Домой Страх Законы наследования признаков организма. Закономерности наследования признаков - закон

Законы наследования признаков организма. Закономерности наследования признаков - закон

Мы обращали внимание на то, что наследственность и наследование - два разных явления, которые не все строго различают.

Наследственность есть процесс материальной и функциональной дискретной преемственности между поколениями клеток и организмов. В основе ее лежит точная репродукция наследственно значимых структур.

Наследование - процесс передачи наследственно детерминированных признаков и свойств организма и клетки в процессе размножения. Изучение наследования позволяет раскрывать сущность наследственности. Поэтому следует строго разделять указанные два явления.

Рассмотренные нами закономерности расщепления и независимого комбинирования относятся, к изучению наследования, а не наследственности. Неверно, когда «закон расщепления » и «закон независимого комбинирования признаков-генов » трактуются как законы наследственности. Открытые Менделем законы являются законами наследования.

Во времена Менделя считали, что при скрещивании родительские признаки наследуются в потомстве слитно («слитная наследственность») или мозаично - одни признