Домой Любвь Чем обусловлена способность ферментов ускорять биохимические реакции. Ферменты, их свойства, разнообразие и значение

Чем обусловлена способность ферментов ускорять биохимические реакции. Ферменты, их свойства, разнообразие и значение

Ферменты

Обмен веществ в организме можно определить как совокупность всех химических превращений, которым подвергаются соединения, поступающие извне. Эти превращения включают все известные виды химических реакций: межмолекулярный перенос функциональных групп, гидролитическое и негидролитическое расщепления химических связей, внутримолекулярная перестройка, новообразование химических связей и окислительно - восстановительные реакции. Такие реакции протекают в организме с чрезвычайно большой скоростью только в присутствии катализаторов. Все биологические катализаторы представляют собой вещества белковой природы и носят названия ферменты (далее Ф) или энзимы (Е).

Ферменты не являются компонентами реакций, а лишь ускоряют достижение равновесия увеличивая скорость как прямого, так и обратного превращения. Ускорение реакции происходит за счет снижении энергии активации – того энергетического барьера, который отделяет одно состояние системы (исходное химическое соединение) от другого (продукт реакции).

Ферменты ускоряют самые различные реакции в организме. Так достаточно простая с точки зрения традиционной химии реакция отщепления воды от угольной кислоты с образованием СО 2 требует участия фермента, т.к. без него она протекает слишком медленно для регулирования рН крови. Благодаря каталитическому действию ферментов в организме становится возможным протекание таких реакций, которые без катализатора шли бы в сотни и тысячи раз медленнее.

Свойства ферментов

1. Влияние на скорость химической реакции: ферменты увеличивают скорость химической реакции, но сами при этом не расходуются.

Скорость реакции – это изменение концентрации компонентов реакции в единицу времени. Если она идет в прямом направлении, то пропорциональна концентрации реагирующих веществ, если в обратном – то пропорциональна концентрации продуктов реакции. Отношение скоростей прямой и обратной реакций называется константой равновесия. Ферменты не могут изменять величины константы равновесия, но состояние равновесия в присутствии ферментов наступает быстрее.

2. Специфичность действия ферментов. В клетках организма протекает 2-3 тыс. реакций, каждая из которые катализирутся определенным ферментом. Специфичность действия фермента – это способность ускорять протекание одной определенной реакции, не влияя на скорость остальных, даже очень похожих.

Различают:

Абсолютную – когда Ф катализирует только одну определенную реакцию (аргиназа – расщепление аргинина)

Относительную (групповую спец) – Ф катализирует определенный класс реакций (напр. гидролитическое расщепление) или реакции при участии определенного класса веществ.


Специфичность ферментов обусловлена их уникальной аминокислотной последовательностью, от которой зависит конформация активного центра, взаимодействующего с компонентами реакции.

Вещество, химическое превращение которого катализируется ферментом носит название субстрат (S) .

3. Активность ферментов – способность в разной степени ускорять скорость реакции. Активность выражают в:

1) Международных единицах активности – (МЕ) количество фермента, катализирующего превращение 1 мкМ субстрата за 1 мин.

2) Каталах (кат) – количество катализатора (фермента), способное превращать 1 моль субстрата за 1 с.

3) Удельной активности – число единиц активности (любых из вышеперечисленных) в исследуемом образце к общей массе белка в этом образце.

4) Реже используют молярную активность – количество молекул субстрата превращенных одной молекулой фермента за минуту.

Активность зависит в первую очередь от температуры . Наибольшую активность тот или иной фермент проявляет при оптимальной температуре. Для Ф живого организма это значение находится в пределах +37,0 - +39,0 °С, в зависимости от вида животного. При понижении температуры, замедляется броуновское движение, уменьшается скорость диффузии и, следовательно, замедляется процесс образования комплекса между ферментом и компонентами реакции (субстратами). В случае повышения температуры выше +40 - +50 °С молекула фермента, которая является белком, подвергается процессу денатурации. При этом скорость химической реакции заметно падает (рис. 4.3.1.).

Активность ферментов зависит также от рН среды . Для большинства из них существует определенное оптимальное значение рН, при котором их активность максимальна. Поскольку в клетке содержатся сотни ферментов и для каждого из них существуют свои пределы опт рН, то изменение рН это один из важных факторов регуляции ферментативной активности. Так, в результате одной химреакции при участии определенного фермента рН опт которого лежит в перделах 7.0 – 7.2 образуется продукт, который является кислотой. При этом значение рН смещается в область 5,5 – 6.0. Активность фермента резко снижается, скорость образования продукта замедляется, но при этом активизируется другой фермент, для которого эти значения рН оптимальны и продукт первой реакции подвергается дальнейшему химическому превращению. (Еще пример про пепсин и трипсин).

Ферменты – это особый вид протеинов, которым природой отведена роль катализаторов разных химических процессов.

