Домой Практическая психология Оптическая схема поляриметра. Министерство сельского хозяйства российской федерации федеральное государственное образовательное учреждение

Оптическая схема поляриметра. Министерство сельского хозяйства российской федерации федеральное государственное образовательное учреждение

Поляриметр круговой СМ состоит из следующих основных узлов:

    Головка анализатора (А) ;

    Поляризационное устройство (П );

    Осветитель (S );

    Камера для кюветы с исследуемыми растворами (Т );

Анализатор изготовлен из поляроидной пленки. Угол поворота анализатора отсчитывается по лимбу в градусах и с помощью двух нониусов, цена деления каждого нониуса 0,05°.

Поляризационное устройство состоит из осветительной линзы поляризатора и кварцевой пластинки, кварцевая пластинка берется толщиной в 1мм и располагается симметрично относительно поляризатора.

Принцип действия прибора

В круговом поляриметре СМ применен принцип уравнивания окраски разделенного на три части поля зрения. Разделение поля зрения на три части осуществлено введением в оптическую систему прибора кварцевой пластинки, которая занимает только среднюю часть поля зрения. Уравнивание полей происходит вблизи полного затемнения поля, что соответствует почти полному скрещиванию поляризатора и анализатора.

Свет от матовой электрической лампы, пройдя через конденсатор и поляризатор, средней частью пучка проходит через кварцевую пластинку, оранжевое защитное стекло и анализатор, а двумя крайними частями пучка – только через стекло и анализатор.

Вид поля зрения прибора СМ (рис.4). Уравнивание тройного поля зрения производится путем вращения анализатора вокруг горизонтальной оси.

Вид поля зрения

Если первоначально уравнять тройное поле зрения (отсутствует разделение окружности на сектора по цвету), а затем между анализатором и поляризатором ввести кювету с оптически активным раствором (вращающим плоскость поляризации), то равенство окраски всех частей поля зрения нарушится. Оно может быть восстановлено поворотом анализатора на угол, равный углу поворота плоскости поляризации раствором.

Следовательно, разностью двух отсчетов, соответствующих фотометрическому равновесию поля с оптически активным раствором и без него, определяется угол вращения плоскости поляризации данным раствором или жидкостью.

Порядок выполнения работы

    Поместить в поляриметр, пустую кювету, закрыть трубку поляриметра шторкой, включить осветитель. С помощью фрикциона плавным вращением анализатора получить тройное поле рис.4а или 4б. Добиться перемещением муфты, вдоль оси окуляра, резкого изображения линий, разделяющих поля зрения. Положение а – соответствует скрещенному расположению плоскостей колебаний анализатора и поляризатора; положение б – соответствует параллельному расположению плоскостей колебаний анализатора и поляризатора.

Поместить перед осветителем один из светофильтров (красный) и наблюдать в окуляр тройное поле (перемещением муфты вдоль оси окуляра добиться резкого изображения линий разделяющих поля).

    Плавным вращением анализатора с помощью фрикциона от положения а или от положения б добиться равномерного поля зрения находящегося между положениями а и б . Заметить нулевое положение анализатора по нониусу (принять его за начало отсчета при дальнейших измерениях), взяв его как среднее из трех измерений.

    Поместить в поляриметр кювету с водным раствором сахара. При этом нарушится равномерность окраски поля зрения.

    Плавным вращением анализатора с помощью фрикциона снова добиться равномерной окраски поля зрения.

    Определить угол вращения плоскости поляризации, взяв его как разность между вторым отсчетом, соответствующим равномерной окраске, с водным раствором сахара и первым без раствора (нулевое положение).

    Последовательно устанавливая перед осветителем светофильтры, (светофильтры устанавливать в направлении уменьшения длины волны) добиваясь равномерной окраски поля плавным вращением анализатора с помощью фрикциона. Определить угол вращения плоскости поляризации для всех указанных цветов.

    Данные занести в таблицу (таблица рисуется произвольно) и построить график φ = f(λ) .

    Сделать соответствующий вывод.

В настоящее время в технохимическом контроле бродильных производств применяют два основных метода определения содержания углеводов: поляриметрический и химический. Известны также колориметрический, хроматографический и полярографический методы определения углеводов, изложенные в следующих разделах этой главы.

Поляриметрический метод определения содержания углеводов

Свет представляет собой электромагнитные колебания, распространяющиеся от источника света во все стороны по прямым линиям (лучам). Различают лучи естественные и поляризованные. Луч, колебания которого происходят во всех плоскостях, перпендикулярных его направлению, называется естественным лучом (рис. 27). Поляризованным лучом называется такой луч, колебания которого происходят только в какой-либо одной плоскости. Плоскость, в которой происходят колебания луча, называется плоскостью колебаний поляризованного луча, а плоскость, перпендикулярная ей, - плоскостью поляризации.

Способность веществ и растворов изменять (вращать) плоскость поляризации света называется оптической активностью. Вещества, способные вращать плоскость поляризации света, являются оптически активными. В противоположность им вещества, не способные изменять плоскость поляризации света, оптически неактивны. Углеводы относятся к оптически активным веществам. Оптическая активность углеводов обусловлена наличием в их молекуле асимметрических атомов углерода, т.е. таких, все четыре валентные связи которых соединены с различными атомами или группами атомов. Углеводы, как и другие органические вещества, содержащие асимметрический углерод, проявляют оптическую активность в растворенном состоянии. На свойстве оптической активности углеводов основан поляриметрический метод их определения.

Различают вещества, изменяющие плоскость поляризации света по часовой стрелке - правовращающие - и изменяющие ее против часовой стрелки - левовращающие. К правовращающим веществам относятся глюкоза, сахароза, раффиноза, крахмал, к левовращающим - фруктоза. Если через раствор оптически активного вещества проходит поляризованный луч, то он вращает плоскость поляризации. Плоскость поляризации вышедшего луча оказывается повернутой на некоторый угол, называемый углом вращения плоскости поляризации. Величина этого угла зависит от природы вещества, толщины слоя раствора (длина пути луча), концентрации раствора, длины волны поляризуемого света и температуры.

Для сравнения оптической активности различных оптически активных веществ и использования этого явления в аналитической практике введено понятие удельного вращения. Удельным вращением называют угол, на который поворачивается плоскость поляризации под действием раствора, содержащего 100 г вещества в 100 мл раствора при толщине слоя этого раствора 1 дм (100 мм); условились удельное вращение измерять при температуре 20° С в желтом свете натриевого пламени и обозначать индексом [a]20D . Каждое оптически активное вещество характеризуется определенной величиной удельного вращения при растворении его в определенном растворителе. Ниже приведены величины удельного вращения некоторых углеводов [a]20D

Знак «+» означает правое вращение, знак «-» -левое.

Свежеприготовленные растворы некоторых сахаров не сразу проявляют свойственное им удельное вращение. Вращательная способность таких растворов изменяется на холоде медленно, а при известных условиях (нагревание, незначительное добавление щелочи) - быстро. Это явление постепенного изменения удельного вращения называется мутаротацией и объясняется наличием а- и b-форм молекул сахаров. Например, a-d-глюкоза имеет удельное вращение [а]20D = +110°, а a-d-глюкоза +19°. Свежеприготовленный раствор одной из этих форм постепенно изменяет вращение, пока величина его не достигнет среднего значения, соответствующего удельному вращению +52,5°, при котором обе формы глюкозы находятся в равновесии.

Удельное вращение оптически активного вещества в растворе выражается формулой

где а - наблюдаемый угол поворота плоскости поляризации; С - концентрация оптически активного вещества, г/100 мл раствора; l - толщина слоя раствора, дм.

