Домой Игры Морфо биологические свойства микобактерий туберкулеза. Санитарная микробиология

Морфо биологические свойства микобактерий туберкулеза. Санитарная микробиология

  • 1.Медицинская микробиология. Предмет, задачи, методы, связь с другими науками. Значение медицинской микробиологии в практической деятельности врача.
  • 3. Микроорганизмы и их положение в системе живого мира. Номенклатура бактерий. Принципы классификации.
  • 6. Рост и размножение бактерий. Фазы размножения.
  • 7.Питание бактерий. Типы и механизмы питания бактерий. Аутотрофы и гетеротрофы. Факторы роста. Прототрофы и ауксотрофы.
  • 8.Питательные среды. Искусственные питательные среды: простые, сложные, общего назначения, элективные, дифференциально-диагностические.
  • 9. Бактериологический метод изучения микроорганизмов. Принципы и методы выделения чистых культур аэробных и анаэробных бактерий. Характер роста микроорганизмов на жидких и плотных питательных средах.
  • 13. Спирохеты, их морфология и биологические свойства. Патогенные для человека виды.
  • 14. Риккетсии, их морфология и биологические свойства. Роль риккетсий в инфекционной патологии.
  • 15. Морфология и ультраструктура микоплазм. Виды, патогенные для человека.
  • 16. Хламидии, морфология и другие биологические свойства. Роль в патологии.
  • 17. Грибы, их морфология и особенности биологии. Принципы систематики. Заболевания, вызываемые грибами у человека.
  • 20. Взаимодействие вируса с клеткой. Фазы жизненного цикла. Понятие о персистенции вирусов и персистентных инфекциях.
  • 21. Принципы и методы лабораторной диагностики вирусных инфекций. Методы культивирования вирусов.
  • 24. Строение генома бактерий. Подвижные генетические элементы, их роль в эволюции бактерий. Понятие о генотипе и фенотипе. Виды изменчивости: фенотипическая и генотипическая.
  • 25. Плазмиды бактерий, их функции и свойства. Использование плазмид в генной инженерии.
  • 26. Генетические рекомбинации: трансформация, трансдукция, конъюгация.
  • 27. Генная инженерия. Использование методов генной инженерии для получения диагностических, профилактических и лечебных препаратов.
  • 28.Распространение микробов в природе. Микрофлора почвы, воды, воздуха, методы ее изучения. Характеристика санитарно-показательных микроорганизмов.
  • 29. Нормальная микрофлора тела человека, ее роль в физиологических процессах и патологии. Понятие о дисбактериозе. Препараты для восстановления нормальной микрофлоры: эубиотики (пробиотики).
  • 31. Формы проявления инфекции. Персистенция бактерий и вирусов. Понятие о рецидиве, реинфекции, суперинфекции.
  • 32. Динамика развития инфекционного процесса, его периоды.
  • 33. Роль микроорганизма в инфекционном процессе. Патогенность и вирулентность. Единицы измерения вирулентности. Понятие о факторах патогенности.
  • 34. Классификация факторов патогенности по о.В. Бухарину. Характеристика факторов патогенности.
  • 35. Понятие об иммунитете. Виды иммунитета.
  • 36. Неспецифические защитные факторы организма против инфекции. Роль и.И. Мечникова в формировании клеточной теории иммунитета.
  • 37. Антигены: определение, основные свойства. Антигены бактериальной клетки. Практическое использование антигенов бактерий.
  • 38. Структура и функции иммунной системы. Кооперация иммунокомпетентных клеток. Формы иммунного ответа.
  • 39. Иммуноглобулины, их молекулярная структура и свойства. Классы иммуноглобулинов. Первичный и вторичный иммунный ответ. :
  • 40. Классификация гиперчувствительности по Джейлу и Кумбсу. Стадии аллергической реакции.
  • 41. Гиперчувствительность немедленного типа. Механизмы возникновения, клиническая значимость.
  • 42. Анафилактический шок и сывороточная болезнь. Причины возникновения. Механизм. Их предупреждение.
  • 43. Гиперчувствительность замедленного типа. Кожно-аллергические пробы и их использование в диагностике некоторых инфекционных заболеваний.
  • 44. Особенности противовирусного, противогрибкового, противоопухолевого, трансплантационного иммунитета.
  • 45. Понятие о клинической иммунологии. Иммунный статус человека и факторы, влияющие на него. Оценка иммунного статуса: основные показатели и методы их определения.
  • 46. Первичные и вторичные иммунодефициты.
  • 47. Взаимодействие антигена с антителом in vitro. Теория сетевых структур.
  • 48. Реакция агглютинации. Компоненты, механизм, способы постановки. Применение.
  • 49. Реакция Кумбса. Механизм. Компоненты. Применение.
  • 50. Реакция пассивной гемагглютинации. Механизм. Компоненты. Применение.
  • 51. Реакция торможения гемагглютинации. Механизм. Компоненты. Применение.
  • 53. Реакция связывания комплемента. Механизм. Компоненты. Применение.
  • 54. Реакция нейтрализации токсина антитоксином, нейтрализации вирусов в культуре клеток и в организме лабораторных животных. Механизм. Компоненты. Способы постановки. Применение.
  • 55. Реакция иммунофлюоресценции. Механизм. Компоненты. Применение.
  • 56. Иммуноферментный анализ. Иммуноблотинг. Механизмы. Компоненты. Применение.
  • 57. Вакцины. Определение. Современная классификация вакцин. Требования, предъявляемые к вакцинным препаратам.
  • 59. Вакцинопрофилактика. Вакцины из убитых бактерий и вирусов. Принципы приготовления. Примеры убитых вакцин. Ассоциированные вакцины. Преимущества и недостатки убитых вакцин.
  • 60. Молекулярные вакцины: анатоксины. Получение. Использование анатоксинов для профилактики инфекционных заболеваний. Примеры вакцин.
  • 61. Генно-инженерные вакцины. Получение. Применение. Преимущества и недостатки.
  • 62. Вакцинотерапия. Понятие о лечебных вакцинах. Получение. Применение. Механизм действия.
  • 63. Диагностические антигенные препараты: диагностикумы, аллергены, токсины. Получение. Применение.
  • 64. Сыворотки. Определение. Современная классификация сывороток. Требования, предъявляемые к сывороточным препаратам.
  • 65. Антительные препараты – сыворотки, применяемые для лечения и профилактики инфекционных заболеваний. Способы получения. Осложнения при применении и их предупреждение.
  • 66. Антительные препараты – сыворотки, применяемые для диагностики инфекционных заболеваний. Способы получения. Применение.
  • 67. Понятие об иммуномодуляторах. Принцип действия. Применение.
  • 68. Интерфероны. Природа, способы получения. Применение. № 99 Интерфероны. Природа, способы получения. Применение.
  • 69. Химиотерапевтические препараты. Понятие о химиотерапевтическом индексе. Основные группы химиотерапевтических препаратов, механизм их антибактериального действия.
  • 71. Лекарственная устойчивость микроорганизмов и механизм ее возникновения. Понятие о госпитальных штаммах микроорганизмов. Пути преодоления лекарственной устойчивости.
  • 72. Методы микробиологической диагностики инфекционных болезней.
  • 73. Возбудители брюшного тифа и паратифов. Таксономия. Характеристика. Микробиологическая диагностика. Специфическая профилактика и лечение.
  • 74. Возбудители эшерихиозов. Таксономия. Характеристика. Роль кишечной палочки в норме и патологии. Микробиологическая диагностика эшерихиозов.
  • 75. Возбудители шигеллеза. Таксономия. Характеристика. Микробиологическая диагностика. Специфическая профилактика и лечение.
  • 76. Возбудители сальмонеллезов. Таксономия. Характеристи­ка. Микробиологический диагноз сальмонеллезов. Лечение.
  • 77. Возбудители холеры. Таксономия. Характеристика. Микробиологическая диагностика. Специфическая профи­лактика и лечение.
  • 78.Стафилококки. Таксономия. Характеристика. Микроби­ологическая диагностика заболеваний, вызываемых ста­филококками. Специфическая профилактика и лечение.
  • 79. Стрептококки. Таксономия. Характеристика. Микро­биологическая диагностика стрептококковых инфек­ций. Лечение.
  • 80. Менингококки. Таксономия. Характеристика. Микро­биологическая диагностика стрептококковых инфек­ций. Лечение.
  • 81. Гонококки. Таксономия. Характеристика. Микробио­логическая диагностика гонореи. Лечение.
  • 82. Возбудитель туляремии. Таксономия. Характеристи­ка. Микробиологическая диагностика. Специфическая про­филактика и лечение.
  • 83. Возбудитель сибирской язвы. Таксономия и характе­ристика. Микробиологическая диагностика. Специфичес­кая профилактика и лечение.
  • 84. Возбудитель бруцеллеза. Таксономия и характерис­тика. Микробиологическая диагностика. Специфическая профилактика и лечение.
  • 85. Возбудитель чумы. Таксономия и характеристика. Микробиологическая диагностика. Специфическая профи­лактика и лечение.
  • 86. Возбудители анаэробной газовой инфекции. Таксономия и характеристика. Микробиологическая диагностика. Специфическая профилактика и лечение.
  • 87. Возбудители ботулизма. Таксономия и характеристика Микробиологическая диагностика. Специфическая профилактика и лечение.
  • 88. Возбудитель столбняка. Таксономия и характеристика. Микробиологическая диагностика и лечение.
  • 89. Неспорообразующие анаэробы. Таксономия. Характе­ристика. Микробиологическая диагностика и лечение.
  • 90. Возбудитель дифтерии. Таксономия и характеристика. Условно – патогенные коринебактерии. Микробиологическая диагностика. Выявления анатоксического иммунитета. Специфическая профилактика и лечение.
  • 91. Возбудители коклюша и паракоклюша. Таксономия и характеристика. Микробиологическая диагностика. Специфическая профилактика и лечение.
  • 92. Возбудители туберкулеза. Таксономия и характеристика. Условно – патогенные микобактерии. Микробиологическая диагностика туберкулеза.
  • 93. Актиномицеты. Таксономия. Характеристика. Мик­робиологическая диагностика. Лечение.
  • 95. Возбудитель хламидиозов. Таксономия. Характеристи­ка. Микробиологическая диагностика. Лечение.
  • 96.Возбудитель сифилиса. Таксономия. Характеристика. Микробиологическая диагностика. Лечение.
  • 97. Возбудитель лептоспирозов. Таксономия. Характери­стика. Микробиологическая диагностика. Специфическая профилактика. Лечение.
  • 98. Возбудитель боррелиозов. Таксономия. Характерис­тика. Микробиологическая диагностика.
  • 99. Клиническая микробиология, ее задачи. Вби, особенности причины возникновления.Роль условно – патогенных микроорганизмов в возникновении внутрибольничных инфекций.
  • 100. Классификация грибов. Характеристика. Роль в патологии. Лабораторная диагностика. Лечение.
  • 101. Классификация микозов. Поверхностные и глубокие микозы. Дрожжеподобные грибы рода кандида. Роль в патологии человека.
  • 102. Возбудитель гриппа. Таксономия. Характеристика. Лабораторная диагностика. Специфическая профилакти­ка и лечение.
  • 103. Возбудитель полиомиелита. Таксономия и характери­стика. Лабораторная диагностика. Специфическая про­филактика.
  • 104. Возбудители гепатитов а и е. Таксономия. Характе­ристика. Лабораторная диагностика. Специфическая про­филактика.
  • 105. Возбудитель клещевого энцефалита. Таксономия. Ха­рактеристика. Лабораторная диагностика. Специфичес­кая профилактика.
  • 106. Возбудитель бешенства. Таксономия. Характеристи­ка. Лабораторная диагностика. Специфическая профи­лактика.
  • 107. Возбудитель краснухи. Таксономия. Характеристика. Лабораторная диагностика. Специфическая профилак­тика.
  • 108. Вирус кори. Таксономия. Характеристика. Лабора­торная диагностика. Специфическая профилактика.
  • Болезнь вызывается 3 видами микобактерий: Mycobacterium tuberculosis - человеческий вид, Mycobacterium bovis - бычий вид, Mycobacterium africanum - промежуточный вид.

