Домой Психосоматика Матрица перехода однородной цепи маркова имеет вид. Области применения цепей Маркова

Матрица перехода однородной цепи маркова имеет вид. Области применения цепей Маркова

Цепи Маркова

Введение

§ 1. Цепь Маркова

§ 2. Однородная цепь Маркова. Переходные вероятности. Матрица перехода

§3. Равенство Маркова

§4. Стационарное распределение. Теорема о предельных вероятностях

§5. Доказательство теоремы о предельных вероятностях в цепи Маркова

§6. Области применения цепей Маркова

Заключение

Список использованной литературы

Введение

Тема нашей курсовой работы цепи Маркова. Цепи Маркова названы так в честь выдающегося русского математика, Андрея Андреевича Маркова, который много занимался случайными процессами и внес большой вклад в развитие этой области. В последнее время можно услышать о применении цепей Маркова в самых разных областях: современных веб-технологиях, при анализе литературных текстов или даже при разработке тактики игры футбольной команды. У тех, кто не знает что такое цепи Маркова, может возникнуть ощущение, что это что-то очень сложное и почти недоступное для понимания.

Нет, все как раз наоборот. Цепь Маркова это один из самых простых случаев последовательности случайных событий. Но, несмотря на свою простоту, она часто может быть полезной даже при описании довольно сложных явлений. Цепью Маркова называют такую последовательность случайных событий, в которой вероятность каждого события зависит только от предыдущего, но не зависит от более ранних событий.

Прежде чем углубиться, нужно рассмотреть несколько вспомогательных вопросов, которые общеизвестны, но совершенно необходимы для дальнейшего изложения.

Задача моей курсовой работы – более подробно изучить приложения цепей Маркова, постановку задачи и проблемы Маркова.

§1. Цепь Маркова

Представим, что производится последовательность испытаний.

Определение. Цепью Маркова называют последовательность испытаний, в каждом из которых появляется одно и только одно из

несовместных событий полной группы, причем условная вероятность того, что в -м испытании наступит событие , при условии, что в -м испытании наступило событие , не зависит от результатов предшествующих испытаний.

Например, если последовательность испытаний образует цепь Маркова и полная группа состоит из четырех несовместных событий

, причем известно, что в шестом испытании появилось событие , то условная вероятность того, что в седьмом испытании наступит событие , не зависит от того, какие события появились в первом, втором, …, пятом испытаниях.

Заметим, что независимые испытания являются частным случаем цепи Маркова. Действительно, если испытания независимы, то появление некоторого определенного события в любом испытании не зависит от результатов ранее произведенных испытаний. Отсюда следует, что понятие цепи Маркова является обобщением понятия независимых испытаний.

Часто при изложении теории цепей Маркова придерживаются иной терминология и говорят о некоторой физической системе

, которая в каждый момент времени находится в одном из состояний: , и меняет свое состояние только в отдельные моменты времени то есть система переходит из одного состояния в другое (например из в ). Для цепей Маркова вероятность перейти в какое-либо состояние в момент зависит только от того, в каком состоянии система находилась в момент , и не изменяется от того, что становятся известными ее состояния в более ранние моменты. Так же в частности, после испытания система может остаться в том же состоянии («перейти» из состояния в состояние ).

Для иллюстрации рассмотрим пример.

Пример 1. Представим, что частица, находящаяся на прямой, движется по этой прямой под влиянием случайных толчков, происходящих в моменты

. Частица может находиться в точках с целочисленными координатами: ; в точках и находятся отражающие стенки. Каждый толчок перемещает частицу вправо с вероятностью и влево с вероятностью , если только частица не находится у стенки. Если же частица находится у стенки, то любой толчок переводит ее на единицу внутрь промежутка между стенками. Здесь мы видим, что этот пример блуждания частицы представляет собой типичную цепь Маркова.

Таким образом, события называют состояниями системы, а испытания – изменениями ее состояний.

Дадим теперь определение цепи Маркова, используя новую терминологию.

Цепью Маркова с дискретным временем называют цепь, изменение состояний которой происходит в определенные фиксированные моменты времени.

Цепью Маркова с непрерывным временем называют цепь, изменение состояний которой происходит в любые случайные возможные моменты времени.

§2. Однородная цепь Маркова. Переходные вероятности. Матрица перехода

Определение. Однородной называют цепь Маркова, если условная вероятность

(переход из состояния в состоянии ) не зависит от номера испытания. Поэтому вместо пишут просто .

