Домой Женские имена Энергия разрыва связи h s. Типы химических связей

Энергия разрыва связи h s. Типы химических связей


В большинстве случаев при образовании связи происходит обобществление электронов связываемых атомов. Такой тип химической связи называют ковалентной связью (приставка "ко-" в латинском языке означает совместность, "валенс" - имеющий силу). Связывающие электроны находятся преимущественно в пространстве между связываемыми атомами. За счет притяжения ядер атомов к этим электронам образуется химическая связь. Таким образом, ковалентная связь - это химическая связь, возникающая за счет увеличения электронной плотности в области между химически связанными атомами.

Первая теория ковалентной связи принадлежит американскому физикохимику Г.-Н. Льюису . В 1916 г. он предположил, что связи между двумя атомами осуществляется парой электронов, при этом вокруг каждого атома обычно формируется восьмиэлектронная оболочка (правило октета).

Одно из существенных свойств ковалентной связи - ее насыщаемость. При ограниченном числе внешних электронов в областях между ядрами образуется ограниченное число электронных пар вблизи каждого атома (и, следовательно, число химических связей). Именно это число тесно связано с понятием валентности атома в молекуле (валентностью называют общее число ковалентных связей, образуемых атомом). Другое важное свойство ковалентной связи - ее направленность в пространстве. Это проявляется в примерно одинаковом геометрическом строении близких по составу химических частиц. Особенностью ковалентной связи является также ее поляризуемость.

Для описания ковалентной связи используют преимущественно два метода, основанных на разных приближениях при решении уравнения Шредингера: метод молекулярных орбиталей и метод валентных связей. В настоящее время в теоретической химии используется почти исключительно метод молекулярных орбиталей. Однако метод валентных связей, несмотря на большую сложность вычислений, дает более наглядное представление об образовании и строении химических частиц.

Параметры ковалентной связи

Совокупность атомов, образующих химическую частицу, существенно отличается от совокупности свободных атомов. Образование химической связи приводит, в частности, к изменению радиусов атомов и их энергии. Происходит также перераспределение электронной плотности: повышается вероятность нахождения электронов в пространстве между связываемыми атомами.

Длина химической связи

При образовании химической связи всегда происходит сближение атомов - расстояние между ними меньше, чем сумма радиусов изолированных атомов:

r (A−B) r(A) + r (B)

Радиус атома водорода составляет 53 пм, атома фтора − 71 пм, а расстояние между ядрами атомов в молекуле HF равно 92 пм:

Межъядерное расстояние между химически связанными атомами называется длиной химической связи.

Во многих случаях длину связи между атомами в молекуле вещества можно предсказать, зная расстояния между этими атомами в других химических веществах. Длина связи между атомами углерода в алмазе равна 154 пм, между атомами галогена в молекуле хлора - 199 пм. Полусумма расстояний между атомами углерода и хлора, рассчитанная из этих данных, составляет 177 пм, что совпадает с экспериментально измеренной длиной связи в молекуле CCl 4 . В то же время это выполняется не всегда. Например, расстояние между атомами водорода и брома в двухатомных молекулах составляет 74 и 228 пм, соответственно. Среднее арифметическое этих чисел составляет 151 пм, однако реальное расстояние между атомами в молекуле бромоводорода равно 141 пм, то есть заметно меньше.

Расстояние между атомами существенно уменьшается при образовании кратных связей. Чем выше кратность связи, тем короче межатомное расстояние .

Длины некоторых простых и кратных связей

Валентные углы

Направление ковалентных связей характеризуется валентными углами - углами между линиями, соединяющими связываемые атомы. Графическая формула химической частицы не несет информации о валентных углах. Например, в сульфат-ионе SO 4 2− валентные углы между связями сера−кислород равны 109,5 o , а в тетрахлоропалладат-ионе 2− − 90 o . Совокупность длин связей и валентных углов в химической частице определяет ее пространственное строение. Для определения валентных углов используют экспериментальные методы изучения структуры химических соединений. Оценить значения валентных углов можно теоретически, исходя из электронного строения химической частицы.

Энергия ковалентной связи

Химическое соединение образуется из отдельных атомов только в том случае, если это энергетически выгодно. Если силы притяжения преобладают над силами отталкивания, потенциальная энергия взаимодействующих атомов понижается, в противном случае − повышается. На некотором расстоянии (равном длине связи r 0) эта энергия минимальна.


Таким образом, при образовании химической связи энергия выделяется, при ее разрыве − поглощается. Энергия E 0 , необходимая для того, чтобы разъединить атомы и удалить их друг от друга на расстояние, на котором они не взаимодействуют, называется энергией связи . Для двухатомных молекул энергия связи определяется как энергия диссоциации молекулы на атомы. Она может быть измерена экспериментально.