    Таксономия. отдел Firmicutes, род Mycobacterium. Родовой признак - кислото, спирто- и щелочеустойчивость.

    Морфология, тинкториальные и культуральные свойства . Выражен­ный полиморфизм. Они имеют форму длинных, тонких (М.tuberculosis) или коротких, толстых (M.bovis), прямых или слегка изогнутых палочек с гомогенной или зернистой цитоплазмой; грамположительны, неподвижны, спор не образуют, имеют микрокапсулу. Для их выявления применяют окраску по Цилю-Нильсену. Микобактерии могут образовывать различ­ные морфовары (L-формы бак­терий), которые длительно персистируют в организме и индуцируют противотуберкулезный иммунитет.

    Возбудители туберкулеза характеризуются медленным ростом, требовательны к питательным средам. М. tuberculosis относятся к аэробам, глицеринзависимы. На жидких питательных средах дают рост в виде сухой пленки кремового цвета. При внутриклеточном развитии, а также при росте на жидких средах выявляется характерный корд-фактор, благодаря которому микобактерии растут в виде «жгутов». На плотных средах рост в виде кремового, сухого чешуйчатого налета с неровными краями (R-формы). По мере роста колонии приоб­ретают бородавчатый вид. Под влиянием антибактериальных средств возбудители изменяют культуральные свойства, образуя гладкие колонии (S-формы). M . bovis -растут на средах медленнее, чем M.tuberculosis, пируватзависимы; на плотных питательных средах образуют мелкие шаровидные, серовато-белые колонии (S-формы).

    Ферментная активность. Высокая каталазная и пероксидазная активность. Каталаза термолабильна. М.tuberculosis в большом количестве синтезирует ниацин (никотиновая кислота), который накапливается в культуральной среде и определяется в пробе Конно.

    Химический состав: Основными химическими компо­нентами микобактерии являются белки, углеводы и липиды. Липиды (фосфатиды, корд-фактор, туберкулостеариновая кислота) - обусловливают устойчивость к кислотам, спиртам и щелочам, препятствуют фагоцитозу, на­рушают проницаемость лизосом, вызывают развитие специфи­ческих гранулем, разрушают митохондрии клеток. Микобактерии индуцируют развитие реакции гиперчувствительности IV типа (туберкулин).

    Факторы патогенности: о сновные патогенные свойства обусловлены прямым или иммунологически опосредованным действием липидов и липидсодержащих структур.

    Антигенная структура: В ходе забо­левания к антигенам образуются антипротеиновые, антифосфатидные и антиполисахаридные антитела, свидетельствующие об активности процесса.

    Резистентность. Наличие липидов - устойчивы к действию небла­гоприятных факторов. Высушивание мало влияет. Погибают при кипячении.

    Эпидемиология . Основной источник инфек­ции - человек, больной туберкулезом органов дыхания, выделяющий микробы в окружающую среду с мокротой. Основные пути передачи инфекции - воздушно-капельный и воздушно-пылевой.

    Патогенез и клиника. Возникновению заболевания способствуют различные иммунодефициты. Инкубационный период составляет от 3-8 нед. до 1 года и более. В развитии болезни выделяют первичный, диссеминированный и вторичный туберкулез, который является результатом эндогенной реактивации старых очагов. В зоне проникновения микобак­терий возникает первичный туберкулезный комплекс, со­стоящий из воспалительного очага, пораженных регионарных лимфатичес­ких узлов и измененных лимфатических сосудов между ними. Диссеминация микробов может происходить бронхо-, лимфо- и гематогенно. В основе специфического воспаления при туберкулезе лежит реакция гиперчувствительности IV типа, что препятствует рас­пространению микробов по организму.

    Различают 3 клинические формы: первичная туберкулезная интоксикация у детей и подростков, туберкулез органов дыха­ния, туберкулез других органов и систем. Основными симптомами легочного туберкулеза являются субфебрильная температура тела, кашель с мокротой, кровохар­канье, одышка.

    Иммунитет. Противотуберкулезный иммунитет нестериль­ный инфекционный, обусловлен наличием в организме L-форм микобактерий.

    Микробиологическая диагностика. Диагностику проводят с помощью бактериоскопии, бактериологического исследования и постановки биологической пробы. Все методы направлены на обнаружение микобактерий в патологическом материале: мокроте, промывных водах бронхов, плевральной и церебральной жидкостях, кусочках тканей из органов.

    К обязательным методам обследования относится бактериоскопическое, бактериологическое исследование, биологическая проба, туберкулинодиагностика, основанная на определении повышен­ной чувствительности организма к туберкулину. Чаще для вы­явления инфицирования и аллергических реакций ставят внутрикожную пробу Манту с очищенным туберкулином в стандартном разведе­нии. Для экспресс-диагностики туберкулеза применяют РИФ(реакция иммунофлюоресенции) и ПЦР(полимеразная цепная реакция). Для массового обследования населения, раннего выявле­ния активных форм туберкулеза можно использовать ИФА(иммуноферментный анализ), на­правленный на обнаружение специфических антител.

    Лечение. По степени эффективности противотуберкулезные препараты делят на группы: группа А - изониазид, рифампицин; группа В - пиразинамид, стрептомицин, флоримицин; группа С – ПАСК, тиоацетозон. При наличии сопутствую­щей микрофлоры и множественной лекарственной устойчивости микобактерий применяют фторхинолоны и альдозон.

    Профилактика. Специфическую профилактику проводят путем введения живой вакцины - BCG(БЦЖ), внутрикожно на 2-5-й день после рождения ребенка. Проводят последующие ревакцина­ции. Предва­рительно ставят пробу Манту для выявления туберкулиннегативных лиц, подлежащих ревакцинации.

    Условно-патогенные микобактерии: семейство Mycobacteriaceae, род Mycobacterium. Сходны по биологич. свойствам, но устойчивы к противотуберкулезным препаратам.

    1 группа: медленнорастущие фотохромогенные M.kansassi, M.marinum – поражения кожи, лимфадениты, инфекции мочеполового тракта.

    2 группа: медленнорастущие скотохромогенные: M.scrofulaceum, M.gordonae.

    3 группа: медленнорастущие нехромогенные: M.avium, M.gastri.

    4 группа: быстрорастущие ското-,фотохромогенные: M.fortuitum, M.chelonei.

Оглавление темы "Микобактерии. Туберкулез.":









М. tuberculosis (палочка Коха ) - тонкая, прямая или слегка изогнутая палочка, размером 1-10*0,2-0,6 мкм, со слегка закруглёнными концами (рис. 22-1). В молодых культурах палочки более длинные, а в старых склонны к ветвлению.

Бактерии туберкулёза способны образовывать L-формы, сохраняющие способность к инфицированию, а также фильтрующиеся формы, патогенетическая роль которых остаётся плохо изученной. Капсул не имеют, но образуют микрокапсулу.

Методом Циля-Нильсена окрашиваются в ярко-красный цвет. Содержат кислотонеустойчивые гранулы (зёрна Муха), располагающиеся в цитоплазме.

Культуральные свойства возбудителя туберкулеза

Туберкулёзные палочки могут расти как в аэробных, так и факультативно анаэробных условиях. Повышенное содержание СО 2 (5-10%) способствует более быстрому росту. Оптимальная температура 37-38 °С; рН 7,0-7,2. Нуждаются в присутствии белков, глицерина, факторов роста (биотин, никотиновая кислота, рибофлавин и др.), ионов (Mg2+ K+, Na+ Fe2+) и др.

Для выращивания бактерий туберкулеза наиболее часто применяются глицериновые, картофельные с жёлчью, яичные, полусинтетические и синтетические среды. Наиболее оптимальна среда Лёвенштайна-Йёнсена.

На средах туберкулёзные палочки обычно образуют R-колонии; под влиянием антибактериальных препаратов бактерии могут диссоциировать с образованием мягких и влажных S-колоний.

В жидких средах палочки туберкулеза образуют сухую морщинистую пленку (на 7-10-е сутки), поднимающуюся на края пробирки; среда остаётся прозрачной. В жидких средах выявляют корд-фактор - важный дифференциальный признак вирулентности. Наличие корд-фактора обусловливает сближение бактериальных клеток в микроколониях и их рост в виде серпантинообразных кос.

На плотных средах рост палочек туберкулеза отмечают на 14-40-е сутки в виде сухого морщинистого налёта желто-, вато-кремового цвета. Зрелые колонии напоминают цветную капусту, крошковатые, плохо смачиваются водой и имеют приятный запах. Культуры плохо снимаются со среды, а при прокаливании трещат. Отличительная особенность М. tuberculosis- способность к синтезу значительного количества никотиновой кислоты (ниацина); ниациновый тест - важный метод дифференцировки микобактерий.

Туберкулез - заболевание инфекционной этимологии, характеризующееся нередким переходом в хроническую форму и сопровождающееся возникновением воспалительного процесса. В развитии недуга туберкулез микробиология играет немаловажную роль, так как именно эта наука позволяет получить максимально исчерпывающую информацию относительно вирусной болезни.

Микобактерии туберкулеза

Вирус туберкулеза представляет собой скопление в организме специфических клеток M. tuberculosis (так называемый ), каждая из которых имеет свое специфическое строение.

Микобактерии туберкулеза состоят из следующих элементов:

  • мембрана - выступает в роли защиты целостности вредоносной клетки;
  • цитоплазма - необходима для осуществления процесса размножения;
  • субстанция ядра - имеет в своем составе одну клетку ДН;
  • клеточная стенка - отличается высокой прочностью, не дает возможность проникнуть внутрь антибиотикам и другим лекарственным препаратам.

Микроорганизмы туберкулеза имеет ряд специфических особенностей. В первую очередь передача вируса производится воздушно-капельным путем или через биологический материал человека (кровь). Оптимальной температурой для размножения бактерий туберкулеза считается 38-39 градусов. Микроорганизмы имеют возможность активизировать воспалительный процесс в любом внутреннем органе, чаще всего негативному воздействию подвергаются сердце, костная ткань, сосуды, печень и почки.

Морфологическая составляющая

Бактерии туберкулеза представляют собой палочки прямой или немного изогнутой формы. Благодаря своему строению микроорганизмы способны приспосабливаться и выживать в любой среде: кислотной, щелочной, спиртовой и гидрофобной.

Процесс размножения бактерий туберкулеза осуществляется медленным путем. При благоприятных условиях процесс занимается порядка 15 часов. Увеличение числа вредоносных клеток в организме обнаруживается по прошествии нескольких недель. Период, как правило, не превышает трех месяцев. Активное размножение бактерий туберкулеза происходит в организме с ослабленной иммунной системой. Не менее благоприятными считаются пациенты, злоупотребляющие алкогольными напитками и наркотическими средствами. Нередко у больного может быть выявлена патология в пассивной форме. Это говорит о том, что бактерии имеют возможность начать свою активную деятельность в любой момент.

Биохимические особенности

Особенно чувствительны к воздействию со стороны прямых солнечных лучей. При повышенной температуре воздуха на улице бактерии, находящиеся в биологическом материале (мокроте) способны погибать за двухчасовой период времени. Не менее негативное влияние оказывает ультрафиолетовой излучение и нагревательный процесс.

Несмотря на вышеперечисленные факторы, бактерии туберкулеза способны существовать при воздействии разнообразных дезинфицирующих средств. абсолютно равнодушна к замораживанию. В высушенном состоянии она продолжает свою жизнедеятельность на протяжении трех лет.

Как избежать контакта с микобактериями

Для того, чтобы избежать контакта с вирусными микобактериями человеку следует придерживаться рекомендаций относительно профилактических мероприятий. Первостепенно следует исключить контакт с инфицированным человеком, особенно, если у больного диагностирована болезнь в открытой форме. В случае крайней необходимости нахождения рядом с больным человеком, продолжительность контакта должны быть минимальной. В этот момент важно создать необходимые условия: хорошо проветренное помещение с незначительной влажностью. Помимо этого, здоровый человек обязан носить при общении с пациентом специальную маску.

Существует так называемая группа риска, которая включает в себя людей, наиболее подверженных процессу заражения туберкулезом. Важно определить возможность вхождения в эту группу.

Сюда относятся:

  • лица с ослабленной иммунной системой;
  • пациенты с выявленным ВИЧ или СПИД;
  • люди, проживающие в недостаточно подходящем помещении (несоблюдение санитарно-гигиенических норм, маленькая площадь);
  • больные, страдающие от наркотической или алкогольной зависимости.

Важно уделить внимание здоровому образу жизни, так как это позволяет усилить активность организма в естественной борьбе с вредоносными бактериями. Пересмотрите свой рацион, включите в него оптимальное количество витаминов и необходимых для организма микроэлементов. Желательно выполнять упражнения, подключить к комплексу варианты для кардиостимуляции.

Не менее эффективным способом защиты организма от туберкулеза считается иммунизация. Процедура представляет собой постановку прививки, которая провоцирует активизацию иммунитета. Несмотря на то, что все методы предотвращения считаются достаточно действенными, здоровье человека в первую очередь зависит от его действий.

Туберкулез - хроническое заболевание человека, сопровождающееся поражением органов дыхания, лимфатических узлов, кишечника, костей и суставов, глаз, кожи, почек и мочевыводящих путей, половых органов, центральной нервной системы.

Болезнь вызывается 3 видами микобактерий: Mycobacterium tuberculosis - человеческий вид, Mycobacterium bovis - бычий вид, Mycobacterium africanum - промежуточный вид.

Отдел Firmicutes, род Mycobacterium. Родовой признак - кислото, спирто- и щелочеустойчивость.

Морфология, тинкториальные и культуральные свойства

Является типичным представителем рода Mycobacterium и обладает наибольшей кислотоустойчивостью. В мазках из мокроты или органов микобактерии - небольшие тонкие палочки размером 1,5-4×0,4 мкм, грамположительны. На искусственных питательных средах могут образовывать ветвящиеся формы. Микобактерии туберкулеза обладают большой полиморфностью: встречаются палочковидные, зернистые, нитевидные, кокковые, фильтрующиеся и L-формы. Как результат изменчивости появляются кислотоподатливые формы, среди которых часто встречаются так называемые зерна Муха.

Выраженный полиморфизм. Они имеют форму длинных, тонких (М.tuberculosis) или коротких, толстых (M.bovis), прямых или слегка изогнутых палочек с гомогенной или зернистой цитоплазмой; грамположительны, неподвижны, спор не образуют, имеют микрокапсулу. Для их выявления применяют окраску по Цилю-Нильсену. Микобактерии могут образовывать различные морфовары (L-формы бактерий), которые длительно персистируют в организме и индуцируют противотуберкулезный иммунитет.

Возбудители туберкулеза характеризуются медленным ростом, требовательны к питательным средам. М.tuberculosis относятся к аэробам, глицеринзависимы. На жидких питательных средах дают рост в виде сухой пленки кремового цвета. При внутриклеточном развитии, а также при росте на жидких средах выявляется характерный корд-фактор, благодаря которому микобактерии растут в виде «жгутов». На плотных средах рост в виде кремового, сухого чешуйчатого налета с неровными краями (R-формы). По мере роста колонии приобретают бородавчатый вид. Под влиянием антибактериальных средств возбудители изменяют культуральные свойства, образуя гладкие колонии (S-формы). M.bovis -растут на средах медленнее, чем M.tuberculosis, пируватзависимы; на плотных питательных средах образуют мелкие шаровидные, серовато-белые колонии (S-формы).

Высокая каталазная и пероксидазная активность. Каталаза термолабильна. М.tuberculosis в большом количестве синтезирует ниацин (никотиновая кислота), который накапливается в культуральной среде и определяется в пробе Конно.

Химический состав: Основными химическими компонентами микобактерии являются белки, углеводы и липиды. Липиды (фосфатиды, корд-фактор, туберкулостеариновая кислота) — обусловливают устойчивость к кислотам, спиртам и щелочам, препятствуют фагоцитозу, нарушают проницаемость лизосом, вызывают развитие специфических гранулем, разрушают митохондрии клеток. Микобактерии индуцируют развитие реакции гиперчувствительности IV типа (туберкулин).

Факторы патогенности: о сновные патогенные свойства обусловлены прямым или иммунологически опосредованным действием липидов и липидсодержащих структур.

Антигенная структура: В ходе заболевания к антигенам образуются антипротеиновые, антифосфатидные и антиполисахаридные антитела, свидетельствующие об активности процесса.

Наличие липидов — устойчивы к действию неблагоприятных факторов. Высушивание мало влияет. Погибают при кипячении.

Основной источник инфекции - человек, больной туберкулезом органов дыхания, выделяющий микробы в окружающую среду с мокротой. Основные пути передачи инфекции -воздушно-капельный и воздушно-пылевой.

Микобактерии туберкулеза долго сохраняют жизнеспособность вне организма человека или животного. В высохшей мокроте они живут до 10 мес. Выдерживают температуру 70°С в течение 20 мин, а кипячение - 5 мин; в 5% растворе карболовой кислоты и растворе сулемы 1: 1000 погибают через сутки, в 2% растворе лизола - через час. Из дезинфицирующих средств наиболее чувствительны к хлорной извести и хлорамину.

Патогенез и клиника

Факторы патогенности. Микобактерии туберкулеза содержат эндотоксин. Вирулентные штаммы включают особый липид, который получил название корд-фактора. Вирулентность микробов связана также с наличием фтионовых и миколовых кислот, а также полисахаридно-миколового комплекса. Кох получил из туберкулезных бактерий ядовитое вещество белковой природы - туберкулин, патогенное действие которого проявляется только в зараженном организме. Туберкулин обладает свойствами аллергена и в настоящее время его используют при постановке аллергических проб, позволяющих определить инфицированность человека или животных микобактериями. Существует несколько препаратов туберкулина. «Старый» туберкулин Коха (альт-туберкулин) представляет собой фильтрат убитой нагреванием 5-6-недельной культуры микробактерий, выращенной на глицериновом бульоне. «Новый» туберкулин Коха - высушенные микобактерии туберкулеза, размельченные в 5% глицерине до гомогенной массы. Получают туберкулин из микобактерий бычьего вида. Существуют также очищенные от балластных веществ препараты туберкулина (PPD, РТ).

Возникновению заболевания способствуют различные иммунодефициты. Инкубационный период составляет от 3-8 нед. до 1 года и более. В развитии болезни выделяют первичный, диссеминированный и вторичный туберкулез, который является результатом эндогенной реактивации старых очагов. В зоне проникновения микобактерий возникает первичный туберкулезный комплекс, состоящий из воспалительного очага, пораженных регионарных лимфатических узлов и измененных лимфатических сосудов между ними. Диссеминация микробов может происходить бронхо-, лимфо- и гематогенно. В основе специфического воспаления при туберкулезе лежит реакция гиперчувствительности IV типа, что препятствует распространению микробов по организму.

Различают легочную и внелегочные клинические формы туберкулеза, при которых поражаются кости, суставы, кожа, почки гортань, кишечник и другие органы.
Обычно наблюдаются периоды улучшения и ухудшения; конечный результат определяется состоянием макроорганизма. Заболевание может развиваться остро, но чаще протекает хронически, многие годы. Отмечаются слабость, ночные поты, утомляемость, потеря аппетита, небольшие подъемы температуры вечером, кашель. При рентгеноскопии легких обнаруживаются затемнения различной степени: очаговые или диффузные.

Противотуберкулезный иммунитет нестерильный инфекционный, обусловлен наличием в организме L-форм микобактерий.

Диагностику проводят с помощью бактериоскопии, бактериологического исследования и постановки биологической пробы. Все методы направлены на обнаружение микобактерий в патологическом материале: мокроте, промывных водах бронхов, плевральной и церебральной жидкостях, кусочках тканей из органов.