Пример 1. Случайное блуждание. Пусть на прямой

в точке с целочисленной координатой находится материальная частица. В определенные моменты времени частица испытывает толчки. Под действием толчка частица с вероятностью смещается на единицу вправо и с вероятностью – на единицу влево. Ясно, что положение (координата) частицы после толчка зависит от того, где находилась частица после непосредственно предшествующего толчка, и не зависит от того, как она двигалась под действием остальных предшествующих толчков.

Таким образом, случайное блуждание − пример однородной цепи Маркова с дискретным временем.

Марковский процесс - протекающий в системе случайный процесс, который обладает свойством: для каждого момента времени t 0 вероятность любого состояния системы в будущем (при t>t 0) зависит только от ее состояния в настоящем (при t= t 0) и не зависит от того, когда и каким образом система пришла в это состояние (т.е. как развивался процесс в прошлом).

На практике часто встречаются случайные процессы, которые с той или иной степенью приближения можно считать Марковскими.

Любой марковский процесс описывают с помощью вероятностей состояний и переходных вероятностей.

Вероятности состояний P k (t) марковского процесса – это вероятности того, что случайный процесс (система) в момент времени t находится в состоянии S k:

Переходные вероятности марковского процесса – это вероятности перехода процесса (системы) из одного состояния в другое:

Марковский процесс называется однородным , если вероятности перехода за единицу времени не зависят от того, где на оси времени происходит переход.

Наиболее простым процессом является цепь Маркова – марковский случайный процесс с дискретным временем и дискретным конечным множеством состояний.

При анализе цепи Маркова составляют граф состояний , на котором отмечают все состояния цепи (системы) и ненулевые вероятности за один шаг.

Марковскую цепь можно представить себе так, как будто точка, изображающая систему, случайным образом перемещается по графу состояний, перетаскивая за один шаг из состояния в состояние или задерживаясь на несколько шагов в одном и том же состоянии.

Переходные вероятности цепи Маркова за один шаг записывают в виде матрицы P=||P ij ||, которую называют матрицей вероятностей перехода или просто переходной матрицей.

Пример: множество состояний студентов специальности следующие:

S 1 – первокурсник;

S 2 – второкурсник …;

S 5 – студент 5 курса;

S 6 –специалист, окончивший вуз;

S 7 – человек, обучавшийся в вузе, но не окончивший его.

Из состояния S 1 за год возможны переходы в состояние S 2 с вероятностью r 1 ; S 1 с вероятностью q 1 и S 7 с вероятностью p 1 , причем:

r 1 +q 1 +p 1 =1.

Построим граф состояний данной цепи Маркова и разметим его переходными вероятностями (отличными от нуля).

Составим матрицу вероятностей переходов:

Переходные матрицы обладают свойством:

Все их элементы неотрицательны;

Их суммы по строкам равны единице.

Матрицы с таким свойством называют стохастическими.

Матрицы переходов позволяют вычислить вероятность любой траектории цепи Маркова с помощью теоремы умножения вероятностей.

Для однородных цепей Маркова матрицы переходов не зависят от времени.



При изучении цепей Маркова наибольший интерес представляют:

Вероятности перехода за m шагов;

Распределение по состояниям на шаге m→∞;

Среднее время пребывания в определенном состоянии;

Среднее время возвращения в это состояние.

Рассмотрим однородную цепь Маркова с n состояниями. Для получения вероятности перехода из состояния S i в состояние S j за m шагов в соответствии с формулой полной вероятности следует просуммировать произведения вероятности перехода из состояния Siв промежуточное состояние Sk за l шагов на вероятность перехода из Sk в Sj за оставшиеся m-l шагов, т.е.

Это соотношение для всех i=1, …, n; j=1, …,n можно представить как произведение матриц:

P(m)=P(l)*P(m-l).

Таким образом, имеем:

P(2)=P(1)*P(1)=P 2

P(3)=P(2)*P(1)=P(1)*P(2)=P 3 и т.д.

P(m)=P(m-1)*P(1)=P(1)*P(M-1)=P m ,

что дает возможность найти вероятности перехода между состояниями за любое число шагов, зная матрицу переходов за один шаг, а именно P ij (m) – элемент матрицы P(m) есть вероятность перейти из состояния S i в состояние S j за m шагов.

Пример : Погода в некотором регионе через длительные периоды времени становится то дождливой, то сухой. Если идет дождь, то с вероятностью 0,7 он будет идти на следующий день; если в какой-то день сухая погода, то с вероятностью 0,6 она сохраниться и на следующий день. Известно, что в среду погода была дождливая. Какова вероятность того, что она будет дождливой в ближайшую пятницу?

Запишем все состояния цепи Маркова в данной задаче: Д – дождливая погода, С – сухая погода.