В молекуле водорода энергия связи численно равна энергии, которая выделяется при образовании молекулы Н 2 из атомов Н:

Н + Н = Н 2 + 432 кДж

Эту же энергию нужно затратить, чтобы разорвать связь Н-Н:

H 2 = H + H − 432 кДж

Для многоатомных молекул эта величина является условной и отвечает энергии такого процесса, при котором данная химическая связь исчезает, а все остальные остаются без изменения. При наличии нескольких одинаковых связей (например, для молекулы воды, содержащей две связи кислород−водород) их энергию можно рассчитать, используя закон Гесса . Величины энергии распада воды на простые вещества, а также энергии диссоциации водорода и кислорода на атомы известны:

2Н 2 О = 2Н 2 + О 2 ; 484 кДж/моль

Н 2 = 2Н; 432 кДж/моль

О 2 = 2О; 494 кДж/моль

Учитывая, что в двух молекулах воды содержится 4 связи, энергия связи кислород-водород равна:

Е (О−Н) = (2 . 432 + 494 + 484) / 4 = 460,5 кДж/моль

В молекулах состава AB n последовательный отрыв атомов В сопровождается определенными (не всегда одинаковыми) затратами энергии. Например, значения энергии (кДж/моль) последовательного отщепления атомов водорода от молекулы метана существенно различаются:

427 368 519 335
СН 4 СН 3 СН 2 СН С

При этом энергия связи А−В определяется как средняя величина затраченной энергии на всех стадиях:

СН 4 = С + 4Н; 1649 кДж/моль

Е (С−Н) = 1649 / 4 = 412 кДж/моль

Чем выше энергия химической связи, тем прочнее связь . Связь считается прочной, или сильной, если ее энергия превышает 500 кДж/моль (например, 942 кДж/моль для N 2), слабой - если ее энергия меньше 100 кДж/моль (например, 69 кДж/моль для NO 2). Если при взаимодействии атомов выделяется энергия менее 15 кДж/моль, то считают, что химическая связь не образуется, а наблюдается межмолекулярное взаимодействие (например, 2 кДж/моль для Xe 2). Прочность связи обычно уменьшается с увеличением ее длины.

Одинарная связь всегда слабее, чем кратные связи - двойная и тройная - между теми же атомами.

Энергии некоторых простых и кратных связей

Полярность ковалентной связи

Полярность химической связи зависит от разности электроотрицательностей связываемых атомов.

Электроотрицательность − условная величина, характеризующая способность атома в молекуле притягивать электроны. Если в двухатомной молекуле А−В образующие связь электроны притягиваются к атому В сильнее, чем к атому А, то атом В считается более электроотрицательным.

Шкала электроотрицательности была использована Л. Полингом для количественной характеристики способности атомов к поляризации ковалентных связей. Для количественного описания электроотрицательности, помимо термохимических данных, используют также данные о геометрии молекул (метод Сандерсона) или спектральные характеристики (метод Горди). Широко используют также шкалу Олреда и Рохова, в которой при расчете используют эффективный заряд ядра и атомный ковалентный радиус. Наиболее ясный физический смысл имеет метод, предложенный американским физикохимиком Р. Малликеном (1896-1986). Он определил электроотрицательность атома как полусумму его сродства к электрону и потенциала ионизации. Значения электроотрицательности, базирующиеся на методе Малликена и распространенные на широкий круг разнообразных объектов, называют абсолютными.

Самое высокое значение электроотрицательности имеет фтор. Наименее электроотрицательный элемент - цезий. Чем выше значение разности электроотрицательностей двух атомов, тем более полярной является химическая связь между ними.

В зависимости от того, как происходит перераспределение электронной плотности при образовании химической связи, различают несколько ее типов. Предельный случай поляризации химической связи - полный переход электрона от одного атома к другому. При этом образуются два иона, между которыми возникает ионная связь. Для того чтобы два атома смогли создать ионную связь, необходимо, чтобы их электроотрицательности очень сильно различались. Если электроотрицательности атомов равны (при образовании молекул из одинаковых атомов), связь называют неполярной ковалентной . Чаще всего встречается полярная ковалентная связь - она образуется между любыми атомами, имеющими разные значения электроотрицательности.

Количественной оценкой полярности ("ионности") связи могут служить эффективные заряды атомов. Эффективный заряд атома характеризует разность между числом электронов, принадлежащих данному атому в химическом соединении, и числом электронов свободного атома. Атом более электроотрицательного элемента притягивает электроны сильнее. Поэтому электроны оказываются ближе к нему, и он получает некоторый отрицательный заряд, который называют и эффективным, а у его партнера появляется такой же положительный заряд. Если электроны, образующие связь между атомами, принадлежат им в равной степени, эффективные заряды равны нулю. В ионных соединениях эффективные заряды должны совпадать с зарядами ионов. А для всех других частиц они имеют промежуточные значения.

Лучший метод оценки зарядов атомов в молекуле - решение волнового уравнения. Однако это возможно лишь при наличии малого числа атомов. Качественно распределение заряда можно оценить по шкале электроотрицательности. Используют также различные экспериментальные методы. Для двухатомных молекул охарактеризовать полярность связи и определить эффективные заряды атомов можно на основе измерения дипольного момента:

μ = q r ,

где q − заряд полюса диполя, равный для двухатомной молекулы эффективному заряду, r − межъядерное расстояние.