Пользуясь указанной формулой, можно по величине угла поворота плоскости поляризации а найти концентрацию оптически активного вещества С. Прибор, при помощи которого можно измерить угол поворота плоскости поляризации, производимого оптически активным веществом, называется поляриметром.

Устройство поляриметра

Основными частями поляриметра являются поляризатор и анализатор. Поляризатор служит для получения поляризованного света, анализатор - для его исследования и обнаружения. В качестве поляризатора и анализатора обычно пользуются призмами Николя (рис. 28). Такая призма выпиливается из кристалла исландского шпата и состоит из двух частей abd и bcd, склеенных по плоскости bd. Луч света l, входя в кристалл, делится на два поляризованных луча mp и mo. Луч mo, обладающий большим коэффициентом преломления, претерпевает полное внутреннее отражение от слоя склеивающего вещества bd и уходит в сторону or. Луч mpqs с меньшим коэффициентом преломления проходит сквозь призму. Таким образом, первая призма Николя (поляризатор) дает возможность получить поляризованный свет. Призма Николя пропускает лишь световые колебания, лежащие в одной определенной плоскости; колебания, лежащие в перпендикулярной плоскости, она совершенно не пропускает. Поэтому, если пропустить луч света последовательно через две призмы Николя, расположенные одна за другой, то могут наблюдаться различные явления в зависимости от того, как повернута вторая из призм. Когда поляризатор и анализатор установлены взаимно параллельно, то лучи света проходят через обе призмы (рис. 29, а). Если же анализатор повернуть на 90° (рис. 29, б), то он не пропустит лучей, полученных в поляризаторе; в этом случае после анализатора свет не будет наблюдаться. Такое положение называется постановкой николей «на темноту».

Оптическую активность можно наблюдать в простейшем поляриметре (рис. 30) следующим образом. Между поляризатором Р и анализатором А, поставленными «на темноту», помещают оптически активное вещество R. Поляризованный луч после прохождения через это вещество повернется на угол, соответствующий оптической активности вещества, и подойдет к анализатору не под углом 90°, а под другим. После анализатора виден будет свет. Чтобы погасить его, придется повернуть анализатор на некоторый угол, равный углу поворота плоскости поляризации при прохождении его через вещество R. Таким образом можно определить угол поворота плоскости поляризации. Однако такой поляриметр не может быть использован для точных работ, так как человеческий глаз не способен четко отличить полную темноту от очень слабого света. Глаз легко и точно различает разницу в интенсивности освещения двух лежащих рядом слабоосвещенных плоскостей. Для этого в поляриметре должно быть так называемое «полутеневое» устройство; поляриметр с таким устройством называется полутеневым. Можно получить полутеневой поляриметр, применив вместо обычного поляризатора поляризатор Корню.

Устройство этого поляризатора следующее. Призму Николя распиливают вдоль пополам по линии АВ (рис. 31); затем от каждой половины удаляют острый клин Aba и Abc, обе оставшиеся половины вновь склеивают. Поляризованные лучи, выходящие из правой и левой половин призмы, не будут параллельны один другому, а расположатся под некоторым углом. Поворотом анализатора можно погасить только один из пучков этих лучей, а другой пройдет через анализатор и поле зрения будет состоять из двух половин - светлой и темной (рис. 32, а и в). Если поставить анализатор под одинаковым углом (близким к 90°) к обеим половинам призмы Корню, то получим одинаковое слабое освещение - «полутень» (рис. 32, б).

Призма Корню не совсем удобна, так как в ней видна линия, по которой склеены половины призмы, что мешает наблюдению. Этот недостаток устранен в поляризаторе Липпиха (рис. 33), который состоит из двух призм Николя - большой Р и малой H, расположенных так, что меньшая из них закрывает половину поля зрения и повернута на небольшой угол относительно большой призмы. При этом, если анализатор установлен «на темноту» относительно большой призмы, то одна половина поля будет освещена, а вторая слабо освещена. Если же его установить «на темноту» относительно малой призмы, то первая половина поля будет освещена, а вторая затемнена. Между этими двумя положениями анализатора можно найти такое, при котором оба поля будут слабо и равномерно освещены (см. рис. 32, б).

В контроле бродильных производств применяют поляриметры, предназначенные для определения сахарозы, - так называемые сахариметры. В поляриметрах-сахариметрах анализатор устанавливают неподвижно и вместо вращения анализатора применяют кварцевые компенсаторы. Кварц является оптически активным веществом; существуют две разновидности кварца - право- и левовращающий. Если между поляризатором и анализатором поместить два кварцевых клина - один правовращающий, а другой - левовращающий - так, чтобы толщина слоя одного равнялась толщине слоя другого, то вращательная способность их будет равна нулю.

Кварцевый компенсатор состоит из правовращающей кварцевой пластинки Р и двух левовращающих клиньев К1 и K2 (рис. 34, а), из которых более длинный - К2 может двигаться параллельно клину К1. Если оба клина сложить плотно, то они составят пластинку с параллельными сторонами, вращающую влево. Толщину этой пластинки можно менять, вдвигая более или менее клин К2: если его вдвинуть больше, то левовращающий слой кварца станет толще, чем правовращающая кварцевая пластинка Р, и вся кварцевая система (в целом) будет вращать влево, что даст возможность компенсировать правое вращение исследуемого сахарного раствора. Если выдвигать постепенно назад клин К2, то сначала получится система, не вращающая ни вправо, ни влево (сумма толщин К1 и К2 станет равна толщине Р). Затем, при дальнейшем движении клина, перевесит правая вращательная способность пластинки Р и получится правовращающая система, способная компенсировать левое вращение.

Применяют и другую систему кварцевой компенсации (см. рис. 34,б), которая состоит из двух клиньев K1 и К2. Клин К2 из левовращающего кварца - подвижный, клин К1 из правовращающего кварца - неподвижный. Клинья своими более тонкими концами направлены в одну сторону. Луч света проходит через большую толщину клина К2 и через малую толщину клина K1; в этом случае клиновая система вращает влево и может компенсировать вращение раствора правовращающего вещества. Если же подвижный клин К2 передвинуть так, чтобы на пути света оказалась тонкая часть его, то перевесит правое вращение клина К1 и клиновая система будет вращать вправо, компенсируя вращение какого-либо раствора левовращающего вещества.

Луч света, проходя через клинья К1 и К2, направленные суженными концами в одну сторону, конечно, будет преломляться и изменит свое направление и, кроме того, еще разложится в спектр. Чтобы этого не произошло, ставят дополнительную компенсирующую стеклянную призму С, которая направлена тонким концом в другую сторону по сравнению с клиньями К1 и К2 и поэтому восстанавливает прежнее направление луча света (см. рис. 34, б).

Описанная клиновая кварцевая компенсация называется одинарной. Часто применяются поляриметры с двойной клиновой компенсацией. Двойная компенсация имеет две пары клиньев (рис. 35). Одна пара так называемых контрольных клиньев К изготовлена из правовращающего кварца и служит для измерения вращения левовращающих веществ; вторая пара клиньев, так называемых рабочих клиньев А, изготовлена из левовращающего кварца и служит для измерения вращения правовращающих веществ. Преимущество поляриметров с кварцевым компенсатором заключается в увеличении точности отсчетов, так как толщину кварцевого клина при изменении его положения можно измерить точнее, чем угол поворота анализатора.

