Домой Женские имена Законы менделя типы наследования признаков человека. Закономерности наследственности

Законы менделя типы наследования признаков человека. Закономерности наследственности

Понятие о наследственности и изменчивости. Наследственность —

это свойство всех живых организмов сохранять и передавать свои признаки и свойства последующим поколениям. Благодаря этому каждый вид живых организмов сохраняет на протяжении длительного времени характерные для него черты.

Передача генетической (наследственной) информации от одного поколения другому называется наследованием. У организмов, которым свойственно половое размножение, ключевую роль в наследовании играют такие процессы как мейоз и оплодотворение. В ходе мейоза у каждого родителя происходит пере-комбинация наследственного материала и его распределение между гаметами. Результатом оплодотворения является объединение генетической информации, содержащейся в гаметах обоих родителей, и формирование наследственного аппарата нового организма.

Как вам известно, участки молекулы ДНК, содержащие информацию о структуре определенных белков (либо рРНК, либо тРНК), называются генами. Гены расположены в хромосомах. В ходе реализации наследственной информации, содержащейся в генах, осуществляется синтез определенных белков. Каждый белок выполняет определенную функцию, что ведет к проявлению того или иного признака организма.

Изменчивость — это способность организмов в процессе жизнедеятельности приобретать новые признаки под воздействием различных факторов среды. Благодаря изменчивости особи в пределах вида различаются между собой.

Наследственность и изменчивость организмов изучает генетика. Основным методом исследований в генетике является гибридологический метод, заключающийся в определенной системе скрещиваний организмов, отличающихся друг от друга по одной, нескольким или многим парам альтернативных признаков с последующим анализом потомства.

Кроме этого, используются цитогенетический (микроскопическое изучение хромосом), биохимический (исследование состава нуклеиновых кислот, белков и других веществ в клетках организмов), генеалогический (анализ родословных человека и животных, позволяющий устанавливать характер наследования признаков, определять вероятность их проявления в последующих

поколениях) и другие методы. В генетике широко применяются также статистические методы анализа, позволяющие выявлять закономерности наследования признаков и проявления изменчивости у живых организмов.

Изучение наследственности Грегором Менделем.

Основные закономерности наследования признаков впервые раскрыл австрийский исследователь, монах Авгу-стинского монастыря Г. Мендель в 1855—1865 гг.

Он поставил перед собой задачу — выяснить, как наследуются отдельные признаки. Для этого Г. Мендель применил гибридологический метод.

Удачно был выбран Менделем и объект исследования — горох посевной. Это растение легко культивируется, неприхотливо, дает многочисленное потомство. Из множества сортов гороха Г. Мендель выбрал те, которые четко отличались по семи парам альтернативных признаков (рис. 87). В течение двух лет Г. Мендель проверял «чистоту» каждого сорта. Для этого он предоставил растениям возможность самоопыляться (горох — самоопыляющееся растение) и использовал в своих исследованиях такие сорта, у которых потомки в ряду поколений не изменялись по внешнему виду, т. е. сохраняли признаки родительских форм. В дальнейшем такие группы организмов были названы чистыми линиями.

Итак, для проведения скрещиваний Г. Мендель отбирал растения чистых линий, отличающиеся по парам альтернативных признаков. В своей работе он сначала анализировал наследование одной пары признаков, затем двух и т. д. Важно то, что Г. Мендель вел точный учет числа потомков, унаследовавших разные родительские признаки. Это позволило ему установить количественные закономерности наследования признаков.

Скрещивание организмов называется гибридизацией, а потомки от скрещивания двух родительских особей с различными признаками — гибридами.

Для записи скрещиваний используется международная символика:

Р — родительские особи (от лат. parentes — родитель); f — женская особь; и — мужская особь; G — гаметы;

F — потомство (от лат. filiale — дочерний) с соответствующими индексами поколений: F b F 2 , F 3 и т. д;

значок «X» обозначает скрещивание.


Моногибридное скрещивание. Закон единообразия гибридов первого поколения. Скрещивание, при котором родительские организмы отличаются друг от друга по одной паре альтернативных признаков, называется моногибридным.

В одном из опытов Г. Мендель изучал наследование окраски семян гороха. Он скрещивал растения, выращенные из желтых семян, с растениями, выращенными из семян зеленого цвета. Чтобы предотвратить самоопыление, Г. Мендель у растений одного сорта гороха удалял в цветках тычинки, у другого — пестики и проводил гибридизацию путем искусственного опыления.

Результаты скрещивания были однозначны: у всех гибридных растений первого поколения семена оказались желтыми независимо от того, материнским или

отцовским было растение с такими семенами. Зеленая окраска семян у гибридов первого поколения не проявлялась (рис. 88):

Р: V желтые семена х d зеленые семена F{. все растения имеют желтые семена

Скрещивая растения, отличающиеся по другим парам альтернативных признаков, например по окраске цветков или форме плодов (см. рис. 87), Г. Мендель обнаружил, что во всех случаях у гибридов первого поколения проявлялся лишь один из двух альтернативных признаков. Явление преобладания одних признаков над другими было названо доминированием, а преобладающие признаки — доминантными. Признаки, которые не проявлялись у гибридов первого поколения, получили название рецессивных.

Открытая Г. Менделем закономерность впоследствии была названа законом единообразия гибридов первого поколения или первым законом Менделя.

Этот закон звучит следующим образом: при скрещивании особей чистых линий, отличающихся по одной паре альтернативных признаков, гибриды первого поколения будут единообразными по доминантному признаку.

Закон расщепления. Путем самоопыления гибридов первого поколения Г. Мендель получил второе поколение, в котором растений имели горошины

желтого цвета и — горошины зеленого цвета. Появление в потомстве особей, различающихся по альтернативным признакам, называется расщеплением. В данном случае наблюдалось расщепление 3: 1 (см. рис. 88).

Такое же расщепление было обнаружено и при исследовании других пар альтернативных признаков: во втором поколении у — растений проявлялись доми-

1 4 нантные признаки, ау | — рецессивные.

Следовательно, рецессивный признаку гибридов первого поколения не исчезал, а только был подавлен и вновь проявлялся во втором поколении. Это обобщение позднее было названо законом расщепления или вторым законом Менделя, который звучит так: при скрещивании гибридов первого поколения между собой во втором поколении наблюдается расщепление по альтернативным признакам в соотношении: 3 части особей с доминантным признаком к 1 части особей с рецессивным признаком.

Необходимо отметить, что идеального соотношения 3: 1 обычно не обнаруживалось ни в одном опыте. Например, изучая расщепление по окраске семян, Г. Мендель исследовал 8023 горошины и получил соотношение: 6022 желтые и 2001 зеленая, что очень близко к соотношению 3: 1. И только статистический анализ позволил установить характер расщепления.

Многочисленными исследованиями ряда ученых в последующие годы был установлен универсальный характер законов Менделя. Им подчиняются все живые организмы, в том числе человек, у которого изучено и описано много пар альтернативных признаков.

1. Что изучает генетика? Что такое наследственность и каково ее биологическое значение?

2. Объясните, каким образом гены определяют развитие признаков.

3. Охарактеризуйте основные методы исследований, используемые в генетике.

4. Что такое доминантный и рецессивный признаки?

5. Какие законы установил Г. Мендель на основе моногибридного скрещивания? Сформулируйте их.