Дипольный момент связи является векторной величиной. Он направлен от положительно заряженной части молекулы к ее отрицательной части. На основании измерения дипольного момента было установлено, что в молекуле хлороводорода HCl на атоме водорода имеется положительный заряд +0,2 доли заряда электрона, а на атоме хлора отрицательный заряд −0,2. Значит, связь H−Cl на 20% имеет ионный характер. А связь Na−Cl является ионной на 90%.

Сравнение данных по количеству электронов на внешней оболочке с количеством химических связей, которые может образовать данный атом, показало, что основы образования химической связи, выявленные при изучении молекулы водорода, действительны и для других атомов. Это происходит потому, что связь имеет электрическую природу и образуется за счет двух электронов (по одному от каждого атома). Поэтому следует ожидать корреляции между первой энергией ионизации (ПЭИ) атомов (имеющей электростатическое происхождение) и энергией их связи в двухатомных молекулах.

Экспериментальные данные по определению энергии связи для ряда двухатомных молекул (в газовой фазе), образованных из атомов 2-го и 3-го периодов, приведены в таблице 4.2 и на рис. 4.2.1.

Таблица 4.2

Молекула A 2

Энергия связи

(кДж/моль)

Молекула

Энергия связи (кДж/моль)

Рис. 4.2-1 Энергия связи в молекулах из элементов второго и третьего периодов в зависимости от ПЭИ элемента

Эти данные (см. в таблице 4.2, рис. 4.2-1) показывают, что энергия связи между атомами практически не зависит от ПЭИ связываемых атомов.

Неужели в двухатомных молекулах (где больше, чем один электрон) связь образуется по другому механизму и существуют дополнительные силы, ранее не учитываемые нами?

Прежде чем перейти к выявлению этих сил, попробуем объяснить эту независимость на основе уже существующих взаимодействий.
Начнем с изучения дополнительных факторов, которые объясняют отсутствие ожидаемой корреляции и независимость экспериментальных данных по измерению ПЭИ от энергии связи в двухатомных молекулах.
Разобьем таблицу (4.2) на четыре группы:

Группа А включает в себя молекулы, состоящие из идентичных атомов, у которых энергия связи ниже 40 кДж/моль. В газовой фазе эти молекулы распадаются на атомы.

Группа В включает в себя двухатомные молекулы, состоящие из идентичных атомов, энергия связи в которых колеблется от 400 кДж/моль до 1000 кДж/моль. Действительно, энергия связи в этих молекулах значительно отличается в большую сторону по сравнению с энергией связи в молекуле водорода, которая составляет 429 кДж/моль.

Группа С включает в себя двухатомные молекулы, состоящие из разных атомов, энергия связи в которых варьирует от 340 кДж/моль до 550 кДж/моль.

Группа D включает в себя двухатомные молекулы с идентичными атомами, энергия связи в которых составляет 50-350 кДж/моль.

ТАБЛИЦА 4.4
ЭНЕРГИЯ СВЯЗИ В МОЛЕКУЛАХ

Энергия связи (кДж/моль) в ряду двухатомных молекул

группа А

группа В

молекула энергия связи молекула энергия связи
Be 2 30 C 2 602
Ne 2 4 N 2 941
7.6 O 2 493
Ar 2 7 P 2 477
S 2 421

группа С

группа D

молекула энергия молекула энергия
LiF 572 B 2 274
NaF 447 Br 2 190
LiCl 480 Cl 2 239
NaCl 439 F 2 139
Li 2 110
Na 2 72

Прежде, чем мы начнем объяснение, давайте уточним вопросы, которые мы должны охватить.
Первый
вопрос:
Почему энергия связи между многоэлектронными атомами гораздо меньше или гораздо больше (таблица 4.2), чем в молекуле водорода (H 2)?

Чтобы объяснить значительное отклонение энергии связи в многоатомных молекулах от энергии связи в молекуле водорода, необходимо углубить наше понимание причины, почему количество электронов на внешней оболочке ограничено.
Присоединение электрона к атому происходит, когда имеется выигрыш в энергии, или, другими словами, если абсолютное значение потенциальной энергии системы атом + электрон возрастает в результате связи электрона с атомом. Данные о сродстве атома к электрону, указанные в таблице 4.3, дают нам численное значение выигрыша в энергии при присоединения электрона к атому.

Таблица 4.3

Первая энергия ионизации (ПЭИ) и сродство электронов у элементов 1-го, 2-го и 3-го периодов в таблице элементов (кДж/моль)

Сродство

Сродство

При присоединении электрона к атому общая энергия притяжения электронов к ядру увеличивается из-за увеличения количества электронов, притягиваемых к ядру. С другой стороны, энергия межэлектронного отталкивания растет за счет увеличения количества электронов. То есть, присоединение электрона к атому происходит, если в результате этой связи, выигрыш в энергии притяжения больше, чем потеря энергии из-за увеличения энергии отталкивания.