Светофильтр. При поляризации бесцветных или слабоокрашенных растворов одна половина поля зрения сахариметра имеет слегка желтоватый оттенок, а другая - голубоватый. Для поглощения и тем самым устранения возможности появления различных окрасок устанавливают светофильтр. В качестве светофильтра применяют трубку с раствором двухромовокислого калия (К2Сг2О7) или желтое стекло. При поляризации окрашенных растворов, например мелассы, которые сами имеют желтую окраску и поглощают лучи нежелательной части спектра, пользоваться светофильтром необязательно. Поэтому при работе с окрашенными растворами в целях улучшения освещения поля зрения иногда выводят светофильтр из оптической системы поляриметра.

Освещение поляриметра. При применении поляриметра с подвижным анализатором необходимо пользоваться монохроматическим (одноцветным) светом, например желтым светом натриевого пламени. Пользоваться в этом случае сложным белым светом нельзя, так как лучи разной длины волны поворачиваются на различные углы и получается вращательная дисперсия: у лучей с короткой волной, например фиолетовых, плоскость поляризации поворачивается на больший угол, чем у лучей с длинной волной, например красных. Поэтому при пользовании сложным белым светом в таком поляриметре нельзя добиться поворотом анализатора слабого равномерного освещения обеих половин поля зрения. Наличие в сахариметре кварцевого компенсатора дает возможность пользоваться обычным белым, а не монохроматическим светом. Вращательная дисперсия для кварца почти такая же, как и для сахарных растворов. Поэтому белый поляризованный свет, разложенный при прохождении через сахарный раствор на составные лучи с различным поворотом плоскости поляризации, при дальнейшем прохождении через кварцевый компенсатор вновь превращается в первоначальный белый свет, а разложенные лучи вновь складываются в первоначальный луч. В качестве источника света для сахариметров применяют матовые лампы накаливания 100 вт; в настоящее время выпускают сахариметры, у которых лампа вставлена в прибор.

Шкалы поляриметра. Существуют поляриметры с круговой и линейной (эмпирической) шкалой. Круговая шкала градуирована в угловых градусах линейная - в процентах сахарозы. В бродильной промышленности применяют поляриметры с линейной шкалой. Эта шкала дает отсчет 100 в том случае, если в 100 мл водного раствора содержится 26,00 г чистой сахарозы и раствор поляризуют в трубке длиной 200 мм; все операции выполняют при 20° С. Навеска 26,00 г называется нормальной. Таким образом, если нормальную навеску х. ч. сахарозы растворить в воде и довести объем раствора до метки в колбе на 100 мл, то такой раствор в трубке длиной 200 мм даст по шкале отсчет, равный 100,0%. Если взять нормальную навеску какого-либо продукта (например, мелассы или сахарного сиропа), содержащего n% сахарозы, то очевидно, по шкале получится отсчет n%. Следовательно, для того чтобы получить непосредственно на шкале поляриметра процент сахарозы в исследуемом продукте, следует соблюдать следующие условия: 1) навеска исследуемого продукта должна быть точно 26,00 г; 2) эта навеска должна быть растворена до объема 100 мл; 3) поляризация раствора проводится в трубке длиной 200 мм.

Линейная шкала поляриметра дает возможность вести отсчет с точностью до 0,1 деления. Для отсчета десятых долей служит нониус. На рис. 36,а показано положение шкалы относительно нониуса, соответствующее отсчету +12,7. При этом нуль нониуса расположен после 12 полных делений шкалы, а седьмое деление нониуса совпадает с одним из делений шкалы. На рис. 36,б показано положение нониуса, соответствующее отсчету -3,2. В этом случае нуль нониуса расположен левее шкалы на три полных деления шкалы, а второе деление нониуса совпадает с делением шкалы.

Поляриметрические трубки и пользование ими. При поляриметрических определениях исследуемый раствор наливают в поляриметрическую трубку (рис. 37). Трубки изготовляют из металла (латунь, медь) и стекла. При исследовании растворов с кислой реакцией следует пользоваться только стеклянными трубками. Длина трубок 100, 200 и 400 мм. Трубка длиной 200 мм считается нормальной. Длину трубок проверяют специальными штангенциркулями, дающими показание с точностью до 0,1 мм. Трубки закрывают покровными стеклами, прижимая их к концам трубок гайками; для уплотнения между покровными стеклами и гайками прокладывают резиновые кольца. Перед употреблением покровные стекла следует вымыть и вытереть досуха. Трубка должна быть чистой и сухой. Высушивают трубку, проталкивая сквозь нее деревянной палочкой тампон из фильтровальной бумаги. Если перед наполнением трубка не была высушена, то ее ополаскивают 2 раза исследуемым раствором. Наполняют трубки следующим образом: трубку закрывают с одного конца стеклом и гайкой, берут ее двумя пальцами, держат наклонно (чтобы в трубку не увлекались пузырьки воздуха) и наливают в нее столько жидкости, чтобы она выступала поверх краев трубки в виде капли. Затем закрывают трубку сверху покровным стеклом, двигая его с одной стороны в горизонтальном направлении по бортику трубки, как бы срезая выступающую каплю жидкости; закрывать трубку надо быстро и аккуратно так, чтобы под покровным стеклом не осталось пузырька воздуха. Если это не удалось сделать сразу, то, вытерев досуха стекло и долив трубку, следует повторить эту операцию. Покровные стекла нельзя прижимать слишком сильно, так как при этом они могут стать оптически активными.

Схема сахариметра. Выпускаемые в настоящее время Киевским заводом КИП сахариметры СУ-1 и СУ-2 имеют следующую схему (рис. 38). Свет от электролампы 1 проходит через матовое стекло 2 или светофильтр 3, затем через конденсаторную линзу 4 и поступает в поляризатор 5. Поляризованный луч из поляризатора проходит два защитных стекла 6 и 7, между которыми помещается поляриметрическая трубка с исследуемым раствором. За защитным стеклом 7 установлен кварцевый компенсатор, состоящий из трех клиньев: подвижного кварцевого клина 8, стеклянного контрклина 9 и неподвижного кварцевого клина 10. Далее установлен анализатор 11 и зрительная труба, состоящая из двухлинзового объектива 12, 13 и окуляра 14. От электролампы 1 свет попадает также в отражательную призму 15 и, отражаясь, падает на защитное стекло 16. Это стекло рассеивает свет, который затем освещает шкалу 17 и нониус 18. Цифры и деления на шкале и нониусе рассматривают в увеличенном виде при помощи окуляра, состоящего из двух линз 19 и 20. Шкала 17 связана с подвижным кварцевым клином 8. Таким образом, смещение подвижного кварцевого клина 8, пропорциональное углу вращения плоскости поляризации, передается на шкалу 17 и отсчитывается при помощи окуляра шкалы 19-20.

Установка сахариметра. Сахариметр должен быть установлен на столе в темной комнате длиной около 2 и шириной 1,2 м со стенами, окрашенными в черный цвет. Если такой комнаты нет, над поляриметром устанавливают колпак из фанеры. Длина колпака 1,2, ширина 0,9 и высота 0,8 м. Изнутри колпак окрашивают в черный цвет. На отверстие колпака, обращенное к наблюдателю, навешивают портьеру из темной и плотной материи. Для удобства работы стол с прибором должен быть расположен так, чтобы поляризующий сидел спиной к окну. Это исключает проникновение дневного света в глаз наблюдателя и уменьшает утомляемость глаз при наблюдении. У стола, на котором установлен сахариметр, должны быть два выключателя: один - к электролампе, освещающей поляриметрическую комнату, а второй - к электролампе прибора.

Практика пользования сахариметром. Поляризацию проводят следующим образом. Окуляр анализатора 1 (рис. 39) устанавливают на ясную видимость и вращением винта 2 добиваются одинаковой интенсивности освещения обеих половин поля зрения; показания сахариметра при этом должны быть равны нулю. Затем в камеру сахариметра 3 помещают поляриметрическую трубку, наполненную исследуемым раствором. Поле зрения сахариметра разделяется по вертикальной линии на две половины (см. рис. 32, а) - темную и светлую. Тогда вращением винта 2 вновь добиваются одинаковой интенсивности освещения обеих половин поля зрения, после чего проводят отсчет. Для большей точности следует проводить поляризацию 2-3 раза подряд (не вынимая трубки) и из полученных отсчетов выводить среднее.

Сахариметр следует содержать в абсолютной чистоте. Поляриметрическая трубка, помещенная в сахариметр, должна быть совершенно сухой и чистой. Правильность показаний сахариметра проверяют специальными контрольными трубками.

Осветлители

Растворы исследуемых продуктов для поляризации должны быть совершенно прозрачны и возможно меньше окрашены. Чем интенсивнее окраска раствора, тем труднее проводить или сахара, так как меньше заметна разница в интенсивности освещения обеих половин поля зрения. Поэтому окрашенные продукты перед поляризацией осветляют. При осветлении удаляются также другие оптически активные вещества, например белки. Так, при исследовании мелассы ее осветляют реактивом Герлеса. Этот реактив состоит из двух растворов: Герлес I и Герлес II. Герлес I представляет собой раствор азотнокислого свинца, Герлес II - раствор едкого натра. При исследовании сахарной свеклы и других сахарсодержащих продуктов в качестве осветлителя применяют основной уксуснокислый свинец, для крахмалсодержащих продуктов - молибденовокислый аммоний.

Автоматический сахариметр

В настоящее время Киевский завод КИП выпускает фотоэлектрический автоматический поляриметр типа СА конструкции В. И. Кудрявцева. Этот поляриметр выполняет автоматически компенсацию вращения плоскости поляризации раствором и дает отсчет процентного содержания сахара. Основная схема сахариметра конструкции Кудрявцева (рис. 40) такова. Свет от электролампы 1 через конденсор 2 поступает в поляризатор 3. Поляризованный свет, плоскость поляризации которого приводится в колебание магнитооптическим модулятором 4, проходит через светофильтр 5, поляриметрическую трубку с исследуемым раствором 6, диафрагму 7, кварцевый компенсатор 8, 10, стеклянный контрклин 9, анализатор 11 и попадает на фотоэлемент 12. Фотоэлемент преобразует колебания интенсивности света в переменный электрический ток.

В отличие от обычного поляриметра роль поляризатора и анализатора выполняют не призмы Николя, а поляроиды, состоящие из пластинки с нанесенным слоем органических соединений йода; поляроиды устанавливаются в положении «накрест». При отсутствии трубки с раствором оптически активного вещества свет из анализатора не выходит. Когда между поляриметром и анализатором помещают трубку с исследуемым раствором, то на фотоэлемент падает свет, интенсивность которого зависит от угла вращения плоскости поляризации. Вращение плоскости поляризации исследуемым раствором компенсируется перемещением подвижного клина 8 кварцевого компенсатора, причем это перемещение пропорционально углу вращения плоскости поляризации, следовательно, пропорционально и концентрации раствора.

Отсчет показаний прибора проводится по шкале 19, связанной с подвижным клином 8 кварцевого компенсатора и снабженной нониусом 18. Для удобства отсчета показаний деления и цифры шкалы и нониуса проецируются на полупрозрачный экран 21 оптической проекционной системы, состоящей из осветителя 16, конденсора 17 и объектива 20. Подвижный клин и связанная с ним шкала перемещаются реверсивным двухфазным двигателем 13 через редуктор 14 и кремальерную передачу 15. Одна из обмоток электродвигателя питается через понижающий трансформатор 26 и стабилизатор напряжения 27 от сети переменного тока с частотой 50 гц. Вторая обмотка питается от усилителя переменного тока 22, на входе которого включен фотоэлемент 23. Ток на усилитель поступает через выпрямители 24 и 25. Электродвигатель вращается при подаче на обмотки переменного напряжения с частотой 50 гц.

Определение содержания сахарозы в мелассе

Содержание сахарозы в мелассе определяют следующим образом. Нормальную навеску мелассы (26,00 г) с помощью теплой воды (здесь и далее, где специально не оговорено, имеется в виду дистиллированная вода) переводят в мерную колбу на 100 мл, охлаждают до 20° С, прибавляют для осветления 8-10 мл растворов реактива Герлеса. Растворы Герлеса добавляют в 4-5 приемов; после каждого прибавления раствора азотнокислого свинца добавляют такое же количество раствора едкого натра, смесь перемешивают легким вращением колбы в течение 1,5-2 мин, затем опять в том же порядке прибавляют осветлитель. Содержимое колбы доводят до метки водой (при температуре 20° С), взбалтывают и после 2-5 минутного стояния фильтруют и поляризуют в трубке длиной 200 мм. Показание поляриметра дает непосредственно процент сахарозы в исследуемой мелассе.

Определение содержания крахмала в зерне

Содержание крахмала в зерне определяют по методу Эверса, который предусматривает превращение нерастворимого крахмала зерна в растворимый путем нагревания с разбавленной соляной кислотой. Навеску размолотого зерна 5,0000 г (т.е. с точностью до 0,0001 г) количественно переносят (через воронку с отрезанным концом) в сухую мерную колбу на 100 мл, приливают 25 мл 1,124%-ной соляной кислоты, ополоснув ею стаканчик, в котором взвешивали. Следующими 25 мл кислоты смывают частицы зерна со стенок колбы. Смесь перемешивают и колбу помещают на 15 мин в кипящую водяную баню, причем в тёчение первых трех минут содержимое колбы размешивают плавными круговыми движениями. Необходимо наблюдать, чтобы вода в бане покрывала всю колбу, а кипение было энергичным и не прекращалось при погружении колбы.

По истечении 15 мин колбу вынимают, вливают в нее 40 мл воды, взбалтывают и быстро охлаждают до 20° С. Для осветления раствора и осаждения белков прибавляют 4-6 мл раствора молибденовокислого аммония, доливают до метки водой, взбалтывают и фильтруют через сухой фильтр в чистую сухую колбу. Во избежание испарения воронку покрывают стеклом. Первые 20 мл фильтрата выливают, а последующие немедленно поляризуют в стеклянной трубке длиной 200 мм.

При исследовании крахмалсодержащих продуктов (зерна, картофеля) поляриметр не покажет непосредственного содержания крахмала. Для того чтобы рассчитать содержание крахмала, поступают следующим образом. Из формулы удельного вращения находим С:

При пользовании поляриметром с линейной шкалой формула приобретает следующий вид:

где П - показания поляриметра с линейной шкалой; 0,3468 - коэффициент перехода от линейной шкалы поляриметра к круговой.

Для определения крахмалистости зерна применяют навеску 5 г и растворяют крахмал до объема 100 мл разбавленной соляной кислотой. Пользуясь приведенной формулой, получают содержание крахмала в 100 мл раствора или (что то же) в 5 г навески. Процентное содержание крахмала в зерне находят умножением результата расчета на 20 (100:5 = 20).

Следовательно, крахмалистость зерна К можно рассчитать по формуле

В указанной формуле все величины, кроме П (показания поляриметра), постоянные. Поэтому можно написать К = kП, где k - постоянный коэффициент. Коэффициенты k для разных видов крахмала несколько различны, так как различны значения удельного вращения крахмала отдельных зерновых культур. Коэффициенты k были вычислены Эверсом и называются коэффициентами Эверса. Эти коэффициенты вычислены для навески 5 г при применении мерной колбы на 100 мл и поляриметрической трубки длиной 200 мм.