К обязательным методам обследования относится бактериоскопическое, бактериологическое исследование, биологическая проба, туберкулинодиагностика, основанная на определении повышенной чувствительности организма к туберкулину. Чаще для выявления инфицирования и аллергических реакций ставят внутрикожную пробу Манту с очищенным туберкулином в стандартном разведении. Для экспресс-диагностики туберкулеза применяют РИФ(реакция иммунофлюоресенции) и ПЦР(полимеразная цепная реакция). Для массового обследования населения, раннего выявления активных форм туберкулеза можно использовать ИФА(иммуноферментный анализ), направленный на обнаружение специфических антител.

Микробиологическая диагностика включает микроскопический, микробиологический, биологический и серологический методы. Микроскопия - наиболее распространенный метод. Он прост, доступен, позволяет быстро получить ответ. При микроскопии мокроты выбирают гнойные плотные частички, тщательно растирают их тонким слоем между двумя предметными стеклами. Сушат на воздухе, фиксируют пламенем и окрашивают по Цилю - Нильсену. Микобактерии туберкулеза - тонкие, слегка изогнутые палочки, окрашенные в ярко-красный цвет; остальной фон препарата голубой. Недостатком метода является его небольшая чувствительность. Увеличения чувствительности микроскопии при диагностике туберкулеза достигают использованием методов обогащения. Одним из них является гомогенизация материала путем воздействия на него различными веществами, растворяющими слизь (щелочи, антиформин). Затем исследуемый материал центрифугируют, из осадка готовят мазок и микроскопируют.

Более эффективен метод флотации (всплывание), основанный на том, что после длительного встряхивания гомогенизированного едким натром исследуемого материала с дистиллированной водой и ксилолом (или бензолом) образуется слой пены, всплывающий наверх и захватывающий микобактерии туберкулеза. Слой пены снимают и наслаивают на теплое предметное стекло несколько раз по мере высыхания. Это увеличивает возможность обнаружения микобактерий туберкулеза.

Люминесцентная микроскопия более чувствительна, чем обычная. Препарат готовят, как обычно, фиксируют смесью Никифорова и окрашивают аурамином в разведении 1: 1000. Затем препарат обесцвечивают солянокислым спиртом и докрашивают кислым фуксином, который «гасит» свечение находящихся в препаратах лейкоцитов, слизи и тканевых элементов, создавая контраст между темным фоном и светящимися ярким золотисто-зеленым светом микобактериями туберкулеза. Препарат микроскопируют в люминесцентном микроскопе. Недостаток микроскопии - возможность ошибок при наличии кислотоупорных сапрофитов.

При отрицательном результате микроскопического исследования используют микробиологические и биологические методы. Исследуемый материал предварительно обрабатывают 6% раствором серной кислоты для уничтожения посторонней микрофлоры.

Микробиологический метод позволяет выявить в исследуемом материале 20-100 микобактерий. От микобактерий туберкулеза дифференцируют по культуральным признакам кислотоупорные сапрофиты (рост сапрофитов возможен при комнатной температуре в течение нескольких дней). Недостатком метода является медленный рост микобактерий туберкулеза на питательных средах (посевы выдерживают в термостате 2- З мес).

Разработаны ускоренные методы выделения культур микобактерий туберкулеза - Прайса и Школьниковой. Сущность этих методов заключается в том, что исследуемый материал наносят на предметное стекло, обрабатывают серной кислотой, промывают изотоническим раствором хлорида натрия и помещают в питательную среду с цитратной кровью. Через 5-7 дней стекло вынимают и опрашивают по Цилю - Нильсену. Микроскопируют при малом увеличении. Микроколонии вирулентных штаммов микобактерий имеют вид жгутов, кос.

При использовании биологического метода обработанный патологический материал вводят в паховую область морским свинкам. Даже при наличии единичных туберкулезных микобактерий животное заболевает: через 6-10 дней регионарные лимфатические узлы увеличиваются, в них обнаруживают большое количество микобактерий туберкулеза. Через 3-6 нед животное погибает от генерализованной туберкулезной инфекции.

Для определения инфицированности организма микобактериями используют аллергический метод. Применяют внутрикожную пробу с туберкулином (реакция Манту) и накожную пробу Пирке. У инфицированных микобактериями на месте введения туберкулина образуются покраснение и припухлость.

По степени эффективности противотуберкулезные препараты делят на группы: группа А - изониазид, рифампицин; группа В - пиразинамид, стрептомицин, флоримицин; группа С – ПАСК, тиоацетозон. При наличии сопутствующей микрофлоры и множественной лекарственной устойчивости микобактерий применяют фторхинолоны и альдозон.

Специфическую профилактику проводят путем введения живой вакцины - BCG (БЦЖ), внутрикожно на 2-5-й день после рождения ребенка. Проводят последующие ревакцинации. Предварительно ставят пробу Манту для выявления туберкулиннегативных лиц, подлежащих ревакцинации.

Условно-патогенные микобактерии: семейство Mycobacteriaceae, род Mycobacterium. Сходны по биологическим свойствам, но устойчивы к противотуберкулезным препаратам.

Микобактерии

Род Mycobacterium (сем. Mycobacteriaceae, порядок Actinomycetales) включает более 100 видов, широко распространённых в природе. Большая часть – сапрофиты и условно-патогенные. У человека вызывают туберкулёз (Mycobacterium tuberculosis – в 92% случаев, Mycobacterium bovis – 5%, Mycobacterium africanus – 3%) и лепру (Mycobacterium leprae).

Микобактерии туберкулёза.

Mycobacterium tuberculosis – основной возбудитель туберкулёза у человека – был открыт в 1882 г. Р. Кохом.

Туберкулёз (tuberculosis, phthisis) – хроническое инфекционное заболевание. В зависимости от локализации патологического процесса выделяют туберкулёз органов дыхания и внелёгочные формы (туберкулёз кожи, костей и суставов, почек и др.). Локализация процесса в определённой степени зависит от путей проникновения микобактерий в организм человека и вида возбудителя.

Морфология, физиология. Микобактерии туберкулёза – грамположительные прямые или слегка изогнутые палочки 1-4 x 0.3-0.4 мкм. Высокое содержание липидов (40%) придаёт клеткам микобактерий туберкулёза ряд характерных свойств: устойчивость к кислотам, щелочам и спирту, трудное восприятие анилиновых красителей (для окраски туберкулёзных палочек применяют метод Циля-Нильсена, по этому методу они окрашиваются в розовый цвет). В мокроте не может быть других кислотоустойчивых микроорганизмов, поэтому их обнаружение является указанием на возможный туберкулёз. В культурах встречаются зернистые формы, ветвящиеся, зёрна Муха – шаровидные кислотоподатливые, легко окрашивающиеся по Граму (+). Возможен переход в фильтрующиеся и L-формы. Неподвижны, спор и капсул не образуют.

Для размножения микобактерий туберкулёза в лабораторных условиях используют сложные питательные среды, содержащие яйца, глицерин, картофель, витамины. Стимулируют рост микобактерий аспарагиновая кислота, соли аммония, альбумин, глюкоза, твин-80. Чаще всего применяют среду Левенштейна-Йенсена (яичная среда с добавлением картофельной муки, глицерина и соли) и синтетическую среду Сотона (содержит аспарагин, глицерин, цитрат железа, фосфат калия). Размножаются микобактерии туберкулёза медленно. Велик период генерации – деление клеток в оптимальных условиях происходит 1 раз в 14-15 ч, тогда как большинство бактерий других родов делятся через 20-30 мин. Первые признаки роста можно обнаружить через 8-10 дней после посева. Затем (через 3-4 недели) на плотных средах появляются морщинистые, сухие с неровными краями колонии (напоминающие цветную капусту). В жидких средах сначала образуется нежная плёнка на поверхности, которая утолщается и падает на дно. Среда при этом остаётся прозрачной.

Являются облигатными аэробами (поселяются в верхушках лёгких с повышенной аэрацией). В среды добавляют бактериостатины (малахитовый или бриллиантовый зелёный) или пенициллин для подавления роста сопутствующей микрофлоры.

Признаки, которые используют при дифференциации Mycobacterium tuberculosis от некоторых других микобактерий, встречающихся в исследуемых материалах:

время роста при выделении, сут.

потеря каталазной активности после прогревания 30 мин при 68°C

Обозначения: + — наличие признака, — — отсутствие признака, ± — признак непостоянен.

Антигены. Клетки микобактерий содержат соединения, белковые, полисахаридные и липидные компоненты которых обуславливают антигенные свойства. Антитела образуются на туберкулиновые протеиды, а также на полисахариды, фосфатиды, корд-фактор. Специфичность антител к полисахаридам, фосфатидам определяется в РСК, РНГА, преципитации в геле. Антигенный состав M. tuberculosis, M. bovis, M. leprae и других микобактерий (включая многие сапротфитические виды) сходен. Туберкулиновый протеин (туберкулин) обладает выраженными аллергенными свойствами.

Резистентность. Попадая в окружающую среду, микобактерии туберкулёза длительное время сохраняют свою жизнеспособность. Так, в высохшей мокроте или пыли микроорганизмы выживают в течение нескольких недель, во влажной мокроте – 1.5 месяца, на предметах, окружающих больного (бельё, книги) – более 3 месяцев, в воде – более года; в почве – до 6 месяцев. Длительно сохраняются эти микроорганизмы в молочных продуктах.

К действию дезинфицирующих веществ микобактерии туберкулёза более устойчивы, чем другие бактерии, — требуются более высокие концентрации и более длительное время воздействия для их уничтожения (фенол 5% — до 6 часов). При кипячении погибают мгновенно, чувствительны к воздействию прямого солнечного света.

Экология, распространение и эпидемиология. Туберкулёзом в мире болеют 12 млн. человек, ещё 3 млн. заболевают ежегодно. В естественных условиях M. tuberculosis вызывает туберкулёз у человека, человекообразных обезьян. Из лабораторных животных высокочувствительными являются морские свинки, менее – кролики. К M. bovis – возбудителю туберкулёза у рогатого скота, свиней и человека – высокочувствительны кролики и менее – морские свинки. M. africanus вызывает туберкулёз у людей в странах тропической Африки.

Источником инфекции при туберкулёзе являются люди и животные с активно протекающим туберкулёзом, с наличием воспалительных и деструктивных изменений, выделяющие микобактерии (преимущественно лёгочные формы). Больной человек может инфицировать от 18 до 40 человек. Однократного контакта для заражения недостаточно (основное условие – продолжительный контакт). Для заражения также имеет значение степень восприимчивости.