Подсчет изменения энергии при присоединении электрона к атому водорода дает выигрыш в энергии в 3,4 эВ. Т.е., атом водорода должен иметь положительное сродство к электрону. Это и наблюдается в эксперименте.

Аналогичный расчет изменения потенциальной энергии при присоединении электрона к атому гелия показывает, что присоединение электрона приводит не к увеличению потенциальной энергии, а к ее снижению. И действительно, сродство атома гелия, в соответствии с экспериментом, меньше нуля.

Поэтому, возможность присоединять или не присоединять электрон к атому определяется различиями в изменении абсолютных значений потенциальной энергии притяжения всех электронов к ядру и взаимного межэлектронного отталкивания. Если эта разница больше нуля, то электрон присоединится, а если меньше нуля, то нет.

Данные о сродстве атомов к электрону приведенные в таблице 4.3, показывают, что для атомов 1-го, 2-го и 3-го периодов кроме Be, Mg, Ne, Ar увеличение энергии притяжения во время присоединения электронов к ядру больше, чем увеличение энергии отталкивания.
В случае с атомами Be, Mg, Ne, Ar, увеличение энергии притяжения во время присоединения электронов к ядру ниже, чем увеличение энергии межэлектронного отталкивания. Независимым подтверждением этого вывода является информация по ПЭИ для атомов 2-го и 3-го периодов, приведенная в таблице 4.2 (группа A).

При образовании химической связи, количество электронов на внешних электронных оболочках атомов увеличивается на один электрон, и согласно расчету модели молекулы водорода Н 2, эффективные заряды связываемых атомов изменяются. Эффективные заряды связываемых ядер изменяются из-за притяжения заряженных ядер, и в связи с увеличением количества электронов на внешних оболочках связываемых атомов.

В молекуле водорода сближение ядер приводит к увеличению силы притяжения связывающих электронов к ядрам на 50%, что равно увеличению эффективного заряда связываемых ядер на 0,5 протонных единицы (см.главу 3).

С точки зрения выигрыша в энергии, образование связи - это нечто вроде промежуточного процесса между присоединением электрона к нейтральному атому (измеренное сродство к электрону) и присоединением электрона к атому, заряд ядра которого увеличивается на 1 единицу.

Согласно данным таблицы 4.3, при переходе от лития (ПЭИ - 519 кДж/моль) к бериллию (ПЭИ - 900 кДж/моль), ПЭИ увеличивается на 400 кДж/моль, а при переходе от бериллия к бору (ПЭИ - 799 кДж/моль) выигрыш в энергии снижается до 100 кДж/моль.
Вспомним, что внешней электронной оболочке бора имеется 3 электрона, а на внешней оболочке бериллия находятся 2 электрона. То есть, когда электрон присоединяется к бериллию с одновременным увеличением заряда ядра на одну протонную единицу, связываемый электрон входит во внешнюю оболочку бериллия, при этом выигрыш в энергии будет на 100 кДж/моль меньше, чем при вхождении электрона во внешнюю оболочку лития (при переходе от лития к бериллию).

Теперь вполне понятно резкое уменьшение энергии связи у атомов с отрицательным сродством атома к электрону, указанное в таблице 4.3. Однако, хоть Ne, Be, Mg, Ar не присоединяют электроны, они создают молекулы, т.к. увеличивается эффективный заряд ядер. Энергия связи в этих молекулах (группа А ) значительно ниже, чем в остальных молекулах.

Теперь давайте ответим на второй вопрос: Почему энергия связи в двухатомных молекулах группы В, показанных в таблице 4.2. в 1,5-2 раза больше, чем энергия связи в молекуле водорода?

На внешних оболочках атомов углерода (C), азота (N) и кислорода (O) находятся, соответственно, 4, 5 и 6 электронов. Количество связей, которые образуют эти атомы, ограничивается количеством дополнительных электронов, которые могут войти во внешнюю оболочку при образовании связи. Таким образом, атомы углерода (C), азота (N) и кислорода (O ) могут образовать, соответственно, 4, 3 и 2 химические связи. Соответственно между двумя атомами, приведенными в таблице 4.4, может образоваться не одна, а несколько химических связей, что предполагает гораздо больший выигрыш в энергии, по сравнению с образованием 1 связи у двухатомной молекулы, где связываемые атомы имеют по 1 электрону во внешней оболочке

Если атомы связаны одной химической связью, то такая связь называется единичной химической связью или общей химической связью. Когда атомы связаны несколькими химическими связями (двойными или тройными), такие связи называются кратными связями . Кратные связи, например, у молекул азота (N 2) и кислорода (O 2) описываются структурными формулами: N ≡ N и O = O.

Теперь рассмотрим группу С : Почему энергия связи в некоторых из двухатомных молекул, состоящих из различных атомов, значительно больше, чем у других молекул, которые состоят из одинаковых атомов?

Разберем молекулу NaCl . Атомы натрия и хлора сильно отличаются по сродству к электрону. Представляем образование связи как двухстадийный процесс. На первой стадии выигрыш в энергии получается за счет сродства атомов к электронам. То есть, с этой точки зрения, выигрыш в энергии, при формировании молекулы Cl 2 , должен быть больше, чем при формировании молекулы NaCl на величину разницы их сродства к электрону.