Приводим значения удельного вращения и коэффициента Эверса для различных видов крахмала.

Процентное содержание крахмала получают умножением показания шкалы поляриметра на соответствующий коэффициент Эверса.

Пример. При анализе пробы кукурузы показания поляриметра 28,4. Содержание крахмала составит 28,4 * 1,849 = 52,51%.

А. Н. Бондаренко и В. А. Смирнов считают, что удельное вращение крахмалов, выделенных из зерна хлебных и крупяных культур, при растворении в 1,124%-ной соляной кислоте и определении по методу Эверса одинаково и равно 181,0°. Соответственно будет одинаков и коэффициент Эверса, равный 1,910.

ПОЛЯРИМЕТРИЯ (позднелат. polaris полярный + греч, metreo мерить, измерять) - совокупность физикохимических методов исследования, основанных на определении угла вращения плоскости поляризации проходящего через оптически активную среду поляризованного света.

П. находит широкое применение в сан.-гиг., клинических и физиол, исследованиях. Методами П. определяют наличие и концентрацию углеводов в растительном сырье, белков и аминокислот в растворах; этими методами исследуют активность ферментов, расщепляющих углеводы, и т. д.

В основе П. лежит прохождение поляризованного луча света через оптически активную среду (напр., через какую-либо биол, пробу, исследуемый р-р). При этом плоскость поляризации луча (см. Поляризация света), прошедшего через исследуемое вещество, оказывается повернутой на некоторый угол (угол вращения плоскости поляризации). По величине этого угла, а также по направлению смещения (знаку вращения) плоскости поляризации идентифицируют оптически активное вещество и определяют его концентрацию.

Для количественной оценки угла вращения плоскости поляризации используются удельное вращение [α], выражающееся формулой:

где α - угол вращения плоскости поляризации (в градусах); l - длина кюветы в дм; с - концентрация оптически активного вещества в г/мл, а также молекулярное вращение:

где М - молекулярный вес (масса) оптически активного вещества. Для характеристики оптических свойств высокомолекулярных веществ (напр., для белков или нуклеиновых к-т) используется также определение «вращения на мономерное звено или остаток» - m или R (т. e. в расчете на молекулярный вес мономерного звена или остатка). Удельное и молекулярное вращение - специфичны для каждого оптически активного соединения (зависят от структуры вещества, температуры, типа растворителя и др.).

Угол вращения плоскости поляризации зависит от длины волны проходящего света; такая зависимость носит название дисперсии оптического вращения. Показано, что каждый оптически активный хромофор молекулы в области своей полосы поглощения характеризуется специфической, так наз. аномальной дисперсией оптического вращения. Вне области полосы поглощения дисперсия оптического вращения носит название нормальной. При наличии нескольких оптически активных переходов нормальная дисперсия определяется суммой вкладов от всех хромофоров. Дисперсию оптического вращения изучают с помощью приборов -спектрополяриметров; метод изучения называется спектрополяриметрией.

Наряду с вращением плоскости поляризации падающего света любое оптически активное вещество по-разному поглощает компоненты света, поляризованные по кругу влево и вправо, т. е. обладает круговым дихроизмом. Мерой его является величина ΔЕ, вычисляемая по формуле:

ΔЕ = Е L - Е R ,

где Е L и Е R - молекулярные коэффициенты поглощения для двух компонент поляризованного света. Величина ΔЕ связана с разностью оптических плотностей для двух компонент света ΔD = D L - D R соотношением:

где с - концентрация вещества в моль/л, l - длина кюветы в см. Значения ΔE изменяются с длиной волны света и могут быть как положительными, так и отрицательными. Эта величина имеет большие значения только в узкой области частот вблизи максимума поглощения, поэтому спектр кругового дихроизма молекул, имеющих несколько хромоформных групп, обладает большей разрешающей способностью, чем спектры дисперсии оптического вращения.

Спектры кругового дихроизма изучают с помощью приборов, называемых дихрографами.

Методы измерения дисперсии оптического вращения и кругового дихроизма широко применяются для изучения структуры многих биологически важных соединений, в частности вторичной и третичной структур молекул белков, конформационных изменений белков в растворах при изменении условий среды или при их взаимодействии с другими молекулами. Этими методами изучаются структура ферментов, пептидных гормонов, мембранных белков, различных белковых комплексов (напр., антиген - антитело), сложных комплексов (напр., хроматина, рибосом, вирусов и фагов), процессы нуклеиново-белкового узнавания и т. д.

Поляриметры - приборы для измерения углов вращения плоскости поляризации. Любой прибор для П. содержит источник поляризованного излучения (источник света и поляризатор) и устройство для анализа этого излучения, прошедшего через исследуемый прибор (анализатор). В простейших поляриметрах при измерении поворотом анализатора добиваются полного затемнения поля зрения. В таких поляриметрах (рис. 1) поток излучения, выходящий из источника, проходит через светофильтр, или монохроматор, через поляризирующее устройство, исследуемый образец, анализатор, жестко связанный с угломерным устройством, и попадает в зрительную трубу. Лимб угломерного устройства расположен перпендикулярно к оси вращения анализатора. Для измерения угла вращения, производимого оптически активным веществом, анализатор дважды устанавливают на одинаковую яркость поля зрения и дважды выполняют отсчеты по угломерному устройству - без исследуемого вещества между поляризатором и анализатором N0 и с исследуемым веществом (N1). Искомый угол вращения φ равен разности результатов двух отсчетов φ = N1 -N0.

Для повышения точности измерений поляриметры снабжают полу-теневыми устройствами - поляризаторами (анализаторами) особой конструкции, обеспечивающими небольшой сдвиг плоскостей поляризации в поле зрения и делящими его на два или три поля сравнения. При этом чувствительность прибора возрастает. Поляриметры, предназначенные для определения содержания сахара в растворах, называются сахариметрами, а процесс определения концентрации сахара в растворах - сахарометрией. Излучение от источника света (рис. 2) проходит через фокусирующую линзу и полу-теневой поляризатор. Анализатор жестко установлен на полутеневое равенство в нулевом положении. Для компенсации вращения, вызываемого р-ром сахара, служит компенсатор в виде плоскопараллельной пластины кристаллического кварца переменной толщины, установленной перед анализатором и состоящей из плоскопараллельной пластины правовращающего и клиньев левовращающего кварца. Угол вращения отсчитывают с помощью линейной шкалы и нониуса, отградуированных в единицах Международной сахарной шкалы. Полутеневое равенство устанавливается при наблюдении в зрительную трубу.

Применение фотоэлектрических приемников излучения в поляриметрах позволяет значительно повысить их чувствительность, отказаться от затемненных помещений, повысить скорость выполнения измерений, проводить измерения в ультрафиолетовой и инфракрасной областях спектра, исследовать вещества с большой оптической плоскостью. В общем виде схема одного из фотоэлектрических поляриметров приведена на рис. 3. Поток излучения в нем от источника света проходит поляризатор, модулятор, исследуемый образец, анализатор с угломерным устройством и попадает на фотоэлектрический приемник, а затем в резонансный усилитель, настроенный на частоту модуляции, и фазочувствительный нуль-индикатор. При углах скрещения, отличных от 90°, световой поток будет иметь составляющую модуляции на частоте f (частота переменного тока, питающего модулятор), фаза к-рой зависит от направления поворота плоскости поляризации исследуемым веществом. Погрешности измерений фотоэлектрическими поляриметрами лежат в пределах 0,02° для приборов с диапазонами измерений порядка нескольких градусов.

