значение атомного поглощения раствора пробы с добавлением стандартного раствора; т х --масса навески пробы, г.

4.4.2. Абсолютные допускаемые расхождения результатов параллельных определений не должны превышать значений, приведенных в табл. 2.

Изменение № 1 ГОСТ 14638.9-84 Ферровольфрам. Методы определения меди

Утверждено и введено в действие Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 30.10.89 № 3261

Дата введения 01.07.90

Пункт 2.2. Заменить слова: «50 %-ньгй раствор» на «раствор с массовой долей 50 %»; «0,25 %-ный раствор» на «раствор с массовой долей 0,25 %»; «1 %-ный раствор» на «раствор с массовой долей 1 %»; «0,3 %-ный раствор» на «раствор с массовой долей 0,1 %».

Пункт 2.4.2 изложить в новой редакции: «2.4.2. Нормы точности и нормативы контроля точности определения массовой доли меди приведены в табл. 2.

(Продолжение см. с. 68)

(Продолжение изменения к ГОСТ 14638.9-84)

Таблица 2

(Продолжение сн с 69)

Пункт 3.2. Заменить слова: «1 %-ный раствор» на «раствор с массовой долей 1 %».

Пункты 3.4.2, 4.4.2 изложить в новой редакции: «Нормы точности и нормативы контроля точности определения массовой доли меди приведены в табл. 2».

В природных минералах медь встречается в виде оксида, сульфида или карбоната. Земная кора содержит примерно 0,01% металла, добывается он промышленным способом путем переработки медьсодержащих руд, металл содержится во многих растениях, почве, воде, является важным микроэлементом, необходимым для нормального функционирования организма человека.

Сульфат меди усиливает биологический рост сельскохозяйственных культур, водорослей бактерий, является частью питания человека и не относится к токсическим веществам, если содержание не превышает установленных норм – до 20 мг/м 3 .

Медная руда имеет до 30% чистой меди

Для того чтобы осуществить определение меди, ее доли в различных веществах, используют следующие способы:

  • химические;
  • количественные;
  • фотометрические.

В настоящий момент разработано большое разнообразие методов определения количества меди в составе других веществ, каждый отдельный способ имеет как преимущества, так и недостатки.

Химические методы

С помощью различных химических составов можно влиять на расщепление молекул и атомов вещества и выделять его составные части. К химическим методам можно отнести электролитический способ измерения медной части в сплавах прочих металлов, он осуществляется с помощью следующих элементов:

  • ацетилен;
  • кислота винная;
  • водный аммиак;
  • азотнокислый аммоний;
  • динатриевая соль;
  • этиловый спирт;
  • купризон.

Для начала медный состав (навеску) взвешивают, затем отправляют в подготовленный раствор реактивов, в котором навеска должна полностью раствориться. Полученную жидкость нагревают, при этом удаляются окиси азота, очищенный раствор разбавляют водой и снова нагревают до 40 о С.

После этого масса готова к процессу электролиза – в раствор погружают электроды, изготовленные, как правило, из платины, подключают ток напряжением 2,2 В и при постоянном помешивании начинается процесс выделения меди.

Для контроля можно выполнить повторный процесс электролиза, для этого электроды опускаются в жидкость, ниже уровня выделенной меди и подключают ток. Если первоначальный процесс прошел правильно, то при контрольной процедуре не будет образовываться налет металла. Полученный в результате такого расщепления катод меди промывают водой, не отсоединяя при этом электроток, затем обрабатывают этиловым спиртом и сушат. Полученный катод меди взвешивают, а результат сопоставляют с первоначальным весом. Таким образом, рассчитывают удельный вес меди в веществе.

Разнообразные химические методы определения меди различаются по составу растворов, целесообразность применения которых определяется в зависимости от предполагаемых примесей посторонних веществ, но принцип работы одинаков.

Количественные методы

Способы количественного определения массы меди в общем объеме металла применяются преимущественно для сплавов с никелем, бронзой и цинком. В процессе воздействия на вещество медь осаждается и в таком виде ее можно измерить. Для осаждения используются неорганические и органические элементы. К неорганическим веществам, используемым для определения меди можно отнести:


К органическим веществам, которые применяются при количественном определении меди, относятся:

  • оксихинолин-8, он осаждает медь в комплексе с аммиачным и щелочным раствором, при нагревании осадка образуется оксид меди. Этот метод используется для сложных сплавов, в которых присутствуют алюминий, олово, свинец, мышьяк, хром, железо;
  • α-бензоиноксим в спиртовом растворе способен осаждать металл в виде хлопьев, этот метод неприменим, если в составе присутствует никель;
  • йодид калия, он используется в нейтральной и кислой среде, не применяется, если в сплав входит железо, сурьма и мышьяк.

Перед использованием любого метода необходимо заранее определить состав сплава, это можно сделать опытными способами, путем нагревания (металл меняет цвет), выпариванием (металл дает осадок), использованием фильтров.

Фотометрические методы

Для определения меди в различных вещественных составах используется фотометрический метод, его преимуществами является высокий показатель точности измерения количественно состава, простота применения, он не требует дорогостоящего оборудования. Этот метод может быть использован с применением различных активных веществ:

Фотометрический анализ проводят на спец. оборудование

  • купризона;
  • диэтилдитиокарбамата свинца.

Суть фотометрического определения меди заключается в фиксации интенсивности цвета материала, который прошел через концентрированный раствор. Для такого раствора используют:

  • аммиак;
  • лимоннокислый раствор аммония;
  • диэтилдитиокарбамата свинца;
  • сернокислого натрия.

Вещество, в котором необходимо определить медь пропускают через вышеперечисленные растворы, при этом важно соблюдать пропорции, затем подвергают фотометрии. Аппарат однолучевого фотомера состоит из вольфрамовой лампы, подвижной диафрагмы, светофильтра, фотоэлемента и микроамперметра.

Определение меди в воде и почве

К основным методам определения меди в сточных, канализационных, речных, морских водах, а также в почве, относятся:

  • атомноабсорбционный прямой;
  • атомноабсорбционный с применением хелатообразования
  • атомноабсорбционный с обработкой в графитовой печи

Для определения металла в почве наиболее достоверным считается метод с использованием графитной печи.

Атомно абсорбционный анализ для определения меди в воде

Суть этого способа заключается в том, что пробу почвы помещают в графитовую трубу, обезвоживают путем сжигания и распыляют. Процесс распыления подразумевает разделение вещества на атомы, которые затем фильтруют и выделяют из них нужный металл. Для оценки пробы грунта можно использовать любой фотометрический метод определения меди.

Для определения металла в воде наиболее точным и всеохватывающим будет атомноабсорбционный способ с применением хелатообразования, он позволяет анализировать любую воду, даже морскую, что не получается при прямом атомноабсорбционном методе. Суть этого способа заключается в растворении частиц металла с помощью дитиокарбаминовой кислоты, из полученного экстракта испаряют воду и помещают в спектрофотометр, который по цвету определяет наличие меди и ее концентрацию.

Видео: Сплавы на основе меди и железа

ГОСТ 13938.1-78

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

МЕДЬ

МЕТОДЫ ОПРЕДЕЛЕНИЯ МЕДИ

ИПК ИЗДАТЕЛЬСТВО СТАНДАРТОВ
Москва

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Дата введения 01.01.79

Настоящий стандарт устанавливает весовой электролитический и расчетный методы определения меди.

Метод основан на электролитическом выделении меди из раствора серной и азотной кислот в присутствии солей аммония на платиновых сетчатых электродах при плотности тока 2 - 3 А/дм2 и напряжении 2,2 - 2,5 В.

Медь, оставшуюся в электролите, определяют атомно-абсорбционным или фотометрическим методом в виде окрашенного комплексного соединения с купризоном или диэтилдитиокарбаматом свинца, в случае разногласий при оценке массовой доли меди.

При массовой доле меди от 99,0 до 99,9 % медь в сумме с серебром определяют электролитически.

Массовую долю меди выше 99,9 % определяют по разности, вычитая сумму определенных примесей из 100 %.

(Измененная редакция, Изм. № 1, 2, 4).

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1.2. Массовую долю меди определяют параллельно в трех навесках, примесей - в двух. Одновременно с проведением анализа выполняют два контрольных опыта для внесения в результат анализа поправки на загрязнение реактивов, вычитая значение контрольного опыта из результата определения компонента при анализе пробы.

1.1.3. За результат анализа принимают при электрогравиметрическом методе определения меди среднее арифметическое трех параллельных определений, при расчетном методе определения меди и при определении примесей в меди - среднее арифметическое двух параллельных определений.

Численные значения результатов анализа должны содержать последнюю значащую цифру в том же разряде, в котором стоит последняя значащая цифра численного значения допускаемого расхождения результатов определений.

1.1.4. Контроль правильности результатов анализа осуществляют по стандартным образцам состава меди или методом добавок.