При расчете молекулы водорода (глава 3) энергия связи (энергия, необходимая для того, чтобы разделить молекулы на атомы) представляла собой сумму двух составляющих:

    разница между электронной энергией молекулы водорода и двух атомов водорода;

    дополнительная энергия, расходуемая на нагрев неразделенных молекул.

Рассчитывая первый компонент, мы вычисляем энергию молекулы, которая равна разнице между энергией притяжения ядер атомов водорода к связывающей паре электронов и суммой энергии отталкивания межэлектронных и межъядерных сил.

Для оценки энергии притяжения ядер к связывающим парам электронов, а также для оценки энергии межэлектронного отталкивания, мы должны сначала узнать значение эффективного заряда связываемых ядер.

Потенциал ионизации и энергия связи в двухатомных молекулах

Учебное пособие

    1. Астрахань

Химическая связь: Учебное пособие / Рябухин Ю. И. – Астрахань: Астрахан. гос. техн. ун-т, 2013. – 40 с.

Предназначено для студентов инженерно-технических нехимических специальностей.

Соответствует государственным образовательным стандартам высшего профессионального образования

Ил.: 15 рис., табл.: 1, библиография: 6 назв., прилож.

Печатается по решению кафедры «Общая, неорганическая и аналитическая химия» (протокол №__ от _________ 2013 г.)

Рецензент: канд. хим. наук, доцент Лебедева А.П.

© Рябухин Ю.И., 2013

© АГТУ, 2013

ВВЕДЕНИЕ

В природе химические элементы в виде свободных атомов (за исключением благородных газов – элементов VIIIА-группы) практически не встречаются. Обычно атомы какого-либо химического элемента взаимодействуют либо друг с другом, либо с атомами других элементов, образуя химические связи с возникновением соответственно простых или сложных веществ. В то же время и молекулы разных веществ взаимодействуют друг с другом.

Учение о химической связи составляет основу всей теоретической химии.

Химическая связь 1 – это совокупность сил, связывающих атомы друг с другом в более устойчивые структуры – молекулы или кристаллы.

Образование молекул и кристаллов обусловлено главным образом кулоновским притяжением между электронами и атомными ядрами.

Природа химической связи была уяснена лишь после открытия законов квантовой (волновой) механики, управляющих микромиром. Современная теория отвечает на вопросы, почему возникает химическая связь и какова природа её сил.

Образование химических связей - процесс самопроизвольный ; в противном случае не существовало бы ни простых, ни сложных веществ. С термодинамической точки зрения причиной образования химической связи является уменьшение энергии системы.

Образование химической связи сопровождается выделением энергии, а её разрыв требует затраты энергии.

Характеристиками химической связи являются её энергия и длина.

Энергия химической связи - это энергия, выделяющаяся в процессе её образования и характеризующая её прочность; энергию связи выражают в кДж на моль образовавшегося вещества (Е св , кДж/моль) 2 .

Чем больше энергия химической связи, тем связь прочнее. Энергию химической связи двухатомной молекулы оценивают, сравнивая с состоянием, предшествующим её образованию. Для многоатомных молекул с одинаковым типом связи рассчитывают среднюю энергию химической связи (например, для Н 2 О или СН 4).

Средняя энергия химической связи определяется делением энергии образования молекулы на число её связей.

Длиной химической связи называют расстояние между ядрами атомов в молекуле.

Длина связи обусловлена размерами связывающихся атомов и степенью перекрывания их электронных оболочек.

Например для фтороводорода и иодоводорода:

l HF < l HI

В зависимости от типа соединяемых частиц (атомов или молекул) различают внутримолекулярные связи, за счёт которых образуются молекулы, и межмолекулярные связи, приводящие к образованию ассоциатов из молекул или к связыванию атомов отдельных функциональных групп в молекуле. Эти виды связей резко отличаются по величине энергии: для внутримолекулярных связей энергия составляет 100–1000 кДж/моль 1 , а для межмолекулярных связей она обычно не превышает 40 кДж/моль.

Рассмотрим образование внутримолекулярной химической связи на примере взаимодействия атомов водорода.

При сближении двух атомов водорода между их электронами с антипараллельными спинами происходит сильное обменное взаимодействие, приводящее к появлению общей электронной пары. При этом увеличивается электронная плотность в межъядерном пространстве, что способствует притяжению ядер, взаимодействующих атомов. В результате энергия системы уменьшается и система становится более устойчивой - между атомами возникает химическая связь (рис. 1).

Рис. 1. Энергетическая диаграмма образования химической связи между атомами водорода

Система имеет минимум энергии при определённом расстоянии между ядрами атомов; при дальнейшем сближении атомов энергия увеличивается вследствие возрастания сил отталкивания между ядрами.

В зависимости от того, каким образом взаимодействует общая электронная пара с ядрами соединяемых атомов, различают три основных типа химической связи: ковалентную, ионную и металлическую, а также водородную связь.