6. Попробуйте на примере вашей семьи и семей близких родственников проанализировать наследование некоторых признаков человека. Это может быть, например, цвет волос или глаз, длина ресниц, толщина губ, наличие или отсутствие веснушек (или ямочки на подбородке), способность или неспособность сворачивать язык трубочкой и т. п. Попытайтесь выявить доминантные и рецессивные признаки. Каким образом это можно сделать?

7. Можно ли утверждать, что из пары альтернативных признаков доминантным всегда является тот, который проявляется у большинства особей того или иного вида? Почему?

    Глава 1. Химические компоненты живых организмов

  • § 1. Содержание химических элементов в организме. Макро- и микроэлементы
  • § 2. Химические соединения в живых организмах. Неорганические вещества
  • Глава 2. Клетка - структурная и функциональная единица живых организмов

  • § 10. История открытия клетки. Создание клеточной теории
  • § 15. Эндоплазматическая сеть. Комплекс Гольджи. Лизосомы
  • Глава 3. Обмен веществ и преобразование энергии в организме

  • § 24. Общая характеристика обмена веществ и преобразование энергии
  • Глава 4. Структурная организация и регуляция функций в живых организмах

  1. Особенности метода гибридологического анализа. Законы Менделя.
  2. Типы взаимодействия генов.
  3. Сцепленное наследование признаков.
  4. Цитоплазматическое наследование.

Метод гибридологического анализа , заключающийся в скрещивании и последующем учете расщеплений (соотношений фенотипических и генотипических разновидностей потомков), был разработан чешским естествоиспытателем Г. Менде­лем (1865). К особенностям этого метода относят: 1) учет при скрещивании не всего многообразного комплекса признаков у родителей и потомков, а анализ наследования отдельных, выделяемых исследователем альтернативных признаков; 2) количе­ственный учет в ряду последовательных поколений гибридных растений, различающихся по отдельным признакам; 3) индивиду­альный анализ потомства от каждого растения.

Работая с самоопыляющимися растениями гороха садового, Г.Мендель выбрал для эксперимента сорта (чистые линии), отличающиеся друг от друга альтернативными проявлениями признаков. Полученные данные Мендель обработал математически, в результате чего раскрылась четкая закономерность наследования отдельных признаков родительских форм их потомками в ряде последующих поколений. Эту закономерность Мендель сформулировал в виде правил наследственности, получивших позднее название законов Менделя .



Скрещивание двух организмов называют гибридизацией. Моногибридным (моногенным ) называют скрещивание двух организмов, при котором прослеживают наследование одной пары альтернативных проявлений какого-либо признака (развитие этого признака обусловлено парой аллелей одного гена). Гибриды первого поколения являются единообразными по исследуемому признаку. В F1 проявляется лишь один из пары альтернативных вариантов признака цвета семян, названный доминантным. Эти результаты иллюстрируют первый закон Менделя - закон единообразия гибридов первого поколения, а также правило доминирования.

Первый закон Менделя можно сформулировать следующим образом: при скрещивании гомозиготных особей, отличающихся одной или несколькими парами альтернативных признаков, все гибриды первого поколения окажутся по этим признакам едино­образными. У гибридов проявятся доминантные признаки родите­лей.

Во втором поколении обнаружилось расщепление по исследуемому признаку

Соотношение потомков с доминантным и рецессивным проявлением признака оказалось близко к ¾ к ¼. Таким образом, второй закон Менделя можно сформулировать следующим образом: при моногибридном скрещивании гетерозигот­ных особей (гибридов F1) во втором поколении наблюдается расщепление по вариантам анализируемого признака в отношении 3:1 по фенотипу и 1:2:1 по генотипу. Чтобы объяснить распределение признаков у гибридов после­довательных поколений, Г. Мендель предположил, что каждый наследственный признак зависит от наличия в соматических клетках двух наследственных факторов, полученных от отца и матери. К настоящему времени установлено, что наследственные факторы Менделя соответствуют генам - локусам хромосом.

Гомозиготные растения с желтыми семенами (АА) образуют гаметы одного сорта с аллелем А; растения с зелеными семенами (аа) образуют гаметы с а. Таким образом, пользуясь современной терминологией, гипоте­зу «чистоты гамет » можно сформулировать следующим образом: "В процессе образования половых клеток в каждую гамету попадает только один ген из аллельной пары, потому что, в процессе мейоза в гамету попадает одна хромосома из пары гомологичных хромосом.

Скрещивание, при котором прослеживается наследование по двум парам альтернативных признаков, называют дигибридным , по нескольким парам признаков- полигибридным . В опытах Менделя при скрещивании сорта гороха, имевшего желтые (А) и гладкие (В) семена, с сортом гороха с зелеными (а) и морщинистыми (Ь) семенами, гибриды F1 имели желтые и гладкие семена, т.е. проявились доминантные признаки (гибриды едино­образны).

Гибридные семена второго поколения (F2) распределились на четыре фенотипические группы в соотношении: 315 - с гладкими желтыми семенами, 101 - с морщинистыми желтыми, 108- с гладкими зелеными, 32 - с зелеными морщинистыми семенами. Если число потомков в каждой группе разделить на число потомков в самой малочисленной группе, то в F2 соотношение фенотипических классов составит приблизительно 9:3:3:1. Итак, согласно третьему закону Менделя , гены разных аллельных пар и соответствующие им признаки передаются потомству независимо друг от друга, комбинируясь во всевозмож­ных сочетаниях.

При полном доминировании одного аллеля над другим гетерозиготные особи фенотипически неотличимы от гомозиготных по доминантному аллелю и различить их можно только с помощью гибридологического анализа, т.е. по потомству, которое получается от определенного типа скрещивания, получившего название анализирующего . Анализирующим является такой тип скрещивания, при котором испытуемую особь с доминантным признаком скрещивают с особью, гомозиготной по рецессивному аплелю.

Если доминантная особь гомозиготна, потомство от такого скрещивания будет единообразным и расщепления не произойдет. В том случае, если особь с доминантным признаком гетерозиготна, расщепление произойдет в отношении 1:1 по фенотипу и генотипу.

Взаимодействие генов

В отдельных случаях действие разных генов относительно независимо, но, как правило, проявление признаков есть результат взаимодействия продуктов разных генов. Эти взаимодействия могут быть связаны как с аллельными , так и с неаллельными генами.

Взаимодействие между аллельными генами осуществляется в виде трех форм: полное доминирование, неполное доминирование и независимое проявление (кодоминирование).

Ранее были рассмотрены опыты Менделя, выявившие полное доминирование одного аллеля и рецессивность другого. Неполное доминирование наблюдается в том случае, когда один ген из пары аллелей не обеспечивает образование в достаточном для нормального проявления признака его белкового продукта. При этой форме взаимодействия генов все гетерозиготы и гомозиготы значительно отличаются по фенотипу друг от друга. При кодоминирсвании у гетерозиготных организмов каждый из аллельных генов вызывает формирование в фенотипе контролируемого им признака. Примером этой формы взаимогействия аллелей служит наследование групп крови человека по системе АВО, детерминируемых геном I. Существует три аллеля этого гена Iо,Iа,IЬ, определяющие антигены групп крови. Наследование групп крови иллюстрирует также явление множественного аллелизма: в генофондах популяций человека ген I существует в виде трех разных аллелей, которые комбинируются у отдельных индивидуумов только попарно.

Взаимодействие неаллельных генов. В ряде случаев на один признак организма могут влиять две (или более) пары неаллельных генов. Это приводит к значитель­ным численным отклонениям фенотипических (но не генотипических) классов от установленных Менделем при дигибридном скрещивании. Взаимодействие неаллельных генов подразделяют на основные формы: комплементарность, эпистаз, полимерию.

При комплементарном взаимодействии признак проявляется лишь в случае одновременного присутствия в генотипе организма двух доминантных неаллельных генов. Примером комплементар­ного взаимодействия может служить скрещивание двух различных сортов душистого горошка с белыми лепестками цветков.

Следующим видом взаимодействия неаллельных генов является эпистаз, при котором ген одной аллельной пары подавляет действие гена другой пары. Ген, подавляющий действие другого, называется эпистатическим геном (или супрессором). Подавля­емый ген носит название гипостатического. Эпистаз может быть доминантным и рецессивным. Примером доминантного эпистаза служит наследование окраски оперения кур. Ген С в доминантной форме определяет нормальную продукцию пигмента, но домина­нтный аллель другого гена I является его супрессором. В результате этого куры, имеющие в генотипе доминантный аллель гена окраски, в присутствии супрессора оказываются белыми. Эпистатическое действие рецессивного гена иллюстрнрует наследование окраски шерсти у домовых мышей. Окраска агути (рыжевато-серая окраска шерсти) определяется доминантным геном А. Его рецессивный аллель а в гомозиготном состоянии обусловливает черную окраску. Доминантный ген другой пары С определяет развитие пигмента, гомозиготы по рецессивному аллелю с являются альбиносами с белой шерстью и красными глазами (отсутствие пигмента в шерсти и радужной оболочке глаз).

Наследование признака, передача и развитие которого, обусловлены, как правило, двумя аллелями одного гена, называют моногенным . Кроме того известны гены из разных аллельных пар (их называют полимернымиили полигенами ), примерно одинаково влияющие на признак.

Явление одновременного действия на признак нескольких неаллельных однотипных генов получило название полимерии. Хотя полимерные гены не являются аллельными, но так как они определяют развитие одного признака, их обычно обозначают одной буквой А (а), цифрами указывая число аллельных пар. Действие полигенов чаще всего бывает суммирующим.

Сцепленное наследование

Анализ наследования од­новременно нескольких признаков у дрозофилы, проведенный Т. Морганом, показал, что результаты анализирующего скрещивания гибридов F1 иногда отличаются от ожидаемых в случае их незави­симого наследования. У потомков такого скрещивания вместо свободного комбинирования признаков разных пар наблюдали, тенденцию к наследованию преимущественно родительских соче­таний признаков. Такое наследование признаков было названо сцепленным. Сцепленное наследование объясняется расположением соответствующих генов в одной и той же хромосоме. В составе последней они передаются из поколения в поколение клеток и организмов, сохраняя сочетание аллелей родителей.

Зависимость сцепленного наследования признаков от локали­зации генов в одной хромосоме дает основание рассматривать хромосомы как отдельные группы сцепления. Анализ наследования призна­ка окраски глаз у дрозофилы в лаборатории Т. Моргана выявил некоторые особенности, заставившие выделить в качестве отдель­ного типа наследования признаков сцепленное с полом наследование .

Зависимость результатов эксперимента от того, кто из родителей являлся носителем доминантного варианта признака, позволила высказать предположение, что ген, определяющий окраску глаз у дрозофилы, расположен в Х-хромосоме и не имеет гомолога в У-хромосоме. Все особенности сцепленного с полом наследования объясняются неодинаковой дозой соответствующих генов у пред­ставителей разного - гомо- и гетерогаметного пола. Х-хромосома присутствует в кариотипе каждой особи, поэтому признаки, определяемые генами этой хромосомы, формируются у представителей как женского, так и мужского пола. Особи гомогаметного пола получают эти гены от обоих родителей и через свои гаметы передают их всем потомкам. Представители гетерогаметного пола получают единственную X-хромосому от гомогаметного родителя и передают ее своему гомогаметному потомству. У млекопитающих (в том числе и человека) мужской пол получает Х-сцепленные гены от матери и передает их дочерям. При этом мужской пол никогда не наследует отцовского Х-сцепленного признака и не передает его своим сыновьям

Активно функционирующие гены У-хромосомы, не имеющие аллелей в Х-хромосоме, присутствуют в генотипе только гетерогаметного пола, причем в гемизиготном состоянии. Поэтому они проявляются фенотипически и передаются из поколения в поколение лишь у представителей гетерогаметного пола. Так, у человека признак гипертрихоза ушной раковины («во­лосатые уши») наблюдается исключительно у мужчин и наследуется от отца к сыну.

Закономерности наследования были сформулированы в 1865г Грегори Менделем в работе "Опыты над растительными гибридами". В своих экспериментах он проводил скрещивание различных сортов гороха (Чехия / Австро-Венгрия). В 1900г закономерности наследования переоткрыты Корренсем, Чермаком и Гого де Фризом.

Первый и второй законы Менделя основаны на моногибридном скрещивании, а третий - на ди и полигибридном. Моногибридное скрещивание идет по одной паре альтернативных признаков, дигибридное по двум парам, полигибридное - более двух. Успех Менделя обусловлен особенностями примененного гибридлогического метода:

Анализ начинается со скрещивания чистых линий: гомозиготных особей.

Анализируются отдельные альтернативные взаимоисключающие признаки.

Точный количественный учет потомков с различной комбинацией признаков

Наследование анализированных признаков прослеживается в ряду поколений.

Правило выписывания гамет по формуле 2n , где n - количество гетерозигот: для моногибридов - 2 сорта гамет, для дигибридов - 4, для тригибридов - 8.

1 ый закон Менделя: "Закон единообразия гибридов 1ого поколения"

При скрещивании гомозиготных особей, анализируемых по одной паре альтернативных признаков, у гибридов 1 ого поколения проявляются только доминантные признаки и наблюдается единообразие по фенотипу и генотипу.

В своих опытах Мендель скрещивал чистые линии растений гороха с желтыми (АА) и зелеными (аа) семенами. Оказалось, что все потомки в первом поколении одинаковы по генотипу (гетерозиготны) и фенотипу (желтые).

2 ой закон Менделя: "Закон расщепления"

При скрещивании гетерозиготных гибридов 1 ого поколения, анализируемых по одной паре альтернативных признаков, у гибридов второго поколения наблюдается расщепление по фенотипу 3:1, и по генотипу 1:2:1

В своих опытах Мендель скрестил полученные в первом опыте гибриды (Аа) между собой. Оказалось, что во втором поколении подавляемый рецессивный признак появился вновь. Данные этого опыта свидетельствуют выщеплении рецессивного признака: он не теряется, а проявляется снова в следующем поколении.

Цитологические основы 2 ого закона Менделя

Цитологические основы 2 ого закона Менделя раскрываются в гипотезе "чистоты гамет" . Из схем скрещивания видно, что каждый признак определяется сочетанием двух аллельных генов. При образовании гетерозиготных гибридов, аллельные гены не смешиваются, а остаются в неизменном виде. В результате мейоза в гаметогенезе, в каждую гамету попадает только 1 из пары гомологичных хромосом. Следовательно, только один из пары аллельных генов, т.е. гамета чиста относительно другого аллельного гена.

3 ий закон Менделя: "Закон независимого комбинирования признаков"

При скрещивании гомозиготных организмов, анализируемых по двум и более парам альтернативных признаков, у гибридов 3 его поколения (получены при скрещивании гибридов 2 ого поколения) наблюдается независимое комбинирование признаков и соответствующих им генов разных аллельных пар.