1.2. Требования безопасности при определении меди и примесей в меди

1.2.1. Все операции химического анализа, связанные с выделением ядовитых паров или газов, следует выполнять в боксах, оборудованных местным отсасывающим устройством.

Установка для электролиза с мешалкой.

Спектрофотометр или фотоэлектроколориметр со всеми принадлежностями. Спектрофотометр атомно-абсорбционный, включающий лампу с полым катодом из меди, горелки для пламени ацетилен-воздух и распылительную систему.

Компрессор воздушный.

Шкаф сушильный с терморегулятором.

Аммоний лимоннокислый, раствор; готовят следующим образом: 150 г лимонной кислоты растворяют в 400 см3 воды, прибавляют 200 см3 раствора аммиака, охлаждают, доливают до 1 дм3 водой и перемешивают.

Соль динатриевая этилендиамин-N, N, N¢, N¢-тетрауксусной кислоты 2-водная (трилон Б) по ГОСТ 10651 , 01 М раствор: 37,2 г трилона Б растворяют в 800 см3 воды и разбавляют водой до 1 дм3.

Купризон, бис- (циклогексанон) оксалилдигидразон, раствор 2,5 г/дм3: 2,5 г купризона растворяют при перемешивании в 900 см3 воды при температуре 70 - 80 °С. После охлаждения раствор фильтруют в сосуд из темного стекла, доливают водой до 1 дм3, перемешивают и хранят в этом сосуде.

Раствор годен к применению в течение 10 сут.

Натрий сернокислый безводный по ГОСТ 4166 .

Фенолфталеин (индикатор) по НТД, спиртовой раствор 1 г/дм3.

Углерод четыреххлористый по ГОСТ 20288 .

Спирт этиловый ректификованный по ГОСТ 18300 .

Растворы меди стандартные.

Раствор А; готовят следующим образом: 0,500 г меди растворяют в 20 см3 смеси для растворения и при нагревании удаляют окислы азота. После охлаждения разбавляют раствор водой до 100 см3, переливают его в мерную колбу вместимостью 1 дм3, доливают водой до метки и перемешивают.

1 см3 раствора содержит 0,5 мг меди.

Раствор Б; готовят следующим образом: 20 см3 раствора А помещают в мерную колбу вместимостью 1 дм3, прибавляют 5 см3 серной кислоты, разбавленной 1:1, доливают до 1 дм3 водой и перемешивают.

1 см3 раствора содержит 0,01 мг меди.

Бумага индикаторная универсальная.

Диэтилдитиокарбамат свинца (II), раствор 0,2 г/дм3 в хлороформе: 0,2 г соли помещают в мерную колбу вместимостью 1000 см3, добавляют 100 - 200 см3 хлороформа и перемешивают до растворения навески. Разбавляют хлороформом до метки и снова перемешивают. Раствор хранят в склянке из темного стекла в темном месте.

(Измененная редакция, Изм. № 2, 3, 4).

3. ПРОВЕДЕНИЕ АНАЛИЗА

3.1. Весовой электролитический метод определения меди (при массовой доле от 99,0 до 99,9 %)

3.1.1. Навеску меди массой 1,0 - 2,0 г помещают на чашку весов, где находится взвешенный платиновый катод, предназначенный для электролиза, и определяют суммарную массу катода и меди. Допускается раздельное взвешивание навески меди и катода, предназначенного для электролиза. Навеску меди переносят в стакан вместимостью 250 см3, прибавляют 40 см3 смеси для растворения и стакан накрывают часовым стеклом. После растворения навески меди раствор осторожно нагревают до удаления окислов азота, разбавляют до 180 см3 водой, нагревают до 40 °С и в раствор погружают платиновые электроды. После этого проводят электролиз в течение 2,5 ч при плотности тока 2 - 3 А/дм2 и напряжении 2,2 - 2,5 В, перемешивая раствор мешалкой.

Для проверки полноты выделения меди погружают электроды на 5 мм ниже первоначального положения и продолжают электролиз. При отсутствии налета меди на свежепогруженной части катода электролиз считают оконченным.

После этого, не выключая ток, промывают водой, а затем, выключив ток, промывают этиловым спиртом (из расчета 10 см3 спирта на одно определение).

Катод с выделившейся медью сушат при 100 - 105 °С в течение 5 мин, охлаждают в эксикаторе и взвешивают, используя для этого разновесы, при помощи которых взвешивались катод и навеска меди.