Этот термин постоянно на слуху, правда, далеко не все понимают, что такое фермент или энзим, какие функции выполняет это вещество, а также чем отличаются ферменты от энзимов и отличаются ли вообще. Все это сейчас и узнаем.

Без этих веществ ни люди, ни животные не смогли бы переваривать пищу. А впервые к применению ферментов в быту человечество прибегло более 5 тысяч лет тому назад, когда наши предки научились хранить молоко в «посуде» из желудков животных. В таких условиях под воздействием сычужного фермента превращалось в сыр. И это только один из примеров работы энзима в качестве катализатора, ускоряющего биологические процессы. Сегодня ферменты незаменимы в промышленности, они важны для производства , кожи, текстиля, спирта и даже бетона. В моющих средствах и стиральных порошках также присутствуют эти полезные вещества – помогают выводить пятна при низких температурах.

История открытия

Энзим в переводе с греческого означает «закваска». А открытию этого вещества человечество обязано голландцу Яну Баптисту Ван-Гельмонту, жившему в XVI веке. В свое время он весьма заинтересовался спиртовым брожением и в ходе исследования нашел неизвестное вещество, ускоряющее этот процесс. Голландец назвал его fermentum, что в переводе означает «брожение». Затем, почти тремя веками позже, француз Луи Пастер, также наблюдая за процессами брожения, пришел к выводу, что ферменты – не что иное, как вещества живой клетки. А через некоторое время немец Эдуард Бухнер добыл фермент из дрожжей и определил, что это вещество не является живым организмом. Он также дал ему свое название – «зимаза». Еще несколькими годами позже другой немец Вилли Кюне предложил все белковые катализаторы разделить на две группы: ферменты и энзимы. Причем вторым термином он предложил называть «закваску», действия которой распространяются вне живых организмов. И лишь 1897 год положил конец всем научным спорам: оба термины (энзим и фермент) решено использовать как абсолютные синонимы.

Структура: цепь из тысяч аминокислот

Все ферменты являются белками, но не все белки – ферменты. Как и другие протеины, энзимы состоят из . И что интересно, на создание каждого фермента уходит от ста до миллиона аминокислот, нанизанных, словно жемчуг на нить. Но эта нить не бывает ровной – обычно изогнута в сотни раз. Таким образом, создается трехмерная уникальная для каждого фермента структура. Меж тем, молекула энзима – сравнительно крупное образование, и лишь небольшая часть его структуры, так называемый активный центр, участвует в биохимических реакциях.

Каждая аминокислота соединена с другой определенным типом химической связи, а каждый фермент имеет свою уникальную последовательность аминокислот. Для создания большинства из них используются примерно по 20 видов. Даже незначительные изменения последовательности аминокислот могут кардинально менять внешний вид и «таланты» фермента.

Биохимические свойства

Хотя при участии ферментов в природе происходит огромное количество реакций, но все они могут быть разделены на 6 категорий. Соответственно, каждая из этих шести реакций протекает под влиянием определенного типа ферментов.

Реакции при участии энзимов:

  1. Окисление и восстановление.

Ферменты, участвующие в этих реакциях, называются оксидоредуктазами. В качестве примера можно вспомнить как, алкогольдегидрогеназы преобразуют первичные спирты в альдегид.

  1. Реакция переноса группы.

Ферменты, благодаря которым происходят эти реакции, называются трансферазами. Они обладают умением перемещать функциональные группы от одной молекулы к другой. Так происходит, например, когда аланинаминотрансферазы перемещают альфа-аминогруппы между аланином и аспартатом. Также трансферазы перемещают фосфатные группы между АТФ и другими соединениями, а из остатков создают .

  1. Гидролиз.

Гидролазы, участвующие в реакции, умеют разрывать одинарные связи, добавляя элементы воды.

  1. Создание или удаление двойной связи.

Этот вид реакций негидролитическим путем происходит при участии лиазы.

  1. Изомеризация функциональных групп.

Во многих химических реакциях положение функциональной группы изменяется в пределах молекулы, но сама молекула состоит из того же количества и типов атомов, что были до начала реакции. Иными словами, субстрат и продукт реакции являются изомерами. Такого типа трансформации возможны под влиянием ферментов изомеразы.

  1. Образование одинарной связи с устранением элемента воды.

Гидролазы разрушают связь, добавляя в молекулу элементы воды. Лиазы осуществляют обратную реакцию, удаляя водную часть из функциональных групп. Таким образом, создают простую связь.

Как работают в организме

Ферменты ускоряют практически все химические реакции, происходящие в клетках. Они имеют жизненно важное значение для человека, облегчают пищеварение и ускоряют метаболизм.