Для изучения закономерности наследования растений , отличавшихся по одной паре альтернативных признаков, Мендель использовал моногибридное скрещивание . Далее он перешел к опытам по скрещиванию растений, отличающимся по двум парам альтернтивных признаков: дигибридное скрещивание , где использовал гомозиготные растения гороха, отличающиеся по цвету и форме семян. В результате скрещивания гладких(В) и желтых(А) с морщинистыми(в) и зелеными(а), в первом поколении все растения были с желтыми гладкими семенами.

Таким образом, закон единообразия первого поколения проявляется не только при моно, но и при полигибридном скрещивании, если родительские особи гомозиготны.

При оплодотворении образуется диплоидная зигота вследствие слияния разных сортов гамет. Английский генетик Беннет для облегчения расчета вариантов их сочетания предложил запись в виде решетки - таблицы с числом строк и столбцов по числу типов гамет, образованых скрещивающимися особями.

Анализирующее скрещивание

Поскольку особи с доминантным признаком в фенотипе, могут иметь различный генотип (Аа и АА), Мендель предложил скрещивать этот организм с рецессивной гомозиготой .

Гомозиготная особь даст единобразное поколение,

а геторозиготная - расщепление по фенотипу и генотипу 1:1.

Хромосомная теория Мограна. Сцепленное наследование

Устанавливая закономерности наследования, Мендель скрещивал растения гороха. Таким образом, его опыты проводились на организменном уровне. Развитие микроскопа в начале 20 века позволило выявить клетки - материальный носитель наследственной инф, переведя исследования на клеточный уровень. Основываясь на результатах многочисленных опытов с мошками-дрозофилами, в 1911г Томас Морган сформулировал основные положения хромосомной теории наследственности .

Гены в хромосоме расположены в линейно в определенных локусах . Аллельные гены занимают одинаковые локусы гомологичных хромосом.

Гены,расположенные в одной хромосоме, образуют группу сцепления и наследуются преимущественно вместе. Число групп сцепления равно n набору хромосом.

Между гомологичными хромосомами возможен кроссинговер - обмен участками, который может нарушить сцепление генов. Вероятность того, что гены останутся сцеплены прямо пропорциональна расстоянию между ними: чем ближе расположены гены в хромосоме, тем выше вероятность их сцепления. Это расстояние исчисляется в морганидах: 1 морганиде соответствует 1% образования кроссоверных гамет.

Для своих экспериментов, Морган использовал плодовых мушек, различающихся по 2 парам признаков: цвет серый(В) и черный(b); длина крыльев норма(V) и короткие(v).

1) Дигибридное скрещивание – сначала скрещивали гомозиготные особи ААВВ и ааbb. Таким образом были получены аналогичные Менделю результаты: все особи с серым телом и нормальными крыльями.

2) Анализирующее скрещивание проводилось с целью выведения генотипа гибридов 1 ого поколения. Дигетерозиготный самец был скрещен с рецессивной дигомозиготной самкой. Согласно 3 ему закону Менделя, можно было ожидать появление 4 фенотипов из-за независимой комбинации признаков: сн (BbVv), чк (bbvv), cк (Bbvv), чн (bbVv) в соотношении 1:1:1:1. Однако были получены лишь 2 комбинации: сн (BbVv) чк (bbvv).

Таким образом, во втором поколении наблюдались только исходные фенотипы в соотношении 1:1.

Такое отклонение от свободного комбинирования признаков обусловлено тем, что гены, определяющие цвет тела и длину крыльев у мушек дрозофил расположены в одной хромосоме и наследуются сцеплено . Получается, что дигетерозиготный самец дает лишь 2 сорта некроссоверных гамет, а не 4, как при дигибридном скрещивании организмов с несцепленными признаками.

3) Анализирующее рецепроктное скрещивание - система скрещиваний, при которой генотипически различные родительские особи используются один раз в качестве материнской формы, другой раз в качестве отцовской.

В этот раз Морган использовал дигетерозиготную самку и гомозиготного рецессивного самца. Так были получены 4 фенотипа, однако их соотношение не соответствовало тому, которое наблюдалось у Менделя при независимом комбинировании признаков. Число сн и чк составило 83% от всего потомства, а число ск и чн - всего 17%.

Сцепление между генами, локализованными в одной хромосоме, нарушается в результате кроссинговера . Если точка разрыва хромосом лежит между сцепленными генами, то сцепление нарушается, и один из них переходит в гомологичную хромосому. Так, помимо двух сортов некроссоверных гамет , образуются еще два сорта кроссоверных гамет , в которых хромосомы обменялись гомологичными участками. Из них при слиянии развиваются кроссоверные особи. Согласно положению хромосомной теории, расстояние между генами, определяющими цвет тела и длину крыльев у дрозофил - 17 морганид - 17% кроссоверных гамет и 83% некроссоверных.

Аллельное взаимодействие генов

1) Неполное доминирование: при скрещивании гомозиготных растений душистого горошка с красными и белыми цветками, все потомство в первом поколении имеет розовые цветки - промежуточная форма. Во втором поколении расщепление по фенотипу соответствует расщеплению по генотипу в отношении 1кр: 2роз: 1бел.

2) Сверхдоминирование : у доминантного аллеля в гетерозиготе признак выражен сильнее, чем в гомозиготе. При этом гетерозиготный организм Аа обладает лучшей приспособленностью, чем оба типа гомозигот.

Серповидная клеточная анемия обусловлена мутантным аллелем s. В районах, где распространена малярия, гетерозиготы Ss более устойчивы к ней, чем гомозиготы SS.

3) Кодоминирование : в фенотипе гетерозигот проявляются оба аллельных гена, в результате чего формируется новый признак. Но назвать один аллель доминантным, а другой рецессивным нельзя, тк они в равной степени влияют на фенотип.

Формирование 4ой группы крови у человека. Аллель Ia определяет присутствие на эритроцитах антигена а, аллель Ib - присутствие антигена b. Присутствие в генотипе обоих аллелей обуславливает образование на эритроцитах обоих антигенов.

4) Множественные аллели: в популяции оказывается больше двух аллельных генов. Такие гены возникают в результате мутации одного и того же локуса хромосомы. Помимо доминантного и рецессивного генов, появляются промежуточные аллели , которые по отношению к доминанте ведут себя как рецессивные, а по отношению к рецессиве - как доминантные. У каждой диплоидной особи аллельных генов может быть не более двух, но в популяции их число не ограничено. Чем больше аллельных генов, тем больше вариантов их комбинаций. Все аллели одного гена обозначаются одной буквой с разными индексами: А1, А2, а3 и тд.

У морских свинок окраска шерсти определяется 5ю аллеями одного локуса, которые в различных сочетаниях дают 11 вариантов окраски. У человека по типу множественных аллелей наследуются группы крови по системе АВО. Три гена Io, Ia, Ib определяют наследование 4 групп крови человека (гены Ia Ib доминантные по отношению к Io).

Неаллельные взаимодействие генов

1) Комплиментарность или комплиментарное взаимодействие генов - явление, при котором два неаллельных доминантных или рецессивных гена дают новый признак . Такое взаимодействие генов наблюдается при наследовании форм гребня у кур:

А гороховидный (А-вв); В- розовидный (ааВ-); АВ ореховидный; аавв листовидный.