Построим граф состояний:

Ответ: р 11 =р(Д пят |Д ср) =0,61.

Пределы вероятностей р 1 (m), р 2 (m),…, р n (m) при m→∞, если они существуют, называются предельными вероятностями состояний .

Можно доказать следующую теорему: если в цепи Маркова из +каждого состояния можно перейти (за то или иное число шагов) в каждое другое, то предельные вероятности состояний существуют и не зависят от начального состояния системы.

Таким образом, при m→∞ в системе устанавливается некоторый предельный стационарный режим, при котором каждое из состояний осуществляется с некоторой постоянной вероятностью.

Вектор р, составленный из предельных вероятностей, должен удовлетворять соотношению: р=p*P.

Среднее время пребывания в состоянии S i за время T равно p i *T, где p i - предельная вероятность состояния S i . Среднее время возвращения в состояние S i равно .

Пример.

Для многих экономических задач необходимо знать чередование годов с определенными значениями годовых стоков рек. Конечно, это чередование не может быть определено абсолютно точно. Для определения вероятностей чередования (перехода) разделим стоки, введя четыре градации (состояния системы): первую (самый низкий сток), вторую, третью, четвертую (самый высокий сток). Будем для определенности считать, что за первой градацией никогда не следует четвертая, а за четвертой – первая из-за накопления влаги (в земле, водохранилище и т.д.). Наблюдения показали, что в некоторой области остальные переходы возможны, и:

а) из первой градации можно переходить в каждую из средних вдвое чаще, чем опять в первую, т.е.

p 11 =0,2; p 12 =0,4; p 13 =0,4; p 14 =0;

б) из четвертой градации переходы во вторую и третью градации бывают в четыре и пять раз чаще, чем возвращениеекак д во вторую, т.е.

твертую, т.е.

в четвертую, т.е.

p 41 =0; p 42 =0,4; p 43 =0,5; p 44 =0,1;

в) из второй в другие градации могут быть только реже: в первую - в два раза, в третью на 25%, в четвертую - в четыре раза реже, чем переход во вторую, т.е.

p 21 =0,2;p 22 =0,4; p 23 =0,3; p 24 =0,1;

г) из третьей градации переход во вторую градацию столь же вероятен, как возвращение в третью градацию, а переходы в первую и четвертую градации бывают в четыре раза реже, т.е.

p 31 =0,1; p 32 =0,4; p 33 =0,4; p 34 =0,1;

Построим граф:

Составим матрицу вероятностей перехода:

Найдем среднее время между засухами и полноводными годами. Для этого нужно найти предельное распределение. Оно существует, т.к. условие теоремы выполняется (матрица Р 2 не содержит нулевых элементов, т.е. за два шага можно перейти из любого состояния системы в любое другое).

Откуда p 4 =0.08; p 3 =; p 2 =; p 1 =0.15

Периодичность возвращения в состояние S i равна .

Следовательно, периодичность засушливых лет в среднем равна 6.85, т.е. 6-7 лет, а дождливых 12 лет.

по себе, а отчасти рассматриваем мы ее из-за того, что ее изложение не требует введения большого количества новых терминов.

Рассмотрим задачу об осле, стоящем точно между двумя копнами: соломы ржи и соломы пшеницы (рис. 10.5).

Осел стоит между двумя копнами: "Рожь" и "Пшеница" (рис. 10.5). Каждую минуту он либо передвигается на десять метров в сторону первой копны (с вероятностью ), либо в сторону второй копны (с вероятностью ), либо остается там, где стоял (с вероятностью ); такое поведение называется одномерным случайным блужданием. Будем предполагать, что обе копны являются "поглощающими" в том смысле, что если осел подойдет к одной из копен, то он там и останется. Зная расстояние между двумя копнами и начальное положение осла, можно поставить несколько вопросов, например: у какой копны он очутится с большей вероятностью и какое наиболее вероятное время ему понадобится, чтобы попасть туда?


Рис. 10.5.

Чтобы исследовать эту задачу подробнее, предположим, что расстояние между копнами равно пятидесяти метрам и что наш осел находится в двадцати метрах от копны "Пшеницы". Если места, где можно остановиться, обозначить через ( - сами копны), то его начальное положение можно задать вектором -я компонента которого равна вероятности того, что он первоначально находится в . Далее, по прошествии одной минуты вероятности его местоположения описываются вектором , а через две минуты - вектором . Ясно, что непосредственное вычисление вероятности его нахождения в заданном месте по прошествии минут становится затруднительным. Оказалось, что удобнее всего ввести для этого матрицу перехода .