Больной человек может за сутки выделить от 7 до 10 миллиардов микобактерий туберкулёза. Наиболее распространён воздушно-капельный путь заражения, при котором возбудитель проникает в организм черех верхние дыхательные пути, иногда через слизистые оболочки пищеварительного тракта (алиментарный путь) или через повреждённую кожу.

Патогенность. Микобактерии не синтезируют экзо- и эндотоксин. Поражение тканей вызывает ряд веществ микробной клетки. Так, патогенность возбудителей туберкулёза связана с прямым или иммунологически опосредованным повреждающим действием липидов (воском D, мураминдипептидом, фтионовыми кислотами, сульфатидами ), которое проявляется при их разрушении. Их действие выражается в развитии специфических гранулём и поражении тканей. Токсическое действие оказывает гликолипид (трегалозодимиколат), так называемый корд-фактор . Он разрушает митохондрии клеток инфицированного организма, нарушает функцию дыхания, угнетает миграцию лейкоцитов в поражённый очаг. Микобактерии туберкулёза в культурах, имеющих корд-фактор, образуют извилистые тяжи.

Патогенез туберкулёза. Туберкулёз – хроническая гранулёматозная инфекция, может поражать любую ткань, по частоте у детей: лёгкие, лимфатические узлы, кости, суставы, мозговые оболочки; у взрослых: лёгкие, кишечник, почки.

Первичный туберкулёз (детский тип) – инфекция может продолжаться несколько недель. В зоне проникновения и размножения микобактерий возникает воспалительный очаг (первичный эффект – инфекционная гранулёма), наблюдается сесибилизация и специфический воспалительный процесс в регионарных лимфатических узлах (при поражении лёгких – грудные, глоточные лимфоидные скопления, миндалины) – формируется так называемый первичный туберкулёзный комплекс (как правило поражается нижняя доля правого лёгкого). Т. к. развивается состояние сенсибилизации, размножение в сенсибилизированном органе приводит к специфическим изменениям в ткани: микроорганизмы поглощаются макрофагами → вокруг них образуется барьер (фагосома) → лимфоциты атакуют эти клетки (выстраиваясь по периферии очага) → формируются специфические туберкулы (tuberculum — бугорок) – мелкие (диаметр 1-3 мм), зерновидные, белые или серовато-жёлтые. Внутри располагаются бактерии, затем ограничивающий пояс (гигантских или эпителиоидных) клеток, затем лимфоидные клетки, затем фиброидная ткань. Туберкулы могут сливаться в конгломераты → сдавление сосудов → нарушение кровообращения → некроз в центре конгломерата в виде сухих сыроподобных крошек (казеозный некроз). Может некротизироваться стенка сосуда → кровотечение.

Образовавшийся туберкул может:

● долго сохраняться (не сопровождается клиническими проявлениями);

● при доброкачественном течении болезни первичный очаг может рассасываться, поражённый участок рубцеваться (не нарушается функция органа) или кальцифицироваться (образуются очаги Гона, сохраняющиеся пожизненно без клинических проявлений). Однако этот процесс не завершается полным освобождением органима от возбудителя. В лимфатических узлах и других органах туберкулёзные бактерии сохраняются много лет, иногда в течение всей жизни. Такие люди, с одной стороны, обладают иммунитетом, а с другой – остаются инфицированными.

● Может происходить размягчение и инфильтрация первичного очага → это может сопровождаться прорывом очага в близлежащие ткани → может привести к разрыву бронха → некротизированная ткань проскальзывает в просвет бронха → образуется ложкообразная полость (caverna).

Если этот процесс происходит в кишечнике или на поверхности кожи, образуется туберкулёзная язва.

Хронический туберкулёз (взрослый тип) возникает в результате реинфекции (чаще эндогенной). Активация первичного комплекса развивается вследствие сниженной сопротивляемости организма, чему способствуют неблагоприятные условия быта и труда (плохое питание, низкая инсоляция и аэрация, малая подвижность), сахарный диабет, силикоз, пневмокониоз, физические и психические травмы, другие инфекционные заболевания, генетическая предрасположенность. У женщин большая вероятность перехода заболевания в хроническую форму. Активация первичного туберкулёзного комплекса ведёт к генерализации инфекционного процесса.

● Чаще всего лёгочная (верхняя и задняя часть верхней доли) с образованием каверн, в стенках каверн могут размножаться Staphylococcus и Streptococcus → изнурительная лихорадка; если эрозируются стенки сосудов → кровохарканье. Формируются рубцы. Иногда бывают осложнения: туберкулёзная пневмония (при внезапном разлитии экссудата из очага) и плеврит (если повреждённые участки лёгких близки к плевре). Поэтому всякий плеврит должен рассматриваться как туберкулёзный процесс, пока не будет доказано обратное.

● Инфекция может распространяться гематогенно и лимфогенно.

● Бактери могут распространяться в близлежащие ткани.

● Могут продвигаться по естественным путям (из почек в мочеточники).

● Могут распространяться по кожным покровам.

● Может развиться туберкулёзный сепсис (нагруженный микроорганизмами материал из туберкул попадает в крупный сосуд).

Диссеминация возбудителей приводит к образованию в различных органах туберкулёзных очагов, склонных к распаду. Выраженная интоксикация обусловливает тяжёлые клинические проявления болезни. Генерализация приводит к поражению органов мочеполовой системы, костей и суставов, мозговых оболочек, глаз.

Клиника зависит от локализации поражения, общим является длительное недомогание, быстрое утомление, слабость, потливость, похудание, по вечерам – субфибрильная температура. Если поражаются лёгкие – кашель, при деструкции лёгочных сосудов – кровь в мокроте.

Иммунитет. Заражение микобактериями туберкулёза не всегда приводит к развитию заболевания. Восприимчивость зависит от состояния макроорганизма. Она значительно усиливается, когда человек находится в неблагоприятных условиях, снижающих общую резистентность (изнурительный труд, недостаточное и неполноценное питание, плохие жилищные условия и т.д.). Способствует развитию туберкулёзного процесса и ряд эндогенных факторов: сахарный диабет; заболевания, которые лечат кортикостероидами; психические болезни, сопровождающиеся депрессией, и другие заболевания, снижающие резистентность организма. Значение образующихся в организме антител в формировании сопротивляемости к туберкулёзной инфекции до сих пор неясно. Считается, что антитела к микобактериям туберкулёза являются “свидетелями” иммунитета и не оказывают ингибирующего действия на возбудителя.

Большое значение имеет клеточный иммунитет. Показатели его изменений адекватны течению заболевания (по реакции бласттрансформации лимфоцитов, цитотоксическому действию лимфоцитов на клетки-“мишени”, содержащие антигены микобактерий, выраженности реакции торможения миграции макрофагов). T-лимфоциты после контакта с антигенами микобактерий синтезируют медиаторы клеточного иммунитета, усиливающие фагоцитарную активность макрофагов. При подавлении функции T-лимфоцитов (тимэктомия, введение антилимфоцитарных сывороток, других иммунодепрессантов) туберкулёзный процесс был быстротечным и тяжёлым.

Микробактерии туберкулёза разрушаются внутриклеточно в макрофагах. Фагоцитоз является одним из механизмов, приводящих к освобождению организма от микобактерий туберкулёза, но он часто является незавершённым.

Другим важным механизмом, способствующим ограничению размножения микобактерий, фиксации их в очагах, является образование инфекционных гранулём при участии T-лимфоцитов, макрофагов и других клеток. В этом проявляется защитная роль ГЗТ.

Иммунитет при туберкулёзе ранее называли нестерильным. Но имеет значение не только сохранение живых бактерий, поддерживающих повышенную сопротивляемость к суперинфекции, а и явление “иммунологической памяти”. При туберкулёзе развивается реакция ГЗТ.

Лабораторная диагностика туберкулёза осуществляется бактериоскопическим, бактериологическим и биологическим методами. Иногда используются аллергологические пробы.

Бактериологический метод . В исследуемом материале обнаруживают микобактерии туберкулёза путём микроскопии мазков, окрашенных по Цилю-Нильсену и с применением люминесцентных красителей (чаще всего аурамина). Можно использовать центрифугирование, гомогенизацию, флотацию материала (гомогенизация суточной мокроты → добавление к гомогенату ксилола (или толуола) → ксилол всплывает, увлекая микобактерии → эту плёнку собирают на стекло → ксилол испаряется → получается мазок → окрашивание, микроскопирование). Бактериоскопию рассматривают как ориентировочный метод. Применяют ускоренные методы обнаружение микобактерий в посевах, например, по методу Прайса (микроколонии). Микроколонии позволяют увидеть и наличие корд-фактора (основной фактор вирулентности), благодаря которому образовавшие его бактерии складываются в косы, цепочки, жгуты.

Бактериологический метод является основным в лабораторной диагностике туберкулёза. Выделенные культуры идентифицируют (дифференцируют от других видов микобактерий), определяют чувствительность к антимикробным препаратам. Этот метод может использоваться для контроля за эффективностью лечения.

Серологические методы не применяются для диагностики, так как нет корреляции между содержанием антител и тяжестью процесса. Могут использоваться в научно-исследовательских работах.

Биологический метод используется в случаях, когда возбудителя трудно выделить из исследуемого материала (чаще всего при диагностике туберкулёза почек из мочи) и для определения вирулентности. Материалом от больного заражают лабораторных животных (морских свинок, чувствительных к M. tuberculosis, кроликов, восприимчивых к M. bovis). Наблюдение ведут в течение 1-2 месяцев до гибели животного. С 5-10-го дня можно исследовать пунктат лимфотического узла.

Аллергические пробы. Для проведения этих проб используется туберкулин – препарат из M. tuberculosis. Впервые это вещество получил Р. Кох в 1890 г. из кипячённых бактерий (“старый туберкулин”). Сейчас применяется очищенный от примесей и стандартизованный в ЕД туберкулин (PPD – очищенный протеиновый дериват). Это фильтрат убитых нагреванием бактерий, отмытый спиртом или эфиром, лиофильно-высушенный. С иммунологической точки зрения – гаптен, вступает в реакцию с иммуноглобулинами, фиксированными на T-лимфоцитах.

Проба Манту проводится внутрикожным введением туберкулина. Учёт результатов через 48-72 часа. Положительный результат – местная воспалительная реакция в виде отёка, инфильтрата (уплотнения) и покраснения – papula. Положительный результат свидетельствует о сенсибилизации (или о наличии микобактерий в организме). Сенсибилизация может быть вызвана инфицированием (реакция положительна через 6-15 недель после инфицирования), болезнью, иммунизацией (у привитых живой вакциной).

Ставится туберкулиновая проба с целью отбора для ревакцинации, а также для оценки течения туберкулёзного процесса. Имеет значение также вираж Манту: положительный (после отрицательной пробы положительная) – инфицирование, отрицательный (после положительной пробы отрицательная) – гибель микобактерий.