При скрещивании кур с гороховидным и розовидным гребнями, у всех гибридов 1 ого поколения будет ореховидный гребень. При скрещивании дигибридов 1 ого поколения с ореховидными гребнями, во 2 ом поколении появляются особи со всеми видами гребней в соотношении 9ор: 3роз: 3гор: 1лист. Однако, в отличие от расщепления при 3 ем законе Менделя, здесь отсутствует расщепление каждого аллеля в отношении 3:1. В других случаях комплиментарности, возможно 9:7 и 9:6:1.

2) Эпистаз или эпистатическое взаимодействие генов - подавление действия генов одного аллеля генами другого. Подавляющий ген является супрессером или ингибитором.

Доминантный эпистаз - ген-супрессор доминантный: наследование окраски перьев у кур. С - синтез пигмента, I - ген-подавитель. Куры с генотипом С-ii будут окрашенные. Остальные особи будут белые, так как в присутствии доминантного гена-супрессора подавляемый ген окраски не проявляется, или отсутствует ген, отвечающий за синтез пигмента (ссii). В случае скрещивания дигибридов, расщепление во втором поколении будет 13:3 или 12:3:1.

Рецессивный эпистаз - геном подавителем является рецессивный ген, например наследование окраски мышей. В - синтез серого пигмента, b - черного; А способствует проявлению цветности, а - подавляет ее. Эпистаз будет проявляться лишь в тех случаях, где в генотипе будут два гена-супрессора аа. При скрещивании дигибридных особей при рецессивном эпистазе, расщепление во втором поколении 9:3:4.

Бомбейский феномен проявляется в наследовании групп крови по системе АВО. Женщина с 1 группой крови (IoIo), которая вышла замуж за мужчину со 2 группой (IaIo), родила двух девочек с 4 (IaIb) и 1 (IoIo) группами. Это объясняется тем, что их мать обладала аллелем Ib, но его действие подавлялось редким рецессивным геном, который в гомозиготном состоянии оказал свое эпистатическое действие. В результате у женщины фенотипически проявлялась 1 группа.

3) Полимерия - один и тот же признак определяется несколькими аллеями. При этом доминантные гены из разных аллельных пар влияют на степень проявления одного признака. Она зависит от количества доминантных генов в генотипе (чем больше доминантных генов, тем сильнее выражен признак) и от влияний условий среды.

Полимерные гены принято обозначает одной буквой латинского алфавита с цифровыми индексами А 1 А 2 а 3 и тд. Ими определяются полигенные признаки . Так наследуются многие количественные и некоторые качественные признаки у животных и человека: рост, вес, цвет кожи. Наследование цвета зёрен пшеницы: каждый из доминантных генов определяет красный цвет, рецессивные гены - белый цвет. С увеличением количества доминантных генов интенсивность окраски повышается. И только если организм гомозиготен по всем парам рецессивных генов, зерна не окрашены. Так при скрещивании дигибридов расщепление в отношении 15окр:1бел.

4) Плейотропия - один ген влияет на несколько признаков. Явление было описано Менделем, который обнаружил, что наследственных фактор у растений гороха может определять несколько признаков: красную окраску цветков, серую окраску семян и розовое пятно у основания листьев. Часто распространяется на эволюционно важные признаки: плодовитость, продолжительность жизни, способность выживать в крайних условиях среды.

В некоторых случаях плеетропный ген является по отношению к одному признаку доминантным, а по отношению к другому - рецессивным. Если плеетропный ген только доминантный или только рецессивный по отношению ко всем определяемым им признакам, то характер наследования аналогичен закономерностям законов Менделя.

Своеобразное расщепление наблюдается тогда, когда один из признаков рецессивен или летален (гомозигота ведет к смерти). Например черная шерсть каракульских овец и развитие рубца определяются одним геном, а серая шерсть и недоразвитый рубец определяются аллельными ему геном. Серый доминирует над черным, норма над аномалией. Гомозиготные особи по гену недоразвития рубца и серого цвета погибают, поэтому при скрещивании гетерозиготных особей четвертая часть потомства (серые гомозиготы) оказываются нежизнеспособны. Расщепление в соотношении 2:1.

Пенетрантность и экспрессивность

Генотип особи определяет лишь потенциальную возможность развития признака: реализация гена в признак зависит от влияния других генов и условий среды, поэтому одна и та же наследственная информация в разных условиях проявляется по-разному. Следовательно, наследуется не готовый признак, а тип реакции на действие среды.

Пенетрантность - пробиваемость гена в признак. Выражается в процентах числа особей, несущих признак, к общему числу носителей гена, потенциально способного реализоваться в этот признак. Полная пенетрантность (100%) - у всех носителей гена имеется фенотипическое проявление признака. Неполная - действие гена проявляется не у всех носителей.

Если ген побился в признак, он пенетрантен, но проявляться он может по-разному. Экспрессивность - степень выраженности признака. Различной экспрессивностью обладает ген, вызывающий уменьшение числа фасеток глаза у дрозофил. У гомозигот наблюдается различное число фасеток, вплоть до их полного отсутствия.

Пенетрантность и экспрессивность зависят от влияния других генов и внешней среды.

Изменчивость

Изменчивость - способность приобретать новые признаки под действием внешних и внутренних факторов среды (морфологические, физиологические, биохимические). С изменчивостью связано разнообразие особей одного вида, что служит материалом для эволюционных процессов. Единство наследственности и изменчивости - условие непрекращающейся биологической эволюции. Различают несколько видов:

1) Наследственная, генотипическая, неопределенная, индивидуальная

Носит наследственных характер, и обусловлена рекомбинацией генов в генотипе и мутациями, передается по наследству. Бывает комбинативная и мутационная

2) Ненаследственная, модификационная, фенотипическая, групповая, определенная

Модификационная изменчивость - эволюционно закрепленные адаптивные реакции организма в ответ на изменение условий внешней среды, следствие взаимодействия среды и генотипа.Не передается по наследству, тк не приводит к изменению генотипа. В отличие от мутаций, многие модификации обратимы: загар, удойность коров и тд.

Краткая форма обратной связи

Основные закономерности наследования

1 . Кариотип

2. Геном.

3. Моногибридное скрещивание. Первый и второй законы Менделя.

4. Анализирующее скрещивание.

Генетика - это наука о наследственности и изменчивости организмов. Наследственность - присущее всем организмам свойство передавать потомству характерные черты строения, индивидуального развития, обмена веществ, а, следовательно, состояния здоровья и предрасположенности ко многим заболеваниям.

Передача потомству признаков предыдущих поколений называется наследованием. Механизмом этой передачи служит процесс размножения, как при простом делении клеток простейших организмов и клеток тканей, так и при половом размножении, когда объединение мужских и женских половых клеток (гамет) приводит к созданию нового организма, имеющего сходство с родителями и предками.

При изучении закономерностей наследования обычно скрещивают особи, отличающиеся друг от друга альтернативными (взаимоисключающими) признаками (например, жёлтый и зелёный цвет, гладкая и морщинистая поверхность горошин). Гены, определяющие развитие альтернативных признаков, называются аллельными. Они располагаются в одинаковых локусах (местах) гомологичных (парных) хромосом. Альтернативный признак и соответствующий ему ген, проявляющийся у гибридов первого поколения. Называют доминантным , а не проявляющийся (подавленный) – рецессивным. Аллельные гены принято обозначать одинаковыми буквами латинского алфавита : доминантный – заглавной буквой (А), а рецессивный – строчной (а). Если в обеих гомологичных хромосомах находятся одинаковые аллельные гены (два доминантных – АА или два рецессивных – (аа), такой организм называется гомозиготным, так как он образует один тип гамет и не даёт расщепления при скрещивании с таким же по генотипу организмом.

Если в гомологичных хромосомах локализованы разные гены одной аллельной пары (Аа), то такой организм называется гетерозиготным по данному признаку. Он образует два типа гамет и при скрещивании с таким же по генотипу организмом даёт расщепление. Совокупность всех свойств и признаков организма называется фенотипом. Фенотип развивается на базе определённого генотипа в результате взаимодействия с условиями внешней среды. Отдельный признак называется феном.

Кариотип – это совокупность метафазных хромосом, характерных для определенного вида организмов. Постоянство кариотипа поддерживается с помощью точных механизмов митоза и мейоза.

Изучение кариотипов и их изменчивости важно для здравоохранения (многие генетические заболевания связаны с изменением кариотипа), селекции (многие сорта растений различаются по кариотипу) и экологического биомониторинга (кариотип может изменяться под воздействием экологических факторов).

Кариотип используется в качестве видовой характеристики (существует особый раздел систематики – кариосистематика ). Кариотипический критерий является одним из важнейших критериев вида. Сущность этого критерия заключается в том, что все особи данного вида характеризуются определенным кариотипом. В понятие «кариотип» включается число хромосом, их размеры, морфология , особенности продольной дифференцировки .

Если оба плеча хромосомы равны по длине, то такая хромосома называется метацентрической , если неравны – то такая хромосома называется субметацентрической , если же одно из плеч очень короткое, то такая хромосома называется акроцентрической . Конечные участки хроматид называются теломеры . У некоторых хромосом в области теломер имеются удаленные структуры (спутники ); это спутничные хромосомы .

При специальных методах окраски (дифференциальная окраска) видно, что хромосомы состоят из чередующихся участков – дисков: С, Т, R, G, N, Q. Чередование дисков специфично для каждой хромосомы. Таким образом, метафазные хромосомы обладают индивидуальностью.

Минимально возможный набор хромосом в клетке называется геном .

Термин геном (нем. Genom) предложил немецкий ботаник Ганс Винклер в 1920 г. для обозначения минимального набора хромосом. Такое представление о геноме сохраняется и в современной цитогенетике . Однако вскоре было доказано, что в состав хромосом входит ДНК (Фёльген, 1924), а к середине XX в. было установлено, что именно ДНК является носителем наследственной информации (О. Эвери с сотр., 1944; Дж. Уотсон и Ф. Крик, 1953). Поэтому в настоящее время в молекулярной генетике термином геном все чаще обозначают минимальную упорядоченную совокупность всех молекул ДНК в клетке .

Геном – это характеристика вида, а не особи. Геномы разных видов обозначаются латинскими буквами (А , B , C …). Кариотипы «чистых» видов включают только один геном (например, в клетках культурной ржи содержится геном R ). Кариотипы гибридов и видов гибридного происхождения включают несколько геномов (например, в клетках тритикале содержатся геномы A , B и R ; в клетках твердых пшениц – геномы А и В (у отдельных видов А и G )). Тогда геном «чистого» вида можно назвать элементарным, а геном гибрида – комплексным.

Число хромосом в геноме называется основным хромосомным числом и обозначается символом х . Например, для голосеменных растений х =12, а для покрытосеменных основное число х исходно равно 7 (хотя у ряда покрытосеменных встречаются и иные основные хромосомные числа: х =12 у пасленовых, х =19 у ивовых).

Изучение геномов важно с точки зрения медицины, теории селекционного процесса и теории эволюции.

Организацию генома удобнее рассмотреть на примере многоклеточных животных. У этих организмов различают два типа клеток: соматические клетки, из которых построено тело (сома ) организмов, и половые клетки (гаметы). Число хромосом в половых клетках большинства животных соответствует основному хромосомному числу и называется гаплоидным числом хромосом (обозначается символом n ), тогда x =n . В гаплоидном наборе каждая хромосома существует в единственном числе (представлена одним гомологом). В соматических клетках содержится удвоенный, или диплоидный набор хромосом , который обозначается символом 2 n . В диплоидном наборе каждая хромосома представлена двумя гомологами (исключение составляют половые хромосомы у гетерогаметного пола, например, у самцов большинства млекопитающих X и Y –хромосомы негомологичны).

Рассмотрим организацию генома человека на цитогенетическом уровне. Число хромосом в гаплоидном наборе (основное число) равно 23. Все хромосомы пронумерованы и распределены по классам. Из них к классу А относятся хромосомы 1, 2, 3; к классу В – хромосомы 4, 5; к классу С – хромосомы 6, 7, 8, 9, 10, 11, 12; к классу D – хромосомы 13, 14, 15; к классу Е – хромосомы 16, 17, 18; к классу F – хромосомы 19, 20; к классу G – хромосомы 21, 22. Перечисленные хромосомы называются аутосомы , они имеются и у мужчин, и у женщин. В диплоидном наборе (2 n =46) каждая аутосома представлена двумя гомологами. Двадцать третья хромосома является половой хромосомой (гоносомой), она может быть представлена или X или Y –хромосомой. Половые хромосомы у женщин представлены двумя X –хромосомами, а у мужчин одной X –хромосомой и одной Y –хромосомой.

Основные закономерности наследования были изучены Г. Менделем и изложены в его книге «Опыты над растительными гибридами» (1865). Он проводил скрещивание растений гороха, при котором родительские формы анализировались по одной паре альтернативных признаков. Такое скрещивание называется моногибридным. Если у родительских форм учитываются две пары альтернативных признаков, скрещивание называется дигибридным, более двух признаков – полигибридным. Прежде чем проводить опыты, Г. Мендель получил чистые линии горохов с альтернативными признаками, т. е. гомозиготные доминантные (АА) - жёлтые и гомозиготные рецессивные (аа) зелёные особи, которые в дальнейшем скрещивались друг с другом.

Запись скрещивания проводится так: в первой строке пишут букву Р (родители), далее генотип женского организма, знак скрещивания Х и генотип мужского организма; во второй строке записывают букву G (гаметы) и гаметы женской и мужской особей, каждая гамета берётся в кружочек; в третьей строке ставят букву F (потомки) и записывают генотипы потомков:

При выписывании гамет нужно придерживаться следующих принципов: из каждой пары аллельных генов в гамету должен попасть один ген; если организм гомозиготен (например, АА), то все гаметы, сколько бы их ни образовалось, будут содержать только один ген (А), т. е. все они будут однотипны, и, следовательно, гомозиготный организм образует один тип гамет; если организм гетерозиготен (Аа), то в процессе мейоза одна хромосома с геном А попадает в одну гамету, а вторая гомологичная хромосома с геном а попадёт в другую гамету (гетерозиготный организм по одной паре генов будет образовывать два типа гамет: Аа – А + а.

При анализе результатов скрещивания оказалось, что все потомки в первом поколении одинаковы по фенотипу (проявляется доминантный признак жёлтой окраски – закон доминирования) и генотипу (гетерозиготны), откуда и название первого закона Менделя – закон единообразия гибридов первого поколения. Он формулируется следующим образом: при скрещивании гомозиготных особей, отличающихся по одной паре альтернативных признаков, наблюдается единообразие гибридов первого поколения как по фенотипу, так и по генотипу.