Пусть - вероятность того, что он переместится из в за одну минуту. Например, и . Эти вероятности называются вероятностями перехода , а -матрицу называют матрицей перехода . Заметим, что каждый элемент матрицы неотрицателен и что сумма элементов любой из строк равна единице. Из всего этого следует, что - начальный вектор -строка, определенный выше, местоположение осла по прошествии одной минуты описывается вектором-строкой , а после минут - вектором . Другими словами, -я компонента вектора определяет вероятность того, что по истечении минут осел оказался в .

Можно обобщить эти понятия. Назовем вектором вероятностей вектор -строку, все компоненты которого неотрицательны и дают в сумме единицу. Тогда матрица перехода определяется как квадратная матрица , в которой каждая строка является вектором вероятностей. Теперь можно определить цепь Маркова (или просто цепь) как пару , где есть - матрица перехода , а есть - вектор -строка. Если каждый элемент из рассматривать как вероятность перехода из позиции в позицию , а - как начальный вектор вероятностей, то придем к классическому понятию дискретной стационарной цепи Маркова , которое можно найти в книгах по теории вероятностей (см. Феллер В. Введение в теорию вероятностей и ее приложения. Т.1. М.: Мир. 1967) Позиция обычно называется состоянием цепи . Опишем различные способы их классификации.

Нас будет интересовать следующее: можно ли попасть из одного данного состояния в другое, и если да, то за какое наименьшее время. Например, в задаче об осле из в можно попасть за три минуты и вообще нельзя попасть из в . Следовательно, в основном мы будем интересоваться не самими вероятностями , а тем, положительны они или нет. Тогда появляется надежда, что все эти данные удастся представить в виде орграфа , вершины которого соответствуют состояниям, а дуги указывают на то, можно ли перейти из одного состояния в другое за одну минуту. Более точно, если каждое состояние представлено соответствующей ему вершиной).

Цепи Маркова служат хорошим введением в теорию случайных процессов, т.е. теорию простых последовательностей семейств случайных величин, обычно зависящих от параметра, который в большинстве приложений играет роль времени. Она предназначена, главным образом, для полного описания как долговременного, так и локального поведения процесса. Приведем некоторые наиболее изученные в этом плане вопросы.

Броуновское движение и его обобщения - диффузионные процессы и процессы с независимыми приращениями. Теория случайных процессов способствовала углублению связи между теорией вероятностей, теорией операторов и теорией дифференциальных уравнений, что, помимо прочего, имело важное значение для физики и других приложений. К числу приложений относятся процессы, представляющие интерес для актуарной (страховой) математики, теории массового обслуживания, генетики, регулирования дорожного движения, теории электрических цепей, а также теории учета и накопления товаров.

Мартингалы. Эти процессы сохраняют достаточно свойств цепей Маркова, чтобы для них оставались в силе важные эргодические теоремы. От цепей Маркова мартингалы отличаются тем, что когда текущее состояние известно, только математическое ожидание будущего, но необязательно само распределение вероятностей, не зависит от прошлого. Помимо того, что теория мартингалов представляет собой важный инструмент для исследования, она обогатила новыми предельными теоремами теорию случайных процессов, возникающих в статистике, теории деления атомного ядра, генетике и теории информации.

Стационарные процессы. Самая старая из известных эргодических теорем, как отмечалось выше, может быть интерпретирована как результат, описывающий предельное поведение стационарного случайного процесса. Такой процесс обладает тем свойством, что все вероятностные законы, которым он удовлетворяет, остаются инвариантными относительно сдвигов по времени. Эргодическую теорему, впервые сформулированную физиками в качестве гипотезы, можно представить как утверждение о том, что при определенных условиях среднее по ансамблю совпадает со средним по времени. Это означает, что одну и ту же информацию можно получить из долговременного наблюдения за системой и из одновременного (и одномоментного) наблюдения многих независимых копий той же самой системы. Закон больших чисел есть не что иное, как частный случай эргодической теоремы Биркгофа. Интерполяция и предсказание поведения стационарных гауссовских процессов, понимаемых в широком смысле, служат важным обобщением классической теории наименьших квадратов. Теория стационарных процессов - необходимое орудие исследования во многих областях, например, в теории связи, которая занимается изучением и созданием систем, передающих сообщения при наличии шума или случайных помех.

Марковские процессы (процессы без последействия) играют огромную роль в моделировании систем массового обслуживания (СМО), а также в моделировании и выборе стратегии управления социально-экономическими процессами, происходящими в обществе. В качестве примера рассмотрим управляемые цепи Маркова.

Новое на сайте

>

Самое популярное