Энергия химической связи

равна работе, которую необходимо затратить, чтобы разделить молекулу на две части (атомы, группы атомов) и удалить их друг от друга на бесконечное расстояние. Например, если рассматривается Э. х. с. H 3 C-H в молекуле метана, то такими частицами являются метильная группа CH 3 и атом водорода Н, если рассматривается Э. х. с. Н-Н в молекуле водорода, такими частицами являются атомы водорода. Э. х. с. - частный случай энергии связи (См. Энергия связи), обычно ее выражают в кдж/моль (ккал/моль ); в зависимости от частиц, образующих химическую связь (См. Химическая связь), характера взаимодействия между ними (Ковалентная связь , Водородная связь и другие виды химической связи), кратности связи (например, двойные, тройные связи) Э. х. с. имеет величину от 8-10 до 1000 кдж/моль. Для молекулы, содержащей две (или более) одинаковых связей, различают Э. х. с. каждой связи (энергию разрыва связи) и среднюю энергию связи, равную усредненной величине энергии разрыва этих связей. Так, энергия разрыва связи HO-H в молекуле воды, т. е. Тепловой эффект реакции H 2 O = HO + H равен 495 кдж/моль, энергия разрыва связи Н-О в гидроксильной группе - 435 кдж/моль, средняя же Э. х. с. равна 465 кдж/моль. Различие между величинами энергий разрыва и средней Э. х. с. обусловлено тем, что при частичной диссоциации (См. Диссоциация) молекулы (разрыве одной связи) изменяется электронная конфигурация и взаимное расположение оставшихся в молекуле атомов, в результате чего изменяется их энергия взаимодействия. Величина Э. х. с. зависит от начальной энергии молекулы, об этом факте иногда говорят как о зависимости Э. х. с. от температуры. Обычно Э. х. с. рассматривают для случаев, когда молекулы находятся в стандартном состоянии (См. Стандартные состояния) или при 0 К. Именно эти значения Э. х. с. приводятся обычно в справочниках. Э. х. с. - важная характеристика, определяющая реакционную способность (См. Реакционная способность) вещества и использующаяся при термодинамических и кинетических расчетах реакций химических (См. Реакции химические). Э. х. с. может быть косвенно определена по данным калориметрических измерений (см. Термохимия), расчетным способом (см. Квантовая химия), а также с помощью масс-спектроскопии (См. Масс-спектроскопия) и спектрального анализа (См. Спектральный анализ).


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Энергия химической связи" в других словарях:

    Для двухат. молекул энергия удаления атомов на бесконечно большое расстояние друг от друга; для многоат. молекул, радикалов, ионов энергия диссоциации. Суммарная энергия удаления всех атомов многоат. молекулы друг от друга на бесконечно большое… … Физическая энциклопедия

    энергия химической связи - энергия, равная работе, которую необходимо затратить, чтобы разделить молекулу на две части (атомы, группы атомов), удаленные на бесконечно большое расстояние. Энергия химической связи частный случай энергия связи, обычно ее… …

    энергия химической связи - cheminio ryšio energija statusas T sritis Standartizacija ir metrologija apibrėžtis Energija, kurios reikia 1 molio medžiagos vieno tipo cheminiams ryšiams suardyti. atitikmenys: angl. chemical bond energy vok. chemische Bindungsenergie, f rus.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    энергия химической связи - cheminio ryšio energija statusas T sritis chemija apibrėžtis Energija, kurios reikia 1 molio medžiagos vieno tipo cheminiams ryšiams suardyti. atitikmenys: angl. chemical bond energy rus. энергия химической связи … Chemijos terminų aiškinamasis žodynas

    энергия химической связи - cheminio ryšio energija statusas T sritis fizika atitikmenys: angl. chemical bond energy vok. chemische Bindungsenergie, f rus. энергия химической связи, f pranc. énergie de liaison chimique, f … Fizikos terminų žodynas

    Стандартной энергией разрыва химической связи называют изменение энтальпии при химической реакции, в которой происходит разрыв одного моля данной связи. При этом принимается, что исходное вещество и продукты реакции находятся в своих стандартных… … Википедия

    Энергия связ. системы к. л. ч ц (напр., атома как системы из ядра и эл нов), равная работе, к рую необходимо затратить, чтобы разделить эту систему на составляющие её ч цы и удалить их друг от друга на такое расстояние, на к ром их вз ствием… … Физическая энциклопедия

    энергия активации - разность между средней энергией частиц (молекул, радикалов, ионов и др.), вступающих в элементарный акт химической реакции, и средней энергией всех частиц реагирующей системы. Энергия активации разных химических реакций… … Энциклопедический словарь по металлургии

    энергия связи - энергия связующей системы каких либо частиц (например, атома), равная работе, которую необходимо затратить, чтобы разложить эту систему на бесконечно удаленные и не взаимодействующие между собой составляющие ее… … Энциклопедический словарь по металлургии

    энергия кристаллической решетки - энергия, равная работе, которую необходимо затратить, чтобы разделить и отделить на бесконечное расстояние частицы, образующие кристаллическую решетку. Энергия кристаллической решетки в значительной степени определяет прочность… … Энциклопедический словарь по металлургии

Энергия связи – это энергия, которая выделяется при образовании молекулы из одиночных атомов. Энергия связи - это энергия, которая поглощается при удалении двух атомов на бесконечно большое расстояние друг от друга. А энтальпия образования - это теплота, которая выделяется при получении вещества из простых веществ, то есть, если говорить на языке энергий связи, сначала атомы простых веществ разносятся на бесконечно большое расстояние (с поглощением энергии), потом соединяются с образованием нужного вещества (выделяется энергия). Разность - энтальпия образования.