При скрещивании гибридов первого поколения между собой (т. е. гетерозиготных особей) получается следующий результат:

Р (F1) Аа х Аа

F2 АА Аа Аа аа

Каждая из гетерозигот образует по два типа гамет, т. е. возможно получение четырёх их сочетаний:

1) яйцеклетка с геном А оплодотворяется сперматозоидом с геном А – получится генотип АА;

2) яйцеклетка с геном А оплодотворяется сперматозоидом с геном а – генотип Аа;

3) яйцеклетка с геном а оплодотворяется сперматозоидом с геном А – генотип Аа;

4) яйцеклетка с геном а оплодотворяется сперматозоидом с геном а – генотип аа.

Получаются зиготы: 1АА, 2 Аа, 1 аа, вероятность образования которых равная. По фенотипу особи АА и Аа неотличимы (жёлтые), поэтому наблюдается расщепление в отношении 3: 1 (три части потомков с жёлтыми семенами и одна часть – с зелёными). По генотипу соотношение будет: 1АА (одна часть - жёлтые гомозиготы) : 2Аа (две части – жёлтые гетерозиготы) : 1аа (одна часть – зелёные гомозиготы).

Второй закон Менделя – закон расщепления – формулируется следующим образом: при скрещивании гибридов первого поколения наблюдается расщепление в соотношении 3: 1 по фенотипу и 1: 2: 1 по генотипу.

Доминантный ген не всегда полностью подавляет действие рецессивного гена. В таком случае все гибриды первого поколения не воспроизводят признаки родителей – имеет место промежуточный характер наследования. Во втором поколении доминантные гомо - и гетерозиготы будут отличаться фенотипически и расщепление по фенотипу и генотипу одинаково (1: 2: 1).

Например, при скрещивании гомозиготных растений ночной красавицы с красными (АА) и белыми (аа) цветками первое поколение получается с розовыми цветками (промежуточное наследование). Во втором поколении расщепление по фенотипу, как и по генотипу, будет: 1 часть растений с красными цветками, две части – с розовыми и одна часть – с белыми.

Красные Белые

Р (F1) Аа х Аа

F2 АА Аа Аа аа

Красные Розовые Белые

Неполное доминирование довольно распространённое явление: оно обнаруживается, например, при наследовании окраски шерсти у крупного рогатого скота и овец, некоторых биохимических признаков у человека (разные варианты гемоглобинов).

Для объяснения установленных Менделем закономерностей наследования Бетсоном была предложена гипотеза чистоты гамет . По результатам моногибридного скрещивания мы убеждаемся, что, хотя у гетерозигот проявляется лишь доминантный признак, рецессивный ген не только не утрачивается, но он у гетерозиготного организма не сливается с доминантным, не разбавляется, не изменяется, а остаётся в чистом аллельном состоянии. Как было показано позже, аллельные гены расположены в одинаковых локусах гомологичных хромосом и в процессе мейоза попадают в разные гаметы. Следовательно, в гамете может присутствовать одновременно только один из аллельных генов, определяющий развитие одного из альтернативных признаков, и они являются «чистыми» по данному признаку. У гетерозиготного организма этот процесс выглядит так:

Схема расхождения гомологичных хромосом при мейозе

Кратко гипотезу чистоты гамет можно свести к следующим двум положениям:

1) у гибридного организма гены не гибридизируются (не смешиваются) и находятся в чистом аллельном состоянии;

2) в процессе мейоза в гамету попадает только один ген из аллельной пары.

Гипотеза чистоты гамет устанавливает, что законы расщепления есть следствие случайного сочетания гамет, несущих разные гены. Однако общий результат оказывается не случайным, так как здесь проявляется статистическая закономерность, определяемая большим числом равновероятных встреч гамет. Таким образом, расщепление при моногибридном скрещивании гетерозиготных организмов 3: 1 в случае полного доминирования или 1: 2: 1 при неполном доминировании следует рассматривать как биологическую закономерность, основанную на статистических данных.

Цитологические основы гипотезы чистоты гамет и первых двух законов Менделя составляют закономерности расхождения гомологичных хромосом и образования гаплоидных половых клеток в процессе мейоза.

В некоторых случаях необходимо установить генотип особи с доминантным признаком, так как при полном доминировании гомозигота (АА) и гетерозигота (Аа) фенотипически неотличимы. Для этого применяют анализирующее скрещивание, при котором данный организм м неизвестным генотипом скрещивают с гомозиготным рецессивным по данной аллели. Возможны два варианта результатов скрещивания:

1) Р АА х аа 2) Р Аа х аа

G А а G А а а

F Аа F Аа аа

Если в результате такого скрещивания получено единообразие гибридов первого поколения, то анализируемый организм является гомозиготным, а если в F1 произойдёт расщепление 1: 1, то особь гетерозиготна. Анализирующее скрещивание широко применяется в селекции.

Задачи для решения:

1. При скрещивании красноплодной и белоплодной земляники были получены только розовые формы. Написать генотипы исходных и гибридных форм, если известно, что ген красной окраски не полностью доминирует над геном, контролирующим белую окраску.

2.Если у пшеницы ген, определяющий малую длину колоса, не полностью доминирует над геном, ответственным за возникновение колоса большой длины, то какой длины колосья могут появиться при скрещивании 2-х растений, имеющих колосья средней длины.

3. У собак жёсткая шерсть доминантна, мягкая рецессивна. Два жёсткошёрстных родителя дают жёсткошёрстного щенка. С кем его нужно скрестить, чтобы выяснить, имеет ли он в генотипе аллель мягкошёрстности?

план

среднее.

Признак

аллельными.

гомозиготные (АА) или (аа)

– то гетерозиготные (Аа)

для генов гемизиготность

доминантным

рецессивный

По 2 – дигибридное

По 3 – тригибридное

G- гаметы (половые клетки)

Первый закон Менделя –

Второй закон – независимого расщепления

При скрещивании гетерозигот первого поколения аллельные гены распределяются в гаметах независимо друг от друга и дают в потомстве соотношение 1АА:2Аа:1аа. Исследование внешних особенностей таких гибридов обнаруживает, что частота носителей доминантного признака по отношению к особям, проявляющим рецессивный аллель – составляет 3:1

Третий закон – независимого комбинирования

При скрещивании особей, различающихся по 2 или более парам аллелей, все гены распределяются в потомстве независимо друг от друга. (как в теории вероятности – необходимо большое кол-во экспериментов)

· Оказалось, что 1 ген может влиять на формирование нескольких признаков – плейотропия – При: синдром Марфана – поражение ССС, скелета и глаз) и др.

· Также установлено, что гены не существуют независимо, а оказывают определенное влияние друг на друга (кроме доминирования - кодоминирование и неполное доминирование)

· Неаллельные гены, расположенные в разных локусах хромосом, также могут взаимодействовать между собой – комплементарность – при этом сочетание 2-х пар неаллельных генов в одном организме вызывает формирование нового признака.

· Другой тип – Эпистаз – подавляет действие другой.

· Формирование 1 признака может зависеть от действия нескольких пар неалльных генов – полигенное наследование – так наследуется цвет кожи. У представителей негроидной расы – доминантные аллели, европеоидной рецессивные.

Сцепленный с полом тип наследования

Гены признаков, характеризующихся сцепленным с полом наследованием, располагаются на половых хромосомах.

Y-хромосома содержит 19 генов – большинство отвечает за формирование мужских половых органов. Эти признаки передаются только сыновьям , но не дочерям!

Х-хромосома – более 400 генов – отвечающих за различные признаки организма. Поэтому, для медицинской генетики значение имеет наследование сцепленное с Х–хромосомой, которое различается в зависимости от доминантности или рецессивности анализируемого гена.