Электролит и промывные воды переливают в мерную колбу вместимостью 200 - 250 см3, доливают водой до метки и перемешивают. Электролит сохраняют для определения никеля.

Медь, оставшуюся в электролите после проведения электролиза, определяют в виде окрашенного соединения с купризоном или диэтилдитиокарбаматом свинца фотометрическим методом так, как описано в пп. , .

(Измененная редакция, Изм. № 4).

Величина рН раствора должна быть 8,5 - 9,0 рН раствора проверяют по индикаторной бумаге.

Оптическую плотность раствора измеряют через 5 - 30 мин при длине волны 600 нм в кювете с толщиной слоя 30 мм. Раствором сравнения при измерении оптической плотности является вода. Одновременно проводят два контрольных опыта со всеми применяемыми реактивами. Среднюю величину оптической плотности контрольного опыта вычитают из величины оптической плотности анализируемого раствора.

Отбирают 0; 2,0; 4,0; 6,0; 8,0 и 10,0 см3 раствора Б в мерные колбы вместимостью 100 см3, что соответствует 0; 20; 40; 60; 80 и 100 мкг меди. Прибавляют 4 см3 смеси кислот, 50 см3 воды, 10 см3 раствора лимоннокислого аммония, 2 капли раствора фенолфталеина, раствор аммиака, разбавленный 1:4, до появления слабо-розовой окраски и 1 см3 избытка, 10 см3 раствора купризона, доливают до метки водой и перемешивают. Величина рН раствора должна быть 8,5 - 9,0.

Измерение оптической плотности производят, как указано в п. .

По найденным значениям оптической плотности и соответствующим им содержаниям меди строят градуировочный график.

Раствор охлаждают, приливают 10 - 20 см3 воды, помещают в делительную воронку вместимостью 100 см3 и разбавляют водой до объема 50 см3. Добавляют 10 см3 раствора диэтилдитиокарбамата свинца и экстрагируют в течение 2 мин. После разделения слоев экстракт сливают в мерную колбу вместимостью 25 см3 (куда предварительно помещают 1 г безводного сернокислого натрия).

Экстракцию повторяют с 10 см3 экстрагента. Органический слой сливают в ту же мерную колбу, разбавляют до метки хлороформом и перемешивают.

Оптическую плотность раствора измеряют при длине волны 413 нм в кювете с оптимальной толщиной слоя. Раствором сравнения при измерении оптической плотности служит четыреххлористый углерод.

Одновременно проводят два контрольных опыта. Для этого помещают в делительную воронку 4 см3 смеси для растворения, доливают до 50 см3 водой и далее поступают, как указано выше. Среднюю величину оптической плотности контрольного опыта вычитают из величины оптической плотности анализируемого раствора.

Массу меди устанавливают по градуировочному графику, построенному, как указано в п. .

В шесть делительных воронок вместимостью 100 см3 помещают 0; 0,5; 1,0; 2,0; 3,0 и 5,0 см3 стандартного раствора Б. Приливают воды до объема 50 см3 и далее анализ проводят по п. .

Экстракцию и измерение оптической плотности раствора производят так, как указано в п. .

По найденным значениям оптической плотности и соответствующим содержаниям меди строят градуировочный график.

3.3 - 3.3.2. (Измененная редакция, Изм. № 4).

3.4. Атомно-абсорбционный метод определения меди в электролите

3.4.1. Часть раствора электролита помещают в стакан вместимостью 100 см3, предварительно ополоснув его этим раствором. Раствор распыляют в пламя и измеряют абсорбцию в пламени при длине волны 324,7 нм.

Массу меди в растворе устанавливают по градуировочному графику, построенному, как указано в п. .

В мерные колбы вместимостью 100 см3 отбирают 0; 5,0; 10,0; 15,0 и 20,0 см3 раствора Б, доливают до метки водой и перемешивают. Растворы содержат 0; 0,5; 1,0; 1,5 и 2,0 мкг/см3 меди. Растворы распыляют в пламя и измеряют абсорбцию в пламени при длине волны 324,7 нм.

По найденным значениям оптической плотности и соответствующим содержаниям меди строят градуировочный график.

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. Массовую долю меди (X ) в процентах при использовании электролитического и фотометрического методов определения меди вычисляют по формуле

Массовую долю меди (X ) в процентах при использовании электролитического и атомно-абсорбционного методов определения меди вычисляют по формуле

,

где т - масса навески меди, г;

т 1 - масса катода, г;

m 2 - масса катода с осажденной медью, г;

m 3 - масса меди, найденная по градуировочному графику, мкг;

т 4 - масса меди, найденная по градуировочному графику, мкг/см3;

V - объем анализируемого электролита, см3;

V 1 - объем аликвотной части электролита, см3.