Энергия связи отличается от ΔH обр. Теплота образования – это энергия, которая выделяется или поглощается при образовании молекул из простых веществ. Так:

N 2 + O 2 → 2NO + 677,8 кДж/моль – ∆H обр.

N + O → NO - 89,96 кДж/моль – Е св.

Для двухатомных молекул энергия связей равна энергии диссоциации, взятой с обратным знаком: например в молекуле F 2 энергия связи между атомами F-F равна - 150,6 кДж/моль.

Для многоатомных молекул с одним типом связи, например, для молекул АВ n , средняя энергия связи равна 1/n части полной энергии образования соединения из атомов. Так, энергия образования СН 4 = -1661,1 кДж/моль. Так как в молекуле СН 4 четыре связи, то энергия одной связи С – Н равна 415,3 кДж/моль. Исследование большого числа известных в настоящее время данных по энергиям связи показывает, что энергия связи между конкретной парой атомов часто оказывается величиной постоянной при условии, что остальная часть молекулы изменяется незначительно. Так, в насыщенных углеводородах Е св (C – Н) = 415,3 кДж/моль, Е св (C – С) = 331,8 кДж/моль.

Энергии связей в молекулах, состоящих из одинаковых атомов, уменьшаются по группам сверху вниз По периоду энергии связей растут. В этом же направлении возрастает и сродство к электрону

В прошлом параграфе мы привели пример вычисления теплового эффекта реакции:

С(тв) + 2 H 2 (г) = CH 4 (г) + 76 кДж/моль.

В данном случае 76 кДж - это не просто тепловой эффект данной химической реакции, но еще и теплота образования метана из элементов .

ЭНТАЛЬПИЯ - это тепловой эффект реакции, измеренный (или вычисленный) для случая, когда реакция происходит в открытом сосуде (т.е. при неизменном давлении). Обозначается как ΔH.

Когда объем, занимаемый продуктами реакции, отличается от объема, занимаемого реагентами, химическая система может совершить дополнительную работу PΔV (где P - давление, а ΔV - изменение объема). Поэтому ΔН и ΔЕ связаны между собой соотношением:

ΔН = ΔЕ + PΔV

Итак, если реакция проводится не в "бомбе", то ЭНТАЛЬПИЯ и ТЕПЛОВОЙ ЭФФЕКТ совпадают между собой. Энтальпию называют также "теплосодержанием". Если мы проводим реакцию получения воды в открытом сосуде, то 286 кДж/моль - это "тепло" ΔН, содержащееся в водороде и кислороде для случая, когда мы получаем из них воду. Поскольку исходные вещества (водород и кислород) находились в нашем опыте в стандартных условиях (25 о С и давлении 1 атм), а продукт реакции (воду) мы тоже привели к стандартным условиям, мы вправе сказать, что 286 кДж/моль - это СТАНДАРТНАЯ ТЕПЛОТА ОБРАЗОВАНИЯ ВОДЫ или, что то же - СТАНДАРТНАЯ ЭНТАЛЬПИЯ ОБРАЗОВАНИЯ ВОДЫ. Если мы будем получать из тех же элементов не воду, а перекись водорода H 2 O 2 , то "теплосодержание" такой химической системы будет иным (187,6 кДж/моль). Во время протекания реакций с образованием 1 моля воды или 1 моля H 2 O 2 освобождается разное количество энергии, чего и следовало ожидать. В дальнейшем стандартную теплоту образования веществ мы чаще будем называть именно стандартной энтальпией образования ΔН . Чтобы подчеркнуть справедливость этой величины только длястандартных условий, в таблицах её обозначают следующим образом: ΔН о 298


Маленький "нолик" рядом с ΔН по традиции символизирует некое стандартное состояние, а цифра 298 напоминает, что значения приведены для веществ при 25 о С (или 298 К). Стандартная энтальпия не обязательно должна быть энтальпией образования вещества из элементов . Можно получить значение стандартной энтальпии ΔН о 298 для любой химической реакции. Но в нашем случае с получением воды из водорода и кислорода мы получили именно стандартную энтальпию образования воды. Записывается это так: H 2 + 0,5 O 2 = H 2 O (ΔН о 298 = -286 кДж/моль)