Генотип. фенотип

1909г Иогансен дал определение важнейшим понятиям генетики

Генотип – совокупность генов организма, проявляющихся во внешних признаках. Формируется в момент образования зиготы и не меняется в течение жизни.

Лечение может привести к исчезновению патологических проявлений, но генотип больного не изменится.

Огромное разнообразие генотипов даже у представителей одного вида обеспечивается процессами независимого распределения хромосом в мейозе, кроссинговером и случайным сочетанием половых клеток в момент оплодотворения.

Полное совпадение набора генов возможно только у однояйцовых близнецов, развивающихся из одной зиготы.

Фенотип – сочетание всех внешних признаков организма, его структура и функции. Он - результат сложного взаимодействия между генотипом и внешней средой. фенотип может меняться под действием различных факторов. Даже полное генотипическое сходство не обеспечивает идентичность фенотипа

Генотип не определяет фенотип строго однозначно. Он создает своего рода границы, в пределах которых под воздействием факторов внешней среды может происходить изменение признаков.

Фенотипические проявления гена зависят не только от доминантности или рецессивности, но и воздействия внешней среды и другие гены.

Эксперессивность- степень выраженности признака

Пенетрантность- определяется долей особей, проявляется в фенотипе, выражается в %. (ахондроплазия – 100%. Большинство пат. состояний – 60- 80%). Иногда регистрируется «пропуск поколения»

Во многих случаях трудно установить соответствие между геном и конкретным признаком, т.к. 1 ген может контролировать формирование сразу нескольких фенотипических признака. (плейотропия).

Карты хромосом человека

Открытия Моргана создали основу для определения мест расположения генов и оценки расстояния между ними. Расстояние между генами измеряется частотой кроссинговера. Т.есть отношением кол-ва особей, которые унаследовали только один ген, к числу тех, у кого были представлены совместно 2 гена, выраженное в %, ед. такого расстояния является 1% кроссинговера – 1сантиморганида.

Расстояние между генами в 1% кроссинговера показывает, что они обычно передаются потомкам совместно (сцеплено).

Если 50% - гены наследуются независимо друг от друга.

Возможность оценки расстояния между генами стала основой для построения генетических карт.

Г.К хромосомы – отрезок прямой, на котором указывается порядок расположения генов относительно друг друга и расстояние между ними в сантиморганидах.

Созданы генетические паспорта. Используются на практике экспертные системы. Проведение подобных работ влечет за собой очень много вопросов не только технических, но и нравственных, социальных, экономических.

Исследование генома открывает путь молекулярной медицине для Дз, лечения и профилактики наследственных заболеваний

ЗАКОНОМЕРНОСТИ НАСЛЕДОВАНИЯ ПРИЗНАКОВ.

план

1. Наследование признаков при моногибридном, дигибридном и полигибридном скрещивании.

2. Взаимодействие между генами.

3. Пенетрантность и экспрессивность генов.

4. Хромосомная теория наследственности. Хромосомные карты человека.

Тайна передачи признаков по наследству всегда привлекала людей. В I веке до н. э. древнеримский философ Лукреций заметил, что дети иногда походят на своих дедушек или прадедушек. Столетием спустя Плиний Старший писал: «Часто бывает так, что у здоровых родителей рождаются дети-калеки, а у родителей-калек - здоровые дети или дети с тем же уродством, в зависимости от случая». Еще первые земледельцы поняли, что некоторые признаки зерновых, например пшеницы, или домашних животных, например овец, передаются по наследству, поэтому путем отбора можно создавать новые сорта растений и новые породы животных. И сейчас мы порой восхищенно восклицаем: «У него улыбка матери!» или «У нее характер отца!», особенно когда хотим сказать, что эти черты достались детям по наследству от родителей.

Несмотря на то что о наследственности люди знали давно, природа этого механизма оставалась для них скрытой. Невозможно было дать понятное объяснение наследственности или определить законы передачи тех или иных признаков.

Самое первое и простое, приходящее на ум, - предположение, что признаки родителей в равной степени «перемешиваются» в детях, потому дети должны представлять собой нечто среднее. Это все равно, что взять банки с красной и белой красками, перемешать их и получить розовый цвет.

Отсюда может возникнуть предположение, что не только простые признаки (цвет волос и глаз или форма носа), но и сложные, вроде манеры поведения или черт характера, будут отражать нечто среднее между признаками родителей. Однако при дальнейшем смешении красок никогда не получится чистый цвет; из розовой краски нельзя получить чисто белую или чисто красную.

Уже древние римляне около 2 тысяч лет назад понимали, что наследственные признаки передаются каким-то другим способом.

Кроме того, на такие сложные признаки, как характер или умственные способности, огромное влияние оказывает внешняя среда, в частности воспитание.

Очевидно, что все первые научные гипотезы о наследственности оставались умозрительными догадками.

И только в середине XIX века эксперименты Грегора Менделя предоставили материал, позволивший впервые подойти к правильному пониманию механизма наследственности.

Прежде, чем перейти к рассмотрению законов Менделя вспомним основные понятия, которые используются в генетике

Признак – внешнее проявление действия гена – как результат функционирования соответствующего белка. Признаками могут быть – рост, цвет глаз и кожи, длина пальцев и т.д. окончательное формирование признака зависит также и от других генов и от факторов внешней среды.

Гены, отвечающие за различные проявления одного и того же признака (например длины пальцев – длинные или короткие) и расположенные в одинаковых местах (локусах) гомологичных хромосом, называются аллельными. В любом диплоидном организме за признак отвечают 2 аллельных гена . Из этой пары 1- от отца, 2-й – от матери, за исключением генов половых хромосом, которые у мужчин в норме непарные.

Если оба аллельных гена одинаковы по функции (одно и то же проявление признака) – гомозиготные (АА) или (аа)

Если действие обоих аллелей различается (норма патология, длинные -короткие, гладкие – всклоченные)– то гетерозиготные (Аа)

В норме у мужчин в половых хромосомах характерна для генов гемизиготность

Хотя аллели и находятся на не связанных друг с другом гомологичных хромосомах, для формирования признака важно влияние продуктов деятельности обоих генов. Если функция одного из аллельных генов не зависит от другого из этой пары, и он приводит к появлению признака – то его называют – доминантным (подавляющий) (А/) – белый локон, короткие пальцы, курчавые волосы, Габсбургская губа и т.д.)

Ген, действие которого проявляется в отсутствии доминантного аллеля только в гомозиготном состоянии – рецессивный (а) – альбинизм, 1 группа крови, неспособность сложить язык трубочкой.

В герерозиготном состоянии рецессивные гены могут передаваться последующим поколениям почти никак себя не проявляя.

Проводя опыты, назовем скрещивание 2-х организмов гибридизацией, а потомков этого скрещивания – гибридами. Если особи различаются по 1 признаку – моногибридное скрещивание

По 2 – дигибридное

По 3 – тригибридное

Согласно общепринятым обозначениям

родительских особей назовем Р (родитель)

G- гаметы (половые клетки)

F1 – гибриды /дети первого поколения

F2 – второго; ♀- жен, ♂-муж, х -скрещивание

Первый закон Менделя – при скрещивании 2-х особей, гомозиготных по альтернативным аллелям одного гена, все гибриды первого поколения - единообразны, являются герерозиготами и проявляя доминантный признак.

Новое на сайте

>

Самое популярное