Профилактика и лечение. Для специфической профилактики используют живую вакцину БЦЖ – BCG (Bacille de Calmette et de Guerin). Штамм БЦЖ был получен А. Кальметтом и М. Жереном длительным пассированием туберкулёзных палочек (M. bovis) на картофельно-глицериновой среде с добавлением желчи. Ими было сделано 230 пересевов в течение 13 лет и получена культура со сниженной вирулентностью. В нашей стране в настоящее время проводят вакцинацию против туберкулёза всех новорождённых на 5-7-й день жизни внутрикожным методом (наружная поверхность верхней трети плеча), через 4-6 недель образуется инфильтрат – pustula (маленький рубчик). Микобактерии приживаются и обнаруживаются в организме от 3 до 11 месяцев. Вакцинация предохраняет от инфицирования дикими уличными штаммами в наиболее уязвимый период. Ревакцинацию проводят лицам с отрицательной туберкулиновой пробой с интервалом в 5-7 лет до 30-летнего возраста (в 1, 5-6, 10 классах школы). Создают таким образом инфекционный иммунитет, при котором возникает реакция ГЗТ.

Для лечения туберкулёза применяют антибиотики, химиотерапевтические препараты, к которым чувствительны возбудители. Это – препараты I ряда: тубазид, фтивазид, изониазид, дигидрострептомицин, ПАСК и II ряда: этионамид, циклосерин, канамицин, рифампицин, виомицин. Все противотуберкулёзные препараты действуют бактериостатически, к любому препарату быстро вырабатывается устойчивость (перекрёстная), поэтому для лечения проводят комбинированную терапию одновременно несколькими препаратами с разным механизмом действия, с частой сменой комплекса препаратов.

В комплексе лечебных мероприятий используется десенсибилизирующая терапия, а также стимуляция естественных защитных механизмов организма.

Микобактерии лепры.

Возбудитель лепры (проказы) – Mycobacterium leprae описан Г. Гансеном в 1874 г. Лепра – хроническое инфекционное заболевание, встречающееся только у людей. Заболевание характеризуется генерализацией процесса, поражением кожи, слизистых оболочек, периферических нервов и внутренних органов.

Морфология, физиология. Микобактерии лепры – прямые или слегка изогнутые палочки длиной от 1 до 7 мкм, диаметром 0.2-0.5 мкм. В поражённых тканях микроорганизмы располагаются внутри клеток, образуя плотные шаровидные скопления – лепрозные шары, в которых бактерии тесно прилегают друг к другу боковыми поверхностями (“сигаретные палочки”). Кислотоустойчивы, окрашиваются по методу Циля-Нильсена в красный цвет.

На искусственных питательных средах микобактерии лепры не культивируются. В 1960 г. была создана экспериментальная модель с заражением белых мышей в подушечки лапок, а в 1971 г. – броненосцев, у которых в месте введения микобактерий лепры образуются типичные гранулёмы (лепромы), а при внутривенном заражении развивается генерализованный процесс с размножением микобактерий в поражённых тканях.

Антигены. Из экстракта лепромы выделены 2 антигена: термостабильный полисахаридный (групповой для микобактерий) и термолабильный белковый, высокоспецифичный для лепрозных палочек.

Экология и распространение. Естественным резервуаром и источником возбудителя лепры является больной человек. Заражение происходит при длительном и тесном контакте с больным.

Свойства возбудителя, его отношение к воздействию различных факторов окружающей среды изучены недостаточно.

Патогенность возбудителя и патогенез лепры. Инкубационный период лепры в среднем 3-5 лет, но возможно удлинение до 20-30 лет. Развитие заболевания происходит медленно, в течение многих лет. Различают несколько клинических форм, из которых наиболее тяжёлая и эпидемически опасная – лепроматозная: на лице, предплечьях, голени образуются множественные инфильтраты-лепромы, в которых содержится огромное количество возбудителей. В дальнейшем лепромы распадаются, образуются медленно заживающие язвы. Поражаются кожа, слизистые оболочки, лимфатические узлы, нервные стволы, внутренние органы. Другая форма – туберкулоидная – протекает клинически легче и менее опасна для окружающих. При этой форме поражается кожа, а нервные стволы и внутренние органы реже. Высыпания на коже в виде мелких папул сопровождаются анестезией. В очагах поражений возбудителей бывает немного.

Иммунитет. В течение развития заболевания возникают резкие изменения иммунокомпетентных клеток, главным образом T-системы, — снижается число и активность T-лимфоцитов и как следствие теряется способность реагировать на антигены микобактерий лепры. Реакция Мицуды на введение в кожу лепромина у больных лепроматозной формой, протекающей на фоне глубокого угнетения клеточного иммунитета, отрицательна. У здоровых лиц и у больных туберкулоидной формой лепры – положительна. Эта прба, таким образом, отражает тяжесть поражения T-лимфоцитов и используется как прогностическая, характеризующая эффект лечения. Гуморальный иммунитет не нарушается. В крови больных обнаруживаются в высоких титрах антитела к микобактериям лепры, но они, по-видимому, не играют защитной роли.

Лабораторная диагностика. Бактериоскопическим методом, исследуя соскобы с поражённых участков кожи, слизистых оболочек, обнаруживают характерно располагающиеся микобактерии лепры типичной формы. Мазки окрашивают по Цилю-Нильсену. Других способов лабораторной диагностики в настоящее время нет.

Профилактика и лечение. Специфической профилактики лепры нет. Комплекс предупредительных мероприятий проводят противолепрозные учреждения. Больных лепрой лечат в лепрозориях до клинического выздоровления, а затем амбулаторно.

В нашей стране лепру регистрируют редко. Отдельные случаи бывают лишь в некоторых районах. По данным ВОЗ, в мире насчитывается более 10 млн. больных лепрой.

Лечение лепры проводят сульфоновыми препаратами (диацетилсульфон, селюсульфон и др.). Используют и десенсибилизирующие средства, препараты, применяемые для лечения туберкулёза, а также биостимуляторы. Разрабатываются методы иммунотерапии.

Тема 37. Возбудители туберкулеза

ГБОУ ВПО “Уральский государственный медицинский университет” Министерства здравоохранения Российской Федерации Кафедра микробиологии, вирусологии и иммунологии

Методические указания к практическим занятиям для студентов

ООП специальности 060301.65 Фармация Дисциплина С2.Б.11 Микробиология

1. Тема: Возбудители туберкулеза

2. Цели занятия: Изучить со студентами свойства возбудителей туберкулеза, факторы патогенности, патогенез, методы диагностики, профилактики и лечения туберкулеза.

3. Задачи занятия:

3.1. Изучение свойств возбудителей туберкулеза.

3.2. Изучение патогенеза туберкулеза.

3.3. Изучение методов диагностики, профилактики и лечения туберкулеза.

3.4. Выполнение самостоятельной работы.

препаратов по Цилю-

проблемы и процессы,

и клинических наук в

готовность к участию

в постановке научных

работу с населением

4. Продолжительность занятия в академических часах: 3 часа.

5. Контрольные вопросы по теме:

5.1. Морфологические, тинкториальные, культуральные и биохимические свойства возбудителей туберкулеза.

5.2. Факторы патогенности возбудителей туберкулеза.

5.3. Методы диагностики, профилактики и лечения туберкулеза.

6. Задания и методические указания к их выполнению.

На занятии студенту необходимо:

6.1. Ответить на вопросы преподавателя.

6.2. Принять участие в обсуждении изучаемых вопросов.

6.3. Выполнить самостоятельную работу.

Теоретическая справка Туберкулез – хроническое инфекционное заболевание, сопровождающееся

специфическим поражением различных органов и систем (органов дыхания, лимфатических узлов, кишечника, костей, суставов, глаз, кожи, почек, мочевыводящих путей, половых органов, ЦНС). При туберкулезе в органах образуются специфические гранулемы (granulum – зернышко) в виде узелков или бугорков (tuberculum – бугорок) с последующим их творожистым перерождением (распадом) и обызвествлением.

Историческая справка. С глубокой древности это заболевание было известно под названиями чахотка, бугорчатка, золотуха из-за характерных клинических признаков. Впервые отделил “чахотку” от других легочных заболеваний Лаэннек в 1819 г., он ввел термин “туберкулез” (отсюда синоним — бугорчатка). В 1882 г. Р. Кох обнаружил возбудителя туберкулеза и получил чистую культуру на сывороточной среде (палочка или бацилла Коха). В 1890 г. Р. Кох получил туберкулин (“водно-глицериновую вытяжку туберкулезных культур”). В 1911 г. Р. Кох за открытие возбудителя туберкулеза был удостоен Нобелевской премии.

Таксономия. Отдел Firmicutes , семейство Mycobacteriaceae , род Mycobacterium .

Туберкулез у человека чаще всего вызывают три вида микобактерий: M. tuberculоsis (палочка Коха, человеческий вид — вызывает заболевание в 92% случаев), М. bоvis (бычий вид — вызывает заболевание в 5% случаев), М. аfriсаnum (промежуточный вид — вызывает заболевание в 3% случаев, в Южной Африке – намного чаще). В редких случаях туберкулез у человека вызывают M. microti (мышиный тип) и M. avium (птичий тип, вызывающий инфекцию у лиц с иммунодефицитом).

Морфологические и тинкториальные свойства. Возбудители туберкулеза характеризуются выраженным полиморфизмом (кокковидные, нитевидные, ветвистые, колбовидные формы). В основном они имеют форму длинных тонких (М. tuberculosis , М. africanum) или коротких и толстых (М. bovis) палочек с зернистой цитоплазмой, содержащей от 2 до 12 зерен различной величины (зерна метафосфатов – зерна Муха). Иногда они образуют нитевидные структуры, напоминающие мицелий грибов, что и послужило основанием для их названия (mykes — гриб и bacterium — бактерия). Неподвижные. Спор не образуют. Имеют микрокапсулу.

Грамположительные. Микобактерии являются кислото-, спирто- и щелочеустойчивыми бактериями. Для их окраски применяют метод Циля-

Нильсена (термокислотное протравливание карболовым фуксином). При такой окраске микобактерии выглядят в виде ярко-красных палочек, расположенных одиночно или небольшими скоплениями из 2-3 клетки.

Культуральные свойства. Облигатные аэробы. Растут медленно из-за наличия в клеточной стенке липидов, замедляющих обмен веществ с окружающей средой. Оптимальная температура роста 37-38ºС. Оптимальное значение рН 6,8-7,2. Микобактерии требовательны к питательным средам, глицеринзависимые. Для подавления токсического действия образуемых в процессе метаболизма жирных кислот к средам добавляют активированный уголь, сыворотку крови животных и альбумин, а для подавления роста сопутствующей микрофлоры — красители (малахитовый зеленый) и антибиотики, не действующие на микобактерии.