Откуда взялся знак "минус" перед значением теплового эффекта? Здесь автор со вздохом должен сообщить читателю о еще одной особенности представления теплоты (и энтальпии) в термодинамике. Здесь принято потерянную любой системой энергию представлять со знаком "минус" . Рассмотрим, например, уже знакомую нам систему из молекул метана и кислорода. В результате экзотермической реакции между ними происходит выделение теплоты: СH 4 (г) + 2 O 2 (г) = СO 2 (г) + 2 H 2 О(ж) + 890 кДж

Можно записать эту реакцию и другим уравнением, где выделившаяся ("потерянная") теплота имеет знак "минус": СH 4 (г) + 2 O 2 (г) – 890 кДж = СO 2 (г) + 2 H 2 О(ж)

По традиции энтальпию этой и других экзотермических реакций в термодинамике принято записывать со знаком "минус" : ΔН о 298 = –890 кДж/моль (энергия выделяется).

Наоборот, если в результате эндотермической реакции система поглотила энергию, то энтальпия такой эндотермической реакции записывается со знаком "плюс" . Например, для уже знакомой нам реакции получения CO и водорода из угля и воды (при нагревании): C(тв) + H 2 О(г) + 131,3 кДж = CO(г) + H 2 (г)

(ΔН о 298 = +131,3 кДж/моль)

К этой особенности термодинамического языка следует просто привыкнуть, хотя на первых порах путаница со знаками может изрядно досаждать при решении задач.

Давайте попробуем решить одну и ту же задачу сначала в термодинамической шкале (где выделяемая реакцией теплота имеет знак "минус"), а потом в термохимической шкале (которой мы пользовались в предыдущем параграфе и где выделяемая реакцией энергия имеет знак "плюс").

Итак, приведем пример расчета теплового эффекта реакции: Fe 2 O 3 (тв) + 3 C(графит) = 2 Fe(тв) + 3 CO(г)

Эта реакция происходит в доменной печи при очень высокой температуре (около 1500 о С). В справочниках, где используется термодинамическая шкала, можно найти стандартные теплоты образования Fe 2 O 3 (ΔН о 298 = –822,1 кДж/моль) и СО (ΔН о 298 = – 110,5 кДж/моль). Два других вещества из этого уравнения - углерод и железо - являются элементами, то есть их теплота образования по определению равна нулю. Поэтому стандартная теплота рассматриваемой реакции равна:

ΔН о 298 = 3× (-110,5) - (-822,1) = -331,5 + 822,1 = +490,6 кДж

Итак, реакция восстановления оксида железа (III) углерода является эндотермической (ΔН о 298 положительна!), причем на восстановление одного моля Fe 2 O 3 тремя молями углерода надо было бы затратить 490,6 кДж, если исходные вещества до начала реакции и продукты после окончания реакции находятся в стандартных условиях (то есть при комнатной температуре и атмосферном давлении). Не имеет значения, что исходные вещества пришлось сильно нагреть для того, чтобы реакция произошла. ВеличинаΔН о 298 = +490,6 кДж отражает "чистый" тепловой эффект эндотермической реакции, в которой реагенты сначала разогревались внешним источником тепла от 25 до 1500 о С, а в конце реакции продукты опять остывали до комнатной температуры, отдав все тепло в окружающую среду. При этом отданного тепла будет меньше, чем пришлось потратить на разогрев, потому что часть тепла поглотилась в реакции.

Проведем тот же расчет, используя термохимическую шкалу. Допустим, известны теплоты сгорания углерода и железа в кислороде (при неизменном давлении):

1) C + 1/2 O 2 = CO + 110,5 кДж

2) 2 Fe + 3/2 O 2 = Fe 2 O 3 + 822,1 кДж

Чтобы получить тепловой эффект интересующей нас реакции, умножим первое уравнение на 3, а второе перепишем в обратном порядке:

1) 3 C + 3/2 O 2 = 3 CO + 331,5 кДж

2) Fe 2 O 3 + 822,1 кДж = 2 Fe + 3/2 O 2

Теперь почленно сложим оба уравнения:3 C + 3/2 O 2 + Fe 2 O 3 + 822,1 кДж = 3 CO + 331,5 кДж + 2 Fe + 3/2 O 2

После сокращения в обоих частях уравнения кислорода (3/2 O 2) и переноса 822,1 кДж в правую часть получим: 3 C + Fe 2 O 3 = 3 CO + 2 Fe – 490,6 кДж

кинетика химических реакций - раздел физической химии, изучающий закономерности протекания химических реакций во времени, зависимости этих закономерностей от внешних условий, а также механизмы химических превращений Химическая кинетика – наука о скоростях и закономерно-стях протекания химических процессов во времени.

Химическая кинетика изучает механизм протекания процесса, т.е. те промежуточные стадии, состоящие из элементарных актов, через которые система переходит из начального состояния в конечное.

Химическая кинетика изучает скорости этих стадий и факторы, влияющие на их скорость.

Уравнение химической реакции показывает начальное состояние системы (исходные вещества) и её конечное состояние (продукты реакции), но не отражает механизма процесса.

Новое на сайте

>

Самое популярное