Некоторые из этих веществ помогают разрушать слишком большие молекулы на более мелкие «куски», которые организм сможет переварить. Другие наоборот связывают мелкие молекулы. Но ферменты, говоря научным языком, обладают высокой селективностью. Это значит, что каждое из этих веществ способно ускорять только определенную реакцию. Молекулы, с которыми «работают» ферменты, называются субстратами. Субстраты в свою очередь создают связь с частью фермента, именуемой активным центром.

Существуют два принципа, объясняющие специфику взаимодействия ферментов и субстратов. В так называемой модели «ключ-замок» активный центр фермента занимает в субстрате место строго определенной конфигурации. Согласно другой модели, оба участника реакции, активный центр и субстрат, меняют свои формы, чтобы соединиться.

По какому бы принципу ни происходило взаимодействие результат всегда одинаковый – реакция под воздействием энзима протекает во много раз быстрее. Вследствие такого взаимодействия «рождаются» новые молекулы, которые потом отделяются от фермента. А вещество-катализатор продолжает выполнять свою работу, но уже при участии других частиц.

Гипер- и гипоактивность

Бывают случаи, когда энзимы выполняют свои функции с неправильной интенсивностью. Чрезмерная активность вызывает чрезмерное формирование продукта реакции и дефицит субстрата. В результате – ухудшение самочувствия и серьезные болезни. Причиной гиперактивности энзима может быть как генетическое нарушение, так и избыток витаминов или , используемых в реакции.

Гипоактивность ферментов может даже стать причиной смерти, когда, например, энзимы не выводят из организма токсины либо возникает дефицит АТФ. Причиной такого состояния также могут быть мутированные гены или, наоборот, гиповитаминоз и дефицит других питательных веществ. Кроме того, пониженная температура тела аналогично замедляет функционирование энзимов.

Катализатор и не только

Сегодня можно часто услышать о пользе ферментов. Но что такое эти вещества, от которых зависит работоспособность нашего организма?

Энзимы – это биологические молекулы, жизненный цикл которых не определяется рамками от рождения и смерти. Они просто работают в организме до тех пор, пока не растворятся. Как правило, это происходит под воздействием других ферментов.

В процессе биохимической реакции они не становятся частью конечного продукта. Когда реакция завершена, фермент покидает субстрат. После этого вещество готово снова приступить к работе, но уже на другой молекуле. И так продолжается столько, сколько необходимо организму.

Уникальность ферментов в том, что каждый из них выполняет только одну, ему отведенную функцию. Биологическая реакция происходит только тогда, когда фермент находит правильный для него субстрат. Это взаимодействие можно сравнить с принципом работы ключа и замка – только правильно подобранные элементы смогут «сработаться». Еще одна особенность: они могут работать при низких температурах и умеренном рН, а в роли катализаторов являются более стабильными, чем любые другие химические вещества.

Ферменты в качестве катализаторов ускоряют процессы метаболизма и другие реакции.

Как правило, эти процессы состоят из определенных этапов, каждый из которых требует работы определенного энзима. Без этого цикл преобразования или ускорения не сможет завершиться.

Пожалуй, из всех функций ферментов наиболее известна – роль катализатора. Это значит, что энзимы комбинируют химические реагенты таким образом, чтобы снизить энергетические затраты, необходимые для более быстрого формирования продукта. Без этих веществ химические реакции протекали бы в сотни раз медленнее. Но на этом способности энзимов не исчерпываются. Все живые организмы содержат энергию, необходимую им для продолжения жизни. Аденозинтрифосфат, или АТФ, это своего рода заряженная батарейка, которая снабжает клетки энергией. Но функционирование АТФ невозможно без ферментов. И главный энзим, производящий АТФ, – синтаза. Для каждой молекулы глюкозы, которая трансформируется в энергию, синтаза производит около 32-34 молекул АТФ.

Помимо этого, энзимы (липаза, амилаза, протеаза) активно применяются в медицине. В частности, служат компонентом ферментативных препаратов, таких как «Фестал», «Мезим», «Панзинорм», «Панкреатин», применяемых для лечения несварения желудка. Но некоторые энзимы способны также влиять на кровеносную систему (растворяют тромбы), ускорять заживление гнойных ран. И даже в противораковой терапии также прибегают к помощи ферментов.

Факторы, определяющие активность энзимов

Поскольку энзим способен ускорять реакции во много раз, его активность определяется так называемым числом оборотов. Этот термин обозначает количество молекул субстрата (реагирующего вещества), которую способна трансформировать 1 молекула фермента за 1 минуту. Однако существует ряд факторов, определяющих скорость реакции:

  1. Концентрация субстрата.

Увеличение концентрации субстрата ведет к ускорению реакции. Чем больше молекул действующего вещества, тем быстрее протекает реакция, поскольку задействовано больше активных центров. Однако ускорения возможно только до тех пор, пока не задействуются все молекулы фермента. После этого, даже повышение концентрации субстрата не приведет к ускорению реакции.

  1. Температура.

Обычно повышение температуры ведет к ускорению реакций. Это правило работает для большинства ферментативных реакций, но только до тех пор, пока температура не поднимется выше 40 градусов по Цельсию. После этой отметки скорость реакции, наоборот, начинает резко снижаться. Если температура опустится ниже критической отметки, скорость ферментативных реакций повысится снова. Если температура продолжает расти, ковалентные связи рушатся, а каталитическая активность фермента теряется навсегда.

  1. Кислотность.

На скорость ферментативных реакций также влияет показатель рН. Для каждого фермента существует свой оптимальный уровень кислотности, при котором реакция проходит наиболее адекватно. Изменение уровня рН сказывается на активности фермента, а значит, и скорости реакции. Если изменения слишком велики, субстрат теряет способность связываться с активным ядром, а энзим больше не может катализировать реакцию. С восстановлением необходимого уровня рН, активность фермента также восстанавливается.

Ферменты, присутствующие в человеческом организме, можно разделить на 2 группы:

  • метаболические;
  • пищеварительные.

Метаболические «работают» над нейтрализацией токсических веществ, а также способствуют выработке энергии и белков. Ну и, конечно, ускоряют биохимические процессы в организме.

За что отвечают пищеварительные – понятно из названия. Но и здесь срабатывает принцип селективности: определенный тип ферментов влияет только на один вид пищи. Поэтому для улучшения пищеварения можно прибегнуть к маленькой хитрости. Если организм плохо переваривает что-то из еды, значит надо дополнить рацион продуктом, содержащим фермент, который способен расщепить трудно перевариваемую пищу.

Пищевые ферменты – катализаторы, которые расщепляют продукты питания до состояния, в котором организм способен поглощать из них полезные вещества. Пищеварительные энзимы бывают нескольких типов. В человеческом организме разные виды ферментов содержатся на разных участках пищеварительного тракта.

Ротовая полость

На этом этапе на пищу воздействует альфа-амилаза. Она расщепляет углеводы, крахмалы и глюкозу, которые содержатся в картофеле, фруктах, овощах и других продуктах питания.

Желудок

Здесь пепсин расщепляет белки до состояния пептидов, а желатиназа – желатин и коллаген, содержащиеся в мясе.

Поджелудочная железа

На этом этапе «работают»:

  • трипсин – отвечает за расщепление белков;
  • альфа-химотрипсин – помогает усвоению протеинов;
  • эластазы – расщепляют некоторые виды белков;
  • нуклеазы – помогают расщеплять нуклеиновые кислоты;
  • стеапсин – способствует усвоению жирной пищи;
  • амилаза – отвечает за усвоение крахмалов;
  • липаза – расщепляет жиры (липиды), содержащиеся в молочных продуктах, орехах, маслах и мясе.

Тонкая кишка

Над пищевыми частицами «колдуют»:

  • пептидазы – расщепляют пептидные соединения к уровню аминокислот;
  • сахараза – помогает усваивать сложные сахара и крахмалы;
  • мальтаза – расщепляет дисахариды к состоянию моносахаридов (солодовый сахар);
  • лактаза – расщепляет лактозу (глюкозу, содержащуюся в молочных продуктах);
  • липаза – способствует усвоению триглицеридов, жирных кислот;
  • эрепсин – воздействует на протеины;
  • изомальтаза – «работает» с мальтозой и изомальтозой.

Толстый кишечник

Здесь функции ферментов выполняют:

  • кишечная палочка – отвечает за переваривание ;
  • лактобактерии – влияют на лактозу и некоторые другие углеводы.

Кроме названных энзимов, существуют еще:

  • диастаза – переваривает растительный крахмал;
  • инвертаза – расщепляет сахарозу (столовый сахар);
  • глюкоамилаза – превращает в глюкозу;
  • альфа-галактозидаза – способствует перевариванию бобов, семян, соевых продуктов, корневых овощей и листовых;
  • бромелайн – фермент, полученный из , способствует расщеплению разных видов белков, эффективен при разных уровнях кислотности среды, обладает противовоспалительными свойствами;
  • папаин – фермент, выделенный из сырой папайи, способствует расщеплению мелких и крупных протеинов, эффективен в широком диапазоне субстратов и кислотности.
  • целлюлаза – расщепляет целлюлозу, растительные волокна (в человеческом организме не обнаружена);
  • эндопротеаза – расщепляет пептидные связи;
  • экстракт бычьей желчи – энзим животного происхождения, стимулирует моторику кишечника;
  • панкреатин – фермент животного происхождения, ускоряет переваривание и белков;
  • панкрелипаза – животный фермент, способствует усвоению

    Ферментированные продукты являются практически идеальным источником полезных бактерий, необходимых для правильного пищеварения. И в то время, когда аптечные пробиотики «работают» только в верхнем отделе пищеварительной системы и часто не добираются до кишечника, эффект от ферментативных продуктов ощущается во всем желудочно-кишечном тракте.

    Например, абрикосы содержат в себе смесь полезных энзимов, в том числе инвертазу, которая отвечает за расщепление глюкозы и способствует быстрому высвобождению энергии.

    Натуральным источником липазы (способствует более быстрому перевариванию липидов) может послужить . В организме это вещество производит поджелудочная железа. Но дабы облегчить жизнь этому органу, можно побаловать себя, например, салатом с авокадо – вкусно и полезно.

    Кроме того, что , пожалуй, самый известный источник , он также поставляет в организм амилазу и мальтазу. Амилаза содержится также в хлебе, крупах. Мальтаза способствует расщеплению мальтозы, так называемого солодового сахара, который в обилии представлен в пиве и кукурузном сиропе.

    Другой экзотический фрукт – ананас содержит в себе целый набор энзимов, в том числе и бромелайн. А он, согласно некоторым исследованиям, еще и обладает противораковыми и противовоспалительными свойствами.

    Экстремофилы и промышленность

    Экстремофилы – это вещества, способны сохранять жизнедеятельность в экстремальных условиях.

    Живые организмы, а также ферменты, позволяющие им функционировать, были найдены в гейзерах, где температура близка к точке кипения, и глубоко во льдах, а также в условиях крайней солености (Долина Смерти в США). Кроме того, ученые находили энзимы, для которых уровень рН, как оказалось, также не принципиальное требование для эффективной работы. Исследователи с особым интересом изучают ферменты-экстремофилы, как вещества, которые могут быть широко использованы в промышленности. Хотя и сегодня энзимы уже нашли свое применение в индустрии как биологически и экологически чистые вещества. К применению энзимов прибегают в пищевой промышленности, косметологии, производстве бытовой химии.

    Извозчикова Нина Владиславовна

    Специальность: инфекционист, гастроэнтеролог, пульмонолог .

    Общий стаж: 35 лет .

    Образование: 1975-1982, 1ММИ, сан-гиг, высшая квалификация, врач-инфекционист .

    Научная степень: врач высшей категории, кандидат медицинских наук.

1. изменяют свободную энергию реакции

2. ингибируют обратную реакцию

3. изменяют константу равновесия реакции

4. направляют реакцию по обходному пути с более низкими значениями энергии активации промежуточных реакций

102. Изменение конформации молекулы фермента может происходить:

2. только при изменении рН

103. Изменение степени ионизации функциональных групп фермента происходит при:

1. только при изменении температуры

2. только при изменении рН

3. только при изменении обоих условий

4. не происходит ни при каких изменениях

104. Гидролиз пептидных связей происходит при:

1. только при изменении температуры

2. только при изменении рН

3. при изменении обоих условий

4. не происходит ни при каких изменениях температуры и рН

105. Нарушение слабых связей в молекуле фермента происходит при:

2. только при изменении рН

3. при изменении обоих условий

4. не происходит ни при каких изменениях

106 Пепсин проявляет оптимальную активность при значении рН:

1. 1,5-2,5

107. Оптимум рН для работы большинства ферментов является:

1. рН < 4,0

3. 6,0 < pH < 8,0

108. Выберите из нижеследующих утверждений правильные:

1. все ферменты проявляют максимальную активность при рН=7

2. большинство ферментов проявляет максимальную активность при рН, близкой к нейтральному

3. пепсин проявляет максимальную активность при рН = 1,5-2,5

109. С помощью уравнения Михаэлиса-Ментен можно рассчитать:

4. изменение свободной энергии в ходе химической реакции

V = V max x [S] / K m + [S]

1. энергию активации химической реакции

2. скорость катализируемой ферментом реакции

3. энергетический барьер химической реакции

111. Выберите правильные ответы: Константа Михаэлиса (K m) – это:

2. Может иметь разное значение для изоферментов

3. Величина, при которой все молекулы фермента находятся в форме ES

4. Чем больше её величина, тем больше сродство фермента к субстрату

112. Выберите правильные ответы: Константа Михаэлиса (K m) – это:

1. Параметр кинетики ферментативной реакции

2. Величина, при которой все молекулы фермента находятся в форме ES

3. Чем больше её величина, тем больше сродство фермента к субстрату


4. Концентрация субстрата, при которой достигается половина максимальной реакции скорости реакции (V max)

113. Назовите особенности строения и функционирования аллостерических ферментов:

3. при взаимодействии с лигандами наблюдается кооперативное изменение конформации субъединиц

4. при взаимодействии с лигандами наблюдается кооперативное изменение конформации субъединиц

114. Назовите особенности строения и функционирования аллостерических ферментов:

1. как правило, являются олигомерными белками

2. как правило, не являются олигомерными белками

3. проявляют регуляторные свойства при диссоциации молекулы на протомеры

4. при взаимодействии с лигандами наблюдается кооперативное изменение конформации субъединиц

Ферментами называются белковые вещества (см. Белки), ускоряющие жизненно важные химические реакции в клетках организмов. Являясь катализаторами, они образуют с исходными веществами неустойчивые промежуточные соединения: эти соединения, распадаясь, дают конечный продукт данной реакции и освобождают ферменты.