4.2. Расхождение между наибольшим и наименьшим результатами трех параллельных определений не должно превышать 0,06 %; между результатами двух анализов - 0,14 %.

(Измененная редакция, Изм. № 4).

4.3. Определение меди (при массовой доле ее свыше 99,9 %)

4.3.1. Массовую долю меди (X ) в процентах вычисляют по разности между 100 и суммой всех определенных примесей по формуле, указанной ниже

где - средняя массовая доля определенных в меди примесей, %.

(Измененная редакция, Изм. № 2).

4.3.2. Расхождения между результатами двух параллельных определений примесей в меди не должны превышать допускаемых расхождений, приведенных в соответствующих стандартах при определении той или иной примеси.

(Введен дополнительно, Изм. № 4).

ПРИЛОЖЕНИЕ . (Исключено, Изм. № 4).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством цветной металлургии СССР РАЗРАБОТЧИКИ

Г.П. Гиганов; Е.М. Феднева; А.А. Бляхман; Е.Д. Шувалова; А.Н. Савельева

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 24.01.78 № 155

3. ВЗАМЕН ГОСТ 13938.1-68

4. Стандарт соответствует международному стандарту ИСО 1553-76

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Номер раздела, пункта

Номер раздела, пункта

Сущность метода. Метод основан на образовании комплексного соединения ионов меди с аммиаком, обладающим интенсивной сине-фиолетовой окраской. Окраска аммиака меди обусловлена d >d * переходами вследствие расщепления основного электронного состояния ионов меди в поле лигандов. Так как устойчивость образующихся комплексов различается мало, то в растворе будет находиться смесь нескольких аммиакатов меди, количественное соотношение которых зависит от концентрации аммиака, присутствующего в растворе. Молярный коэффициент поглощения тетрааммиаката меди при л=640 нм равен 1 10 2 . Низкое значение е л, позволяет определить достаточно высокие концентрации ионов меди.

Реактивы:

Рабочий раствор соли меди, содержащий 1 мг меди в 1 мл. Для приготовления этого раствора навеску 3,931 гр. сульфата меди CuSO 4 5Н 2 O растворяют в 25 мл 2М растворе серной кислоты, доводят объем раствора до 1 л дистиллированной водой.

Ход работы:

Приготовление стандартных растворов. Готовят 6 стандартных растворов, содержащих 5,0; 7,5; 10; 12,5; 15; 17,5 мг меди в 50 мл. Для этого в мерные колбы на 50 мл переносят соответственно 5,0; 7,5; 10; 12,5; 15; 17,5 мл исходного раствора, добавляют в каждую колбу 10 мл 5%-го раствора аммиака мерным цилиндром и доводят объем до 50 мл (до метки) дистиллированной водой. Через 10 мин. приступают к измерениям. Работу проводят со светофильтром №8. Используют кюветы размером 20 мл. С данным светофильтром поочередно фотометрируют стандартные растворы. Каждое измерение обязательно повторяют 3 раза. По средним значениям в координатах поглощения строят градуировочный график.

Получение результатов. Получают раствор сульфата меди (II) или природный концентрированный рассол, прибавляют 10 мл 5%-го раствора аммиака и доводят объем до 50 мл дистиллированной водой. Приготовленный раствор через 10 мин. фотометрируют. Измерения повторяют 5 раз. Пользуясь построенным градуировочным графиком, находят содержание меди в анализируемом растворе.

Построение калибровочного графика.

Мы приготовили серию растворов хлорида меди с известными концентрациями из 3,6 ммоль/л раствора. Для получения раствора с концентрацией 1,8 мМ необходимо взять 50 мл исходного раствора и довести его до 100 мл и аналогично готовим растворы с концентрациями указанными в таблице 3.2.

Измерили оптическую плотность растворов и результаты занесли в таблицу 3.2.

Таблица 3.2

Построили график зависимости оптической плотности от концентрации меди.

По графику видно, что к меди применим закон Бугера - Ламберта - Бера. То есть при увеличении концентрации меди в растворе увеличивается оптическая плотность раствора, при этом зависимость линейная и берет свое начало в начале координат.

Рис. 3.1 Калибровочный график содержания меди

Новое на сайте

>

Самое популярное