Элективные питательные среды для микобактерий:

— яичные среды Левенштейна-Йенсена, Финна-2;

— глицериновые среды Миддлбрука;

— картофельные среды с желчью;

— полусинтетическая среда Школьниковой;

— синтетические среды Сотона, Дюбо.

На плотных средах на 15-20 день инкубирования микобактерии образуют шероховатые плотные колонии кремового цвета бородавчатого вида (напоминают

В жидких средах через 5-7 дней на поверхности образуется толстая сухая морщинистая пленка кремового цвета. При этом бульон остается прозрачным.

Для экспресс-диагностики используют метод микрокультивирования на стеклах в жидкой среде (метод микрокультур Прайса), при котором через 48-72 часа отмечается рост микобактерий в виде переплетенных девичьих “кос” или “жгутов” благодаря корд-фактору (англ. cord — жгут, веревка).

Химический состав. Основные компоненты микобактерий: белки (туберкулопротеины), углеводы и липиды.

Туберкулопротеины составляют 56% сухой массы вещества микробной клетки. Они являются основными носителями антигенных свойств микобактерий, высокотоксичны, вызывают развитие реакции гиперчувствительности 4-го типа.

На долю полисахаридов приходится 15% сухой массы вещества микобактерий. Это родоспецифические гаптены.

На долю липидов (фтионовая кислота, масляная, пальмитиновая, туберкулостеариновая и другие жирные кислоты, корд-фактор и воск Д, в состав которого входит миколовая кислота) приходится от 10 до 40% сухой массы вещества микобактерий. Высокое содержание липидов определяет кислото-, спирто- и щелочеустойчивость возбудителя, вирулентность, трудность окрашивания клеток обычными методами и устойчивость в окружающей среде. Липиды экранируют бактериальную клетку, подавляют фагоцитоз, блокируют активность клеточных ферментов, вызывают развитие гранулем и казеозного некроза.

Резистентность. В высохшей мокроте больного клетки сохраняют жизнеспособность и вирулентность в течение 5-6 месяцев. На предметах больного сохраняются более 3 месяцев. В почве сохраняются до 6 месяцев, в воде – до 15 месяцев. Солнечный свет вызывает гибель микобактерий через 1,5 часа, УФЛ – через 2-3 минуты. При пастеризации погибают через 30 минут. Хлорсодержащие

препараты вызывают гибель возбудителей туберкулеза в течение 3-5 часов, 5%- ный раствор фенола — через 6 часов.

Факторы патогенности микобактерий:

— корд-фактор – гликолипид клеточной стенки, вызывает повреждение клеточных мембран и ингибирует образование фаголизосомы, обусловливая развитие незавершенного фагоцитоза;

Возбудители туберкулеза не образуют экзотоксинов. Высокотоксичными являются продукты распада клеток.

Главным фактором патогенности микобактерий является корд-фактор (название происходит от англ. соrd — жгут, веревка). Корд-фактор обусловливает “скученный тип роста” в жидких средах в виде “извилистых тяжей” (или кос), в которых клетки микобактерий располагаются параллельными цепочками.

Эпидемиология. Туберкулез распространен повсеместно. Основной источник инфекции — больной человек с туберкулезом органов дыхания, выделяющий микробы в окружающую среду с мокротой. Источниками инфекции могут также быть люди с внелегочными формами туберкулеза и больные животные (крупный рогатый скот, верблюды, свиньи, козы и овцы). Основной механизм заражения – аэрогенный. Пути передачи возбудителя — воздушно-капельный и воздушно-пылевой. Входными воротами при этом является слизистая оболочка полости рта, бронхи и легкие. Реже заражение туберкулезом может происходить алиментарным (пищевым) путем при употреблении термически не обработанных мясо-молочных продуктов. Возможен контактно-бытовой путь передачи инфекции от больных туберкулезом при использовании инфицированной одежды, игрушек, книг, посуды и других предметов. Известны случаи заражения людей при уходе за больными животными.

Патогенез. Проникнув в организм человека, микобактерии фагоцитируются.

В фагоцитах формируются фагосомы, внутри которых микобактерии остаются живыми и размножаются. В фагоцитах микобактерии транспортируются в регионарные лимфатические узлы, сохраняясь длительное время в “дремлющем” состоянии (незавершенный фагоцитоз). При этом происходит воспаление лимфатических путей (лимфангоит) и лимфатических узлов (лимфаденит). В месте внедрения возбудителя формируется очаг воспаления. Это воспаление в течение нескольких недель приобретает специфический характер (развивается реакция гиперчувствительности замедленного типа), в результате чего формируется гранулема. В последующем происходит трансформация макрофагов в эпителиоидные клетки. При слиянии эпителиоидных клеток образуются гигантские многоядерные клетки. Вокруг очага воспаления формируется соединительнотканная капсула, некротизированные ткани обызвествляются. В результате этого происходит формирование первичного туберкулезного комплекса, внутри которого находится казеозная некротизированная ткань и остаются живые микобактерии.

Клиника. Инкубационный период длится от 3-8 недель до 1 года и более.

Клинические проявления туберкулеза многообразны, поскольку микобактерии могут поражать любые органы (кишечник, мочеполовые органы, кожу, суставы). Симптомами туберкулеза являются быстрая утомляемость, слабость, потеря массы

тела, длительная субфебрильная температура, обильное ночное потоотделение, кашель с мокротой с кровью, одышкой. Симптомов, характерных только для туберкулеза, нет. При поражении кожи отмечаются изъязвленные очаги. При туберкулезе костей и суставов возникают поражения, характерные для артритов любой этиологии: истончение хрящей, возникновение шипов, сужение полостей суставов.

Иммунитет. Противотуберкулезный иммунитет формируется в ответ на проникновение в организм микобактерий в процессе инфицирования или вакцинации и носит нестерильный характер, что обусловлено длительной персистенцией бактерий в организме. Он проявляется через 4-8 недель после попадания микробов в организм. Формируется как клеточный, так и гуморальный иммунитет.

Клеточный иммунитет проявляется состоянием повышенной чувствительности (сенсибилизации). Благодаря этому организм приобретает способность быстро связывать новую дозу возбудителя и удалять ее из организма: Т-лимфоциты распознают клетки, инфицированные микобактериями, атакуют их и разрушают.

Гуморальный иммунитет проявляется синтезом антител к антигенам микобактерий. Образуются циркулирующие иммунные комплексы (ЦИК), которые способствуют удалению антигенов из организма.

Иммунитет при туберкулезе сохраняется до тех пор, пока в организме есть возбудитель. Такой иммунитет называют нестерильным или инфекционным. После освобождения организма от микобактерий иммунитет быстро исчезает.

Микробиологическая диагностика. Исследуемый материал — мокрота,

аспират бронхов, отделяемое свищей, СМЖ, моча, испражнения. Чаще всего исследуют мокроту. Для диагностики туберкулеза применяют основные и дополнительные методы исследования.

— бактериоскопический метод (световая и люминесцентная микроскопия);

— кожные аллергические пробы;

— молекулярно-биологический метод (ПЦР).

Бактериоскопическое исследование – это многократное проведение прямой микроскопии мазков из исследуемого материала, окрашенных по ЦилюНильсену. В препаратах можно обнаружить единичные микроорганизмы, если в 1 мл мокроты их содержится не менее 10000-100000 бактериальных клеток (предел метода). Этот метод применяется:

— при обследовании лиц с симптомами, подозрительными на туберкулез (кашель с выделением мокроты более 3 недель, боли в грудной клетке, кровохарканье, потеря массы тела);

— у лиц, контактировавших с больными туберкулезом;

— у лиц, имеющих рентгенологические изменения в легких, подозрительные на туберкулез.

При получении отрицательных результатов прибегают к методам обогащения материала: центрифугированию (седиментации) и флотации. Чаще применяют метод флотации.

Метод центрифугирования – исследуемый материал обрабатывают щелочью и центрифугируют. Препарат для микроскопирования готовят из осадка.

Метод флотации – исследуемый материал обрабатывают смесью щелочи и ксилола (бензина, бензола, толуола). Пробу энергично встряхивают 10-15 минут, добавляют дистиллированную воду и выдерживают в течение 1-2 часов при комнатной температуре. Капельки углевода адсорбируют микобактерии и всплывают, образуя на поверхности пену. Препарат для микроскопирования готовят из образующейся пены.

Бактериологическое исследование проводят путем высева исследуемого материала (после обработки 6-12% раствором серной кислоты) на 2-3 различные по составу питательные среды одновременно. В качестве ускоренных методов бактериологической диагностики, для сокращения времени выделения и идентификации возбудителя до 3-4 дней, применяют метод микрокультур (метод Прайса), а также полностью автоматизированные коммерческие системы бульонного культивирования ВАСТЕС MGIT 960 и МВ/ВасТ.

Бактериологический метод позволяет получить чистую культуру для определения ее вирулентности и чувствительности к лекарственным препаратам. Этот метод широко применяется и для контроля за эффективностью проводимой терапии.

Биологическая проба наиболее чувствительна, так как позволяет обнаружить от 1 до 5 микробных клеток в исследуемом материале. Метод используется при исследовании биопсийного материала, а также при получении отрицательных результатов при использовании первых двух методов исследования. Для этого морским свинкам подкожно или внутрибрюшинно вводят исследуемый материал (1 мл). Через 1-2 месяца у животных развивается генерализованный туберкулез с летальным исходом.

Серологический метод. Предложены РСК, РНГА, иммуноферментный анализ, иммуноблоттинг, определение ЦИК.

Туберкулинодиагностика основана на определении повышенной чувствительности организма к туберкулину (в результате заражения возбудителями туберкулеза или специфической вакцинации) с помощью кожных аллергических проб. Для постановки кожной аллергической пробы используют туберкулин. Туберкулин — это общее название препаратов, полученных из микобактерии человеческого или бычьего типов:

— старый туберкулин Коха — АТК (Alt Tuberculin Косh), впервые получен в 1880 г. Р. Кохом. Представляет собой фильтрат автоклавированной 5-6-недельной бульонной культуры микобактерий туберкулеза;

— сухой очищенный туберкулин — РРD (Purified Protein Derivative),

полученный из культур M. tuberculosis и M. bovis ;

— очищенный туберкулин, приготовленный М.А. Линниковой (РРD-L) из культур M. tuberculosis и M. bovis .