Действие некоторых ферментов легко наблюдать в опыте. Так, фермент каталаза значительно ускоряет разложение пероксида водорода Н2О2 на воду и кислород. Это жизненно важная реакция, так как пероксид водорода образуется в результате обмена веществ в клетке и сам по себе оказывает на клетку вредное действие. Каталаза содержится почти во всех клетках животных и растительных организмов.

Известно очень много ферментов, и каждый из них ускоряет только одну какую-либо реакцию или группы однотипных реакций. Эту особенность ферментов называют специфичностью или селективностью (избирательностью) действия. Направленность их действия позволяет организму быстро и точно выполнять сложную химическую работу по перестройке молекул пищевых веществ в нужные ему соединения.

Уже во рту во время пережевывания пищи под влиянием фермента амилазы сложные сахара, в частности крахмал, начинают разлагаться на менее сложные. Эта работа в дальнейшем будет продолжена в кишечнике ферментами карбогидразами. В желудке и кишечнике разложению с участием пепсина, трипсина, химотрипсина подвергаются белки пищи. Жиры разлагаются на глицерин и карбоновые кислоты (или их соли) под влиянием ферментов, называемых липазами. Все эти реакции разложения протекают по одному принципу: разрывается определенная химическая связь в молекуле белка, углевода или жира, и освободившиеся валентности используются для присоединения групп ОН- и иона Н+ из молекул воды. Происходит процесс гидролиза. Для молекулы белка эту реакцию можно представить так:

R 1 -CO-NH-R 2 - + НОН = -R 1 COOH + NH 2 -R 2 -

Известны ферменты, оказывающие иное действие на молекулы. Некоторые из них ускоряют окислительно-восстановительные реакции: они способствуют переносу электрона от одной молекулы (окисляемой) к другой (восстанавливаемой). Существуют ферменты, соединяющие молекулы друг с другом; ферменты, переносящие большие и сложные группы атомов от одной молекулы к другой, и т. д.

Располагая богатым набором ферментов-катализаторов, клетка разлагает молекулы пищевых белков, жиров и углеводов на небольшие фрагменты и из них заново строит белковые и иные молекулы, которые будут точно соответствовать потребностям данного организма. Вот почему великий русский физиолог И. П. Павлов назвал ферменты носителями жизни.

Активность большего числа ферментов определяется строением белковой молекулы. Определенное пространственное расположение остатков аминокислот, образующих цепеобразную молекулу белка (полипептидная цепь, см. Пептиды), создает условия для протекания катализируемой ферментом реакции. Длинная цепочка остатков аминокислот свернута в сложный клубок так, что аминокислоты, расположенные в цепи далеко друг от друга, могут оказаться соседями. Некоторые из возникших таким путем группировок остатков аминокислот проявляют каталитические свойства и образуют активный центр фермента.

Пепсин, химотрипсин, принимающие участие в пищеварении, могут служить примером ферментов, в которых активная группа является частью молекулы белка.

Другие ферменты для проявления активности нуждаются в веществах небелковой природы - так называемых кофакторах. Кофактором может быть ион металла (цинка, марганца, кальция и др.) или молекула органического соединения; в последнем случае ее часто называют коферментом. Иногда для действия фермента бывает необходимо присутствие как ионов металлов, так и коферментов. В отдельных случаях кофермент очень прочно соединен с белком; это наблюдается, например, у фермента каталазы, где кофермент представляет собой комплексное соединение железа (гем). В некоторых ферментах коферменты - это вещества, близкие по строению молекулы к витаминам. Витамины, таким образом, являются предшественниками коферментов. Так, из витамина В1 (тиамина) в клетках образуется тиамин-пирофосфат - кофермент важного фермента (его называют декарбоксилаза), превращающего пиро-виноградную кислоту в оксид углерода (IV) и ацетальдегид; из витамина В2 получаются коферменты флавиновых ферментов, осуществляющих в клетках перенос электронов - одну из стадий окисления пищевых веществ; из витамина В12 образуются коферменты, необходимые в процессе кроветворения, и т. д.

В последние годы широко используются так называемые иммобилизованные (неподвижные) ферменты. Для ускорения нужной реакции их закрепляют на поверхности инертного «носителя». В качестве его обычно используют силикагель - пористую белую массу, по составу - оксид кремния (IV) -или полимерные материалы. Через эту массу фильтруют исходные вещества. Фермент быстро и точно производит высокоспецифичную «химическую работу», в результате которой получаются продукты, почти не содержащие посторонних соединений.

Ферменты представляют собой высокоспециализи­рованные катализаторы белковой природы, которые уско­ряют химические реакции в животных и растительных организмах. Практически все химические преобразования в живом веществе осуществляются с помощью ферментов. Можно сказать, что ферменты являются движущей силой биохимических процессов в живых организмах.

В зависимости от природы и назначения ферменты мо­гут выделяться в окружающую среду или удерживаться внутри клетки. Они не утрачивают каталитической спо­собности и после выделения из организма (но вне клеток ферменты только расщепляют вещества). На этом осно­вано их использование в пищевой, легкой и медицинской промышленности, сельском хозяйстве и других отраслях народного хозяйства.

Академик И. П. Павлов писал: «Ферменты есть, так сказать, первый акт жизненной деятельности. Все хими­ческие процессы направляются в теле именно этими ве­ществами, они есть возбудители всех химических превра­щений. Все эти вещества играют огромную роль, они обусловливают собою те процессы, благодаря которым проявляется жизнь, они и есть в полном смысле возбуди­тели жизни».

Все ферментативные реакции протекают легко и бы­стро. Катализируемые в организме ферментативные реак­ции не сопровождаются образованием побочных продук­тов, в то время как в органических реакциях, проводимых с помощью искусственных катализаторов, всегда обра­зуется хотя бы один или несколько таких продуктов.

В живых организмах ферменты находятся в упорядо­ченном состоянии. В отдельных структурных образова­ниях клетки ферментативные реакции протекают в строго определенном порядке. Будучи точно скоординированными друг с другом, отдельные циклы реакций обеспечивают жизнедеятельность клеток, органов, тканей и организма в целом. В отдельных частях клетки осуществляются строго определенные биохимические процессы.

Наряду с тем, что ферменты играют решающую роль в живых организмах, им принадлежит видное место в про­изводстве пищевых продуктов и многих изделий других отраслей промышленности, а также в сельском хозяйстве. Производство этилового спирта, пива, вина, чая, хлеба, кисломолочных и многих других продуктов основано на действии ферментов . Ферменты участвуют в созревании и перезревании плодов и овощей, созревании и порче мяса и рыбы, сохраняемости зерна, муки, крупы и других продуктов .

В некоторых случаях присутствие ферментов в про­цессе переработки продуктов бывает нежелательным. При­мером этого может служить реакция ферментативного потемнения плодов и овощей в результате воздействия фермента полифенолоксидазы или прогоркание жиров муки в результате действия присутствующих в зародыше зерна ферментов липазы и липооксидазы.

В настоящее время из биологических объектов выде­лено около 3500 и изучено несколько сотен ферментов. Полагают, что живая клетка может содержать более 1000 различных ферментов. Каждый фермент, как пра­вило, катализирует только один тип химической реакции. Поскольку фермент способен ускорять только одну реак­цию или редко группу реакций одного типа, не влияя при этом на другие, в живых организмах может одновре­менно происходить много различных реакций. Хотя реакции отдельных ферментов протекают независимо друг от друга, тем не менее чаще всего они связаны между собой сложной последовательностью образования промежуточ­ных продуктов. При этом продукт одной реакции может служить субстратом или реагентом другой. Поэтому в одной и той же клетке одновременно происходят сотни и тысячи ферментативных реакций, протекающих в опре­деленной последовательности и в таких количествах, ко­торые обеспечивают нормальное состояние клетки.

Каждый живой организм непрерывно синтезирует фер­менты. В процессе роста организма увеличивается и ко­личество необходимых ферментов. Непропорциональное увеличение или уменьшение количества ферментов могло бы привести к нарушению сложившегося в орга­низме характера обмена веществ.

В живой клетке ферменты могут синтезироваться в раз­ных структурных образованиях – ядре, цитоплазме, хлоропластах, митохондриях, цитоплазматической мембра­не и др.

Как биологические катализаторы ферменты, находясь в ничтожных количествах, способны превращать огром­ные количества субстрата, на который они действуют. Так, фермент слюны амилаза обнаруживает заметную каталитическую активность в разведении 1: 1 000 000, а фермент пероксидаза оказывается активным при разве­дении 1: 5 000 000. Одна молекула каталазы расщепляет в одну минуту 5 миллионов молекул перекиси водо­рода.

Каталитическая активность ферментов во много раз превосходит активность неорганических катализаторов . Так, гидролиз белка до аминокислот в присутствии не­органических катализаторов при температуре 100 °С и выше осуществляется за несколько десятков часов. Та­кой же гидролиз при участии специфических ферментов заканчивается за время меньше часа и протекает при тем­пературе 30 – 40 °С. Полный гидролиз крахмала с помощью кислоты происходит за несколько часов, тогда как на фер­ментативный гидролиз при комнатной температуре за­трачивается несколько минут. Известно, что ионы железа каталитически ускоряют расщепление перекиси водорода на водород и кислород. Но атомы железа, входящие в со­став фермента каталазы, действуют на перекись водорода в 10 миллиардов раз энергичнее обычного железа: 1 мг железа в ферменте способен заменить 10 т неорганиче­ского железа при каталитическом расщеплении перекиси водорода.