Библиография: Веллюз Л., Легран М. и Грошан М. Оптический круговой дихроизм, пер. с англ., М., 1967; Волкова Е. А. Поляризационные измерения, М., 1974; Волькенштейн М. В. Молекулярная биофизика, с. 315, М., 1975; Дисперсия оптического вращения и круговой дихроизм в органической химии, под ред. Г. Снатц-ке, пер. с англ., М., 1970; Кудрявцев В. И. Автоматический сахариметр, Сахарная пром-сть, № 11, с. 14, 1953; The cell nucleus, ed. by H. Busch, v. 5’ p. 55, 99, N. Y., 1978; J i r g e n s o n s B.’ Optical activity of proteins and other mac-r o m о 1 ec u 1 e s, B. - N. Y., 1973.

И. А. Болотина; М. Я. Каабак (техн.).

ПОЛЯРИМЕТР

ПОЛЯРИМЕТР

1) прибор для измерения угла вращения плоскости поляризации монохроматич. света в оптически активных веществах (д и с п е р с и ю оптической активности измеряют с п е к т р о п о л я р и м е т р а м и). В П., построенных по схеме полутеневых приборов (рис. 1, 2), сводится к визуальному уравниванию яркостей двух половин поля зрения прибора и последующему считыванию показаний по шкале вращений, снабжённой нониусом.

Рис. 2. Полутеневые поляризаторы. Плоскости поляризации двух их половин P1 и Р2 составляют между собой малый угол 2 а. Если анализатора АА перпендикулярна биссектрисе 2a (а), обе половины 1 и II поля зрения имеют одинаковую полутеневую . При малейшем повороте анализатора относит. освещённость I и 11 резко меняется (б и в).

Подобная методика визуальной регистрации обладает достаточно высокой чувствительностью, что позволяет применять полутеневые поляриметры для мн. целей. Однако более распространены автоматич. П. с фотоэлектрич. регистрацией, в к-рых та же задача сопоставления двух интенсивностей решается п о л я р и з а ц и о н н о й м о д у л я ц и е й светового потока (см. МОДУЛЯЦИЯ СВЕТА) и выделением на выходе приёмника света сигнала осн. частоты. Макс. , достигнутая в наст. в поляриметрич. измерениях с применением лазеров, составляет 10-7 .

2) Прибор для определения с т е п е н и п о л я р и з а ц и и р частично поляризованного света (см. ПОЛЯРИЗАЦИЯ СВЕТА). Простейший такой П.- полутеневой П. Корню, предназначенный для определения степени линейной поляризации. Осн. элементами этого П. служат призма Волластона (см. ПОЛЯРИЗАЦИОННЫЕ ПРИЗМЫ) и анализатор. Поворотом анализатора (шкала поворота проградуирована на значения р) уравнивают яркости полей, освещаемых пучками, к-рые при выходе из призмы имеют неодинаковую интенсивность. Ф о т о э л е к т р и ч е с к и й П. для измерения линейной поляризации состоит из вращающегося вокруг оптич. оси П. анализатора и фотоприёмника. Отношение амплитуд переменной составляющей тока приёмника к постоянной непосредственно даёт р. Поставив перед П. фазовую п л а с т и н к у ч е т в е р т ь д л и н ы в о л н ы (см. КОМПЕНСАТОР ОПТИЧЕСКИЙ , ПОЛЯРИЗАЦИОННЫЕ ПРИБОРЫ), можно использовать его для измерения степени круговой (циркулярной) поляризации.

П. широко и эффективно применяются в разл. исследованиях структуры и свойств в-ва (см. ПОЛЯРИМЕТРИЯ), в решении ряда технич. задач. В частности, измерения степени циркулярной поляризации излучения космич. объектов позволяют обнаружить сильные магн. поля во Вселенной.

Физический энциклопедический словарь. - М.: Советская энциклопедия . . 1983 .

ПОЛЯРИМЕТР

1) прибор для измерения угла вращения плоскости поляризации монохроматич. света в веществах, обладающих еетественной или наведённой магн. полем оптической активностью. Дисперсию оптического вращения измеряют спектрополяриметрами.

П. делятся на визуальные и фотоэлектрические. Конечным измерит. элементом и тех, и других является светочувствит. устройство (глаз или фотоэлектрич. приёмник), реагирующее на изменение интенсивности света, а не на состояние его поляризации. Этот принцип реализуется, напр., в П., построенных по схеме полутеневых приборов. Исследуемое 5 (рис. 1) помещается между полутеневым поляризатором, состоящим из двух половин 3 -4, и анализатором 6.


Рис. 1. Принципиальная схема полутеневого поляриметра: 1 - источник света; 2 - конденсор; 3-4 - полутеневой поляризатор; 5 - трубка с исследуемым оптически активным веществом; 6 - анализатор с отсчётным устройством; 7 - зрительная труба; 8 - окуляр отсчётного устройства.

Пропускание анализатора меняется в соответствии с Малюса законом при изменении угла между плоскостью поляризации АА анализатора и плоскостью поляризации падающего на него света. Наиб. абс. изменение интенсивности прошедшего через анализатор света в зависимости от угла происходит вблизи угла однако относит. изменение интенсивности максимально вблизи угла Действительно,

при Поэтому для наиб. чувствительной регистрации малых углов вращения плоскость поляризации анализатора АА устанавливается перпендикулярно биссектрисе малого угла между плоскостями поляризации и двух половин полутеневого поляризатора (рис. 2, а ). В таком случае обе половины I и II поля зрения имеют одинаковую освещённость. Когда между поляризатором и анализатором находится исследуемое вещество, поворачивающее плоскость поляризации, освещённость резко меняется (рис. 2, б, в). Измерение угла вращения сводится к повороту плоскости поляризации анализатора до визуального выравнивания яркостей двух половин поля зрения. Измеряемый угол считывается со шкалы отсчётного устройства. Подобная методика визуальной регистрации обладает достаточно высокой чувствительностью, что позволяет применять полутеневые П. при разл. исследованиях. Однако более распространены автоматич. фотоэлект-рич. П., в к-рых сопоставление двух интеисивностей осуществляется с помощью поляризац. модуляции светового потока (см. Модуляция света). Последний в свою очередь вызывает переменный фототок, к-рый после усиления и выпрямления регистрируется, и с помощью компенсирующей схемы производится измерение угла. Макс. пороговая чувствительность лазерных П. град; при использовании внутрирезонаторных лазерных методов измерений чувствительность П. доходит до град.

Рис. 2. Полутеневые поляризаторы: АА - плоскость поляризации анализатора; и - плоскости поляризации двух половин поляризатора; - угол между ними.


2) П.- также прибор для определения степени поляризации р частично поляризованного света. Степень линейной поляризации устанавливается как отношение разности к сумме интенсивностей и света, разложенного на две линейно поляризованные составляющие с взаимно перпендикулярными плоскостями поляризации, т. е. Простейший визуальный полутеневой поляриметр Корню (рис. 3) состоит из диафрагмы Д, призмы Волластона П и анализатора А. Призма Волластона пространственно разделяет составляющие и в результате чего через анализатор наблюдаются два поля изображения диафрагмы, интенсивности к-рых в соответствии с законом Малюса равны и Поворачивая анализатор на угол добиваются равенства интенсивностей обоих полей Зная угол поворота определяют отношение и степень поляризации Обычно шкала поворота градуирована непосредственно в значениях р.

Рис. 3. Схема поляриметра Корню: Д - диафрагма; П - призма Волластона; А - анализатор.


В качестве П. используют и полярископ Савара, перед к-рым устанавливают поляризац. стопу стеклянных пластин для компенсации измеряемой поляризации света. Поворачивая предварительно проградуированную стопу, добиваются того, чтобы анализируемый на выходе имел нулевую поляризацию.