Для диагностики туберкулеза первоначально использовали накожную пробу Пирке (скарификационную). В настоящее время с целью своевременного выявления

первичного инфицирования детей и подростков применяется внутрикожная проба Манту. При постановке пробы Манту туберкулин (РРD) вводят строго внутрикожно на внутреннюю поверхность средней трети предплечья до образования “пуговки”. Результаты пробы учитывают через 48-72 часа по наличию папулы. Проба Манту оценивается следующим образом:

— отрицательная — наличие реакции от укола до 2 мм в диаметре;

— сомнительная — папула диаметром 2-4 мм или гиперемия;

— положительная — папула диаметром 5-17 мм у детей и подростков и 5-21 мм

— гиперергическая — папула диаметром более 17 мм у детей и подростков и более 21 мм у взрослых.

Туберкулиновая реакция становится положительной через 4-6 недель после инфицирования или вакцинации. После вакцинации положительные реакции на туберкулин сохраняются в течение 3-7 лет. Положительный результат нельзя рассматривать как признак активного процесса. Положительная проба Манту указывает, что человек ранее был инфицирован микобактериями. Люди с положительными туберкулиновыми пробами подвержены риску заболевания в результате активации первичного очага. Если у взрослых положительная реакция свидетельствует об инфицировании, то у детей, ранее не реагировавших на туберкулин, появление впервые зарегистрированной положительной реакции (вираж туберкулиновой пробы) указывает на недавнее заражение и служит показанием для проведения клинического обследования и лечения.

При отрицательной реакции риск активизации первичного очага отсутствует, но существует опасность первичного инфицирования. Отрицательная проба отмечается у здоровых неинфицированных лиц, а также у больных промежуточными формами туберкулеза.

Для экспресс-диагностики туберкулеза применяют РИФ с использованием видоспецифических моноклональных антител, метод лазерной флюоресценции, микробиочипы, а также ПЦР, позволяющую сократить исследования до 2 суток.

Лечение. Антибиотикотерапия — основной метод лечения туберкулеза. По степени эффективности противотуберкулезные препараты делятся на 3 группы:

— группа А — наиболее эффективные препараты: изониазид (антиметаболит, аналог изоникотиновой кислоты, ингибирует синтез ферментов, участвующих в синтезе миколовых кислот, которые входят в состав клеточной стенки микобактерий), рифампицин и их производные. Получены препараты, превосходящие рифампицин по лечебным свойствам (рифапентин и рифабутин), а также комбинированные препараты (рифатер, рифанг и т. д.);

— группа В — препараты средней эффективности: этамбутол (синтетический препарат, ингибирует ферменты, участвующие в синтезе клеточной стенки микобактерий, активен только в отношении размножающихся бактерий), канамицин, стрептомицин, циклосерин, этионамид (протионамид), пиразинамид, флоримицин, производные фторхинолонов;

— группа С — малые противотуберкулезные препараты (ПАСК и тибон или тиоцетозон). Эта группа препаратов в экономически развитых странах и в России не применяется.

Очень быстро появляются штаммы микобактерий, резистентные к противотуберкулезным препаратам. Поэтому используют комбинации препаратов с разным механизмом действия, а также производят частую замену препаратов. Это замедляет появление устойчивых форм. В современных схемах лечения применяют одновременно по 3-5 препаратов (трех-пятикомпонентные схемы лечения).

Специфическая профилактика. Специфическую профилактику осуществляют путем введения живой вакцины БЦЖ (ВСG — Bacille Calmette-Guerin). Штамм БЦЖ селекционирован в 1919 г. А. Кальметтом и К. Гереном путем длительного пассирования M. bovis на картофельно-глицериновой среде с добавлением желчи.

Вакцинацию проводят у новорожденных на 3-7-й день жизни внутрикожно. На месте введения вакцины формируется инфильтрат с небольшим узелком в центре. Обратное развитие инфильтрата происходит в течение 3-5 месяцев. Ревакцинация – в 7 и 14 лет лицам с отрицательной реакцией Манту, поэтому перед ее проведением ставится проба Манту. У новорожденных со сниженной резистентностью и в регионах, благополучных по туберкулезу, применяется менее реактогенная вакцина БЦЖ-М, содержащая в 2 раза меньшее количество микробов.

После обсуждения теоретических вопросов преподаватель объясняет порядок проведения самостоятельной работы.

1. Студенты готовят препараты из культур непатогенных микобактерий, окрашивают их по Цилю-Нильсену, микроскопируют, зарисовывают микроскопическую картину в рабочую тетрадь.

2. В рабочей тетради студенты зарисовывают схему лабораторной диагностики туберкулеза.

7. Оценивание знаний, умений, навыков по теме занятия:

Ответы на вопросы и активность на занятии оцениваются по 5-балльной системе.

8. Литература для подготовки темы:

1. Галынкин В., Заикина Н., Кочеровец В. Основы фармацевтической микробиологии. 2008.

2. Медицинская микробиология, вирусология и иммунология: учебник для студентов медицинских вузов. Под ред. А.А. Воробьева. Учебники и учеб. пособия для высшей школы. Издательство: Медицинское информационное агентство, 2012. – 702 с.

3. Микробиология: учеб. для студентов учреждений высш. проф. образования, обучающихся по специальности 060301.65 “Фармация” / под ред. В.В. Зверева, М.Н. Бойченко. – М.: ГЭОТАР-Медиа, 2012. – 608 с.: ил.

4. Одегова Т.Ф., Олешко Г.И., Новикова В.В. Микробиология. Учебник для фармацевтических вузов и факультетов. — Пермь, 2009. — 378 с.

1. Коротяев А.И. Медицинская микробиология, иммунология и вирусология: Учебник для студентов мед. вузов / А.И. Коротяев, С.А. Бабичев. — 5-е изд., испр. и

доп. – СПб.: СпецЛит, 2012. – 759 с.: ил.

2. Медицинская микробиология: учебник. 4-е изд. Поздеев О.К. / Под ред. В.И. Покровского. – 2010. – 768 с.

3. Руководство по медицинской микробиологии. Общая и санитарная микробиология. Книга 1 / Колл. авторов // Под редакцией Лабинской А.С., Волиной Е.Г. – М.: Издательство БИНОМ, 2008. – 1080 с.: ил.

Методические указания переработаны и дополнены профессором Литусовым Н.В.

Обсуждены на заседании кафедры микробиологии, вирусологии и иммунологии.

Патогенность туберкулезных бак­терий связана с высоким содержанием липидов. Содержащиеся в липидах фтиоидная, миколовая и другие жирные кислоты оказывают своеобразное токсическое действие на клетки тканей. Например, фосфа­тидная фракция, наиболее активная из всех липидов, обладает способностью вызы­вать внормальном организме специфическую тканевую реакцию с образованием эпителиоидных клеток, жировая фракция – туберкулоидной ткани. Эти свойства указанных липидных фракций связаны с наличием в их составе фтиоидной кислоты. Восковая фракция, содержащая миколовую кислоту, вызывает реакции с образова­нием многочисленных гигантских клеток. Таким образом, с липидами, состоящими из нейтральных жиров, восков, стеринов, фосфатидов, сульфатидов и содержащими такие жирные кислоты, как фтиоидная, миколовая, туберкуло-стеариновая, пальми­тиновая и другие, связаны патогенные свойства туберкулезной палочки и те биологиче­ские реакции, которыми ткани отвечают на их внедрение. Главным фактором патогенности является токсический гликолипид (корд-фактор), который располагается на поверхности и в толще клеточной стенки. По химической природе он представля­ет собой полимер, состоящий из одной молекулы дисахарида трегалозы и связанных с ней в эквивалентных соотношениях миколовой и миколиновой высокомолекуляр­ных жирных кислот – трегалоза-6,6"-димиколат (С 186 Н 366 О ш). Корд-фактор не только оказывает токсическое действие на ткани, но и защищает туберкулезные па­лочки от фагоцитоза, блокируя окислительное фосфорилирование в митохондриях макрофагов. Будучи поглощенными фагоцитами, они размножаются в них и вызы­вают их гибель. Корд-фактор обладает двумя характерными свойствами, указываю­щими на его важную роль как основного фактора патогенности.

1. При внутрибрюшинном заражении белых мышей он вызывает их гибель. Подобным действи­ем не обладает ни одна другая фракция туберкулезной палочки.

2. Он подавляет миграцию лейкоцитов больного туберкулезом человека (in vivo и in vitro).

М. tuberculosis, лишенные корд-фактора, являются непатогенными или слабопа­тогенными для человека и морских свинок. С необычным химическим составом туберкулезных клеток связана также способность их вызывать характерную для туберкулеза реакцию гиперчувствительности замедленного типа, выявляемую с по­мощью туберкулиновой пробы.

121. Свойства микобактерий, определяемые высоким содержанием липидов.

1. Устойчивость к кислотам, щелочам и спирту

2. Трудная окрашиваемость крсителями. Для их окрашивания применяют интенсивные методы. Например, по списобу Циля-нильсена окрашивают концентрированным раствором карболового фуксина при подогревании.. При докрашивании метиленовым синим в мазке все бактерии, клеточные элементы и слизь окрашиваются в синий цвет, а туберклезные палочки сохраняют исходную красную

3. относительно высокая устойчивость к высушиванию и действию солнечных лучей.

4. Устойчивость к действию обычных дезинфизирующих веществ

5. Высокая гидрофобность, которая находит свое отражение в культуральных свойствах: на глицериновом бульоне рост в виде пленки желтоватого цвета, которая постепенно утолщается, становится ломкой и приобретает бугристо-морщинистый вид, при этом быльон остается прозрачным.

6.Патогенность туберкулезных бактерий. Содержащаяся в липидах фтиоидная, миколовая и другие жирные кислоты оказывают своеобразное токсическое действие на клетки тканей

122. Эпидемиология туберкулеза .

Источником заражения является человек больной туберкулезом(реже животные).От больного человека возбудитель выделяется чаще всего с мокротой, а так же с мочой, испражнениями и гноем.Туберкулезная палочка проникает в ограниз через дыхательные пути-воздушно-капельным и, особенно часто воздушно-пылевым путем.Также вхожными воротами могут быть любые слизистые оболоччи и любой поврежденный участок кожи.Зараженте М.bovis, наблюдается чаще всего у детей, поскольку молоко для них служит основным продуктом питания, однако заражение также возможно от больных животных и аэрогенным путем. Попадая в окружающую среду, микобактерии туберкулеза длительное время сохраняют свою жизнеспособность. Так, в высохшей мокроте они выживают в течение нескольких недель, на предметах, окружающих больного (белье,книги) - более 3 мес., в воде - более года, в почве - до 6 мес.,длительно сохраняются в молочных продуктах. К действию дезинфицирующих

Новое на сайте

>

Самое популярное