Важной характерной особенностью ферментов является специфичность их действия . Специфичность ферментов намного выше, чем у катализаторов неорганической при­роды. Незначительные иногда изменения в химической структуре вещества исключают проявление действия на это вещество специфического фермента. Специфичность действия ферментов проявляется и в тех случаях, когда вещество различается по химической структуре. Так, фер­менты, ускоряющие гидролиз белков, не оказывают ни­какого влияния на гидролиз крахмала, и наоборот.

По степени специфичности ферменты различаются ме­жду собой. Одни ферменты катализируют только един­ственную реакцию, а другие большое число реакций. Так, фермент гликооксидаза катализирует окисление глюкозы, а трипсин гидролизует специфические пептидные связи в белках и простые эфиры аминокислот.

Специфичность действия ферментов иногда приводит к тому, что на органическое соединение оказывает влия­ние не один, а два фермента.

Групповуюспецифичность представляют все ферменты, т. е. они катализируют только особый тип реакции, на­пример окисление моносахаридов или гидролиз олигосахаридов.

Ферменты, будучи специфическими катализаторами, ускоряют как прямую, так и обратную реакцию , т. е. гидролиз и синтез вещества, на которое они действуют. Направленность этого процесса зависит от концентрации исходных и конечных продуктов и условий, в которых протекает реакция. В то же время доказано, что в живой клетке большинство синтезов происходит под действием не тех ферментов, которые катализируют расщепление того или иного соединения.

Химическая природа ферментов

Ферменты делят на два больших класса –одно­компонентные , состоящие только из белка, идвухкомпо­нентные , состоящие из белка и небелковой части, назы­ваемой простетической группой. Белки ферментов могут быть простыми (протеинами) и сложными (протеидами). Активную простетическую группу (активный центр) фермента называют агоном , а белковый носитель фероном . Простетическая группа в составе фермента занимает примерно до 1 % его массы.

Прочность связи простетической группы (агона) с фе­роном у разных ферментов неодинакова. При слабой связи происходит диссоциация фермента на белковую и просте­тическую часть, которую называют коферментом . Каждая из образовавшихся групп проявляет каталитическую ак­тивность. Роль коферментов играют большинство витами­нов – С, В 1 , В 2 , В 6 , В 12 , Н, Е, К и др., а также нуклеотиды, РНК, сульфгидрильные группы, глютатион, атомы железа, меди, магния и т. д. Многие ферменты обладают высокой каталитической спо­собностью только в том случае, если фермент не распа­дается на ферон и агон.

К однокомпонентным относятся многие ферменты, расщепляющие белки или углеводы (пепсин, трипсин, папин, амилаза).

Типичным двухкомпонентным ферментом является α-карбоксилаза, катализирующая расщепление пировиноградной кислоты на углекислый газ и уксусный альдегид:

α-карбоксилаза

СНзСОСООН ----→СНзСНО + СО 2 .

Химическая природа α-карбоксилазы полностью установ­лена, активная группа этого фермента содержит вита­мин В 1 .

Часто коферменты действуют как промежуточные про­дукты ферментативных реакций, участвующих в переносе водорода. К ним относят никотинамидадениндинуклеотид (НАД), глютатион, L-аскорбиновую кислоту, хиноны и цитохромы. Другие коферменты действуют как носители или передатчики фосфатных, аминных и метильных групп.

Молекулярный вес ферментов колеблется в широких пределах – от нескольких тысяч до миллиона , но боль­шинство ферментов имеют большой молекулярный вес .

Многиеферменты содержат металлы , которые прини­мают участие в каталитическом действии. Так, железо входит в состав простетической группы ферментов каталазы и пероксидазы, а также цитохромоксидазы, уча­ствующей в процессах дыхания. Медь входит в состав окислительных ферментов полифенолоксидазы и аскорбинатоксидазы, играющих важную роль в обмене растений.

В чистом виде все ферменты являются кристаллами .

Каталитические реакции осуществляются на поверх­ности молекул ферментов. Фермент-белок образует дис­пергированную фазу, на поверхности которой происходят реакции между веществами, растворенными в дисперсион­ной среде. Поверхность молекулы фермента-белка неодно­родна; на поверхности молекулы имеются разнообразные химически активные группировки, легко связывающие другие соединения.

Свойства ферментов обусловлены в первую очередь наличием особо активных центров на поверхности белко­вой молекулы – радикалов аминокислот или прочно при­соединенных к белку особых химических группировок. Активным центром называют ту часть фермента, которая соединяется с веществом (субстратом) в процессе каталитического действия .

Новое на сайте

>

Самое популярное