Фотоэлектрич. П. для измерения степени поляризации состоит из вращающейся полуволновой фазовой или пластинки в четверть длины (для определения степени линейной или циркулярной по-ляризации соответственно), анализатора и фотоприёмника. Отношение амплитуд переменной и постоянной составляющих фототока непосредственно даёт величину p.

П. широко и эффективно применяются в разл. исследованиях структуры и свойств вещества, в решении ряда техн. задач. В частности, измерения степени поляризации излучения космич. объектов позволяют обнаружить сильные магн. поля во Вселенной.

Лит.: Шишловский А. А., Прикладная физическая , М., 1961; 3апасский В. С., Методы высокочувствительных поляриметрических измерений. (Обзор), "Журнал прикладной спектроскопии", 1982, т. 37, в. 2, с. 181.

В. С. Запасский.

Физическая энциклопедия. В 5-ти томах. - М.: Советская энциклопедия . Главный редактор А. М. Прохоров . 1988 .


Синонимы :

Поляриметрия - метод физико-химического анализа, основанный на измерении вращения плоскости линейно поляризованного света оптически активными веществами. Большая часть оптически активных веществ - это органические соединения с ассимметричным атомом углерода, т. е. с таким, единицы сродства которого насыщены четырьмя различными заместителями. Соединения асимметричных атомов четырехвалентного олова, серы, селена, кремния и пятивалентного азота также оптически активны.

Термины и обозначения

Если через слой оптически активного вещества или его раствор пропускать поляризованный луч света, то плоскость поляризации вышедшего луча оказывается повернутой на некоторый угол, называемый углом вращения плоскости поляризации или углом вращения а.

В зависимости от природы вещества, вращение плоскости поляризации может иметь различное направление и величину.

Если плоскость поляризации вращается вправо от наблюдателя, к которому направлен свет, проходящий через оптически активное вещество (по движению часовой стрелки), то вещество называют правовращающим и перед названием ставят знак « + » или D; если же вращение плоскости поляризации происходит влево, то вещество называют левовращающим и перед названием ставят знак «-» или L.

Величина угла вращения зависит от природы оптически активного вещества, толщины слоя вещества, через который проходит свет, температуры и длины волны света. Угол вращения прямо пропорционален толщине слоя. Влияние температуры связано, главным образом, с изменением плотности растворов и, в большинстве случаев, незначительно. Обычно определение оптического вращения проводят при 20 °С и при длине волны максимально соответствующей желтой линии D спектра натрия (589,3 нм).

Для сравнительной оценки способности различных веществ вращать плоскость поляризации вычисляют так называемое удельное вращение плоскости поляризации монохроматического света, вызванное слоем вещества толщиной в 1 дм, при температуре t и концентрации активного вещества 1 г/см3. Если определение удельного вращения проводят при 20 °С и длине волны линии D спектра натрия, то его обозначают знаком [a]D20.

Для жидких индивидуальных веществ удельное вращение определяют по формуле:

где а - измеренный угол вращения, градусы; l - толщина слоя жидкости, дм; d - относительная плотность жидкости.

Для растворов удельное вращение определяют по формуле:

где С - концентрация раствора, г растворенного активного вещества на 100 см3 раствора.

Удельное вращение зависит от природы растворителя и концентрации раствора. При замене растворителя может измениться не только величина угла вращения, но и его направление. Во многих случаях удельное вращение постоянно лишь в определенном интервале концентраций. Поэтому, приводя значение удельного вращения, необходимо указывать растворитель и концентрацию испытуемого раствора.

В интервале концентраций, в котором удельное вращение постоянно, можно по углу вращения рассчитать концентрацию вещества в растворе по формуле:

Полезно построить график зависимости концентрации активного вещества от угла вращения плоскости поляризации стандартными растворами различной концентрации. При помощи этого графика в дальнейшем по полученному значению угла вращения определяют концентрацию раствора.

Поляриметрические измерения имеют широкое практическое применение. На основании определения знака и величины вращения плоскости поляризации можно судить о химическом строении и пространственной конфигурации оптически активных веществ, делать порой выводы о механизме реакции.

Поляриметрический метод давно уже является основным методом контроля в сахарной промышленности - по углу вращения плоскости поляризации света определяют содержание сахара в растворе.

Поляриметры и сахариметры

Устройство и принцип действия. Поляриметр СМ схематически изображен на рис. 191. Свет от источника 9 проходит последовательно через поляризационное устройство 7, поляриметрическую трубку 6, анализатор с устройством 5, поворачивающим плоскость поляризованного луча, и попадает в зрительную трубу 8.

Поляризационное устройство состоит из осветительной линзы, поляризатора и кварцевой пластинки, расположенной симметрично относительно поляризатора. Поляризатор и кварцевая пластинка находятся в определенном положении и крепятся жестко к оправе. Основной рабочей частью прибора является головка анализатора, состоящая из неподвижного лимба 1, вращающихся одновременно фрикциона 5 и двух нониусов 4, анализатора и зрительной трубы 8.

В трубу 8 при измерении вкладывают поляриметрическую трубку 6 с исследуемым веществом (раствором). Во избежание проникновения постороннего света, вырез в трубе закрывается вращающейся шторкой. Зрительная трубка служит для наблюдения тройного поля зрения и состоит из объектива и окуляра. Движением муфты 3 окуляр устанавливают на резкость изображения тройного поля зрения. В раковине окуляра находятся две лупы 2, которые позволяют, не меняя положение головы, отсчитывать угол вращения нониуса относительно шкалы лимба. На лимбе 1 нанесена градусная шкала от 0 до 360°. Внутри лимба на подвижной втулке, связанной с анализатором, нанесены два нониуса 4, расположенные диаметрально. Нониусы имеют по 20 делений ценой 0,05°. При больших углах вращения пользуются обоими нониусами и результатом измерения считают среднее значение из полученных отсчетов по первому и второму нониусам.

Поляриметрическая трубка 6 изготовляется из стекла. На трубке имеется выпуклость, необходимая для сбора пузырьков воздуха. На концах трубки укреплены металлические наконечники, на которые навертываются крышки, прижимающие покровные стекла. Между крышками и покровными стеклами имеются резиновые прокладки, предохраняющие от образования натяжений в стекле при завертывании крышек.

Осветитель 9 состоит из патрона, прикрепленного к кронштейну. Для регулирования освещения патрон можно перемещать вдоль кронштейна, а сам кронштейн перемещать по стойке вверх, вниз и вокруг нее. Источником света служит матовая лампа накаливания мощностью 25 Вт. Свет от лампочки проходит через специально подобранные светофильтр и поляроиды, в результате чего максимум спектрального распределения пучка соответствует желтой линии натрия.

Проведение измерений. Пустую поляриметрическую трубку вставляют в зрительную трубу, закрывают шторкой, включают осветитель в сеть и наблюдают в окуляр освещенность тройного поля. Если крайние поля неравномерно освещены, то перемещением осветителя добиваются их равномерного освещения. После установки осветителя определяют начальное положение анализатора. Перемещением муфты вдоль оси добиваются резкого изображения разделяющей линии тройного поля, наблюдаемого в окуляр. Плавно вращая анализатор с помощью фрикциона, добиваются равной затемненности изображения тройного поля (рис. 192), видимого в окуляр, которое определяет начальное положение анализатора. После установки на равную затемненность тройного поля через лупу с помощью нониуса лимба производят отсчет. Начальное положение не обязательно должно совпадать с нулевым делением градусной шкалы лимба.

Установку начального положения анализатора и отсчет делений градусной шкалы лимба следует повторить не менее 5 раз и показанием прибора считать среднее значение от полученных отсчетов.

После этого наполняют поляриметрическую трубку исследуемым раствором, для чего, отвинтив крышку с одного конца трубки, наполняют ее в вертикальном положении прозрачным раствором (мутный раствор фильтруют) до появления в верхнем конце трубки выпуклого мениска. Затем сбоку надвигают покровное стекло, накладывают резиновую прокладку и завинчивают крышку. При этом необходимо следить за тем, чтобы в трубке не оставалось пузырьков воздуха. Наружные стороны покровных стекол должны быть прозрачными и без следов жидкости, которая удаляется фильтровальной бумагой.

Наполненную поляризационную трубку вставляют в зрительную трубу и закрывают шторкой. Перемещением муфты 3 устанавливают на резкость разделяющие линии тройного поля. Затем, плавно вращая анализатор с помощью фрикциона 5, добиваются равномерной затемненности изображения тройного поля и производят отсчет.

Порядок отсчета следующий: определяют, на сколько полных градусов повернут нуль нониуса по отношению к лимбу, затем определяют число делений от нуля нониуса до штриха нониуса, совпадающего с градусным штрихом лимба, и умножают полученное число делений на 0,05. Полученный результат прибавляют к первому. Разность отсчетов, соответствующих фотометрическому равновесию поля с оптически активным веществом и без него, равна углу вращения плоскости поляризации данного раствора.

Установку на равную затемненность тройного поля и отсчет необходимо производить не менее 5 раз.

Если поляриметр имеет кожух для термостатирования поляризационной трубки, то перед началом испытания раствора через кожух в течение 10 мин пропускают воду из термостата при температуре 20 ±0,1°С. В случае отсутствия кожуха следует работать в помещении при 20 ±3°С. При определении удельного вращения индивидуальной жидкости ее выдерживают в термостате при 20 ±0,1 °С в течение 30 мин.

Сахариметр универсальный СУ-3. В сахариметрах, в отличие от поляриметров, для компенсации поворота плоскости поляризованного луча исследуемым раствором используют специальные кварцевые клинья, соответственно положению которых по шкале отсчитывают значение угла вращения.

Шкала сахариметров градуирована в градусах Международной сахарной шкалы (°S). Один градус сахарной шкалы соответствует 0,26 г сахарозы в 100 см3 раствора, если измерение производится в поляриметрической трубке длиной 200 мм при 20 °С. Сто градусов сахарной шкалы (100 °S) соответствуют 34,62° угловым.

Устройство и принцип действия. Оптическая схема универсального сахариметра СУ-3 изображена на рис. 193.

Свет от источника 1 проходит через матовое стекло 2, предназначенное для рассеивания света (вместо него в оптическую систему может быть введен светофильтр). Далее световой поток проходит конденсорную линзу 3, попадает в поляризатор 4 и выходит из него плоскополяризованным. За поляризатором стоят два защитных стекла 5 и 6, между которыми установлена поляриметрическая кювета с исследуемым раствором. Подвижный кварцевый клин 7, стеклянный контрклин 8 и неподвижный кварцевый клин 9 образуют кварцевый компенсатор, который компенсирует вращение плоскости поляризации. За анализатором 10 расположена зрительная трубка, состоящая из двухлинзового объектива 11 и окуляра 12, которая сфокусирована на выходную грань поляризатора 4. При помощи зрительной трубки можно рассмотреть в увеличенном виде линию раздела поля зрения прибора.

Свет от электролампы освещает также шкалу 15 и нониус 14 с помощью отражательной призмы 17 и защитного стекла 16, рассеивающего свет. Цифры и деления нониуса и шкалы рассматриваются в увеличенном виде под лупой 13, состоящей из двух линз. По нулевому делению нониуса фиксируют значение шкалы, соответствующее состоянию одинаковой освещенности обеих половин поля зрения.

Источником света является электролампа А-10 (15 Вт, 12 В), питаемая от сети переменного тока 220 В через понижающий трансформатор 12 В, встроенный в основание прибора.

Проведение измерений. Сахариметр должен быть установлен на столе в темном лабораторном помещении со стенами, окрашенными в черный цвет, что повышает чувствительность глаза наблюдателя.

Перед началом измерений прибор необходимо заземлить при помощи винта заземления, включить в сеть и установить на нуль. Установка на нуль производится при отсутствии в камере поляриметрической кюветы. Вращая рукоятку кремальерной передачи, устанавливают однородность освещения обеих половин поля зрения. При этом нулевые деления шкалы и нониуса должны совпадать (рис. 194). В противном случае перемещают нониус до совмещения его нулевого деления с нулевым делением шкалы. После проверки нулевой точки шкалы можно непосредственно приступить к измерениям.

В камеру прибора вкладывают поляриметрическую кювету с испытуемым раствором. При этом изменяется однородность освещения обеих половин поля зрения. Вращая рукоятку кремальерной передачи, уравнивают освещенность обеих половин поля зрения и производят отсчет показаний с точностью до 0,1 деления шкалы при помощи нониуса. Отсчет показаний повторяют 5 раз. Результатом считают среднее арифметическое пяти измерений.

Отсчет показаний при помощи нониуса поясняется рисунками. На рис. 195 слева показано положение шкалы и нониуса, соответствующее отсчету + 11,8 °S (нуль нониуса расположен правее нуля шкалы на 11 полных делений, и в правой части нониуса с одним из делений шкалы совмещается восьмое деление нониуса). На том же рисунке справа показано положение шкалы и нониуса, соответствующее отсчету -3,2 °S (нуль нониуса расположен левее нуля шкалы на три полных деления шкалы, и в левой части нониуса с одним из делений шкалы совмещается второе деление нониуса).

Для определения массового процента сахарозы в исследуемом растворе следует отсчитанные по шкале сахариметра градусы сахарной шкалы умножить на переводной коэффициент 0,260 и разделить на плотность исследуемого, раствора.

Сахариметр СУ-3 комплектуется поляриметрическими трубками длиной 100, 200 и 300 мм. Трубки длиной 100 мм применяют для окрашенных растворов и при расчетах результатов анализа значение, полученное по шкале прибора, увеличивают в два раза. Трубки длиной 400 мм применяют при исследовании растворов малой концентрации и при расчете значения по шкале прибора уменьшают в два раза.

К прибору для проверки правильности показаний прилагается контрольная трубка с двумя нормальными кварцевыми пластинками на -40 и +100 °S.

Точность показаний сахариметра с помощью контрольной трубки необходимо проверять при установившейся температуре 20 °С. В случае проверки прибора при температуре, отличающейся от 20 °С, производят пересчет по формуле:

где а20 и at - вращательная способность кварцевой пластинки при 20 °С и температуре измерения t, соответственно, °S.

Расхождение в показаниях проверяемого прибора и контрольной трубки при выверенной нулевой точке является погрешностью данного прибора.

Уход за приборами и их хранение

После окончания работы приборы и принадлежности к ним следует тщательно протереть мягкой неворсистой салфеткой; на приборы надеть чехол, а принадлежности уложить в футляр.

Хранить приборы следует в сухом и чистом помещении при температуре воздуха 10-35 °С и относительной влажности 30-80%. В воздухе помещения не должно быть вредных примесей.

Не допускается разбирать приборы и чистить оптические детали, расположенные внутри приборов.

Защитные стекла чистят при помощи деревянной палочки с намотанным на нее тонким слоем гигроскопической ваты, соблюдая осторожность, чтобы не поцарапать полированные поверхности стекол.

Новое на сайте

>

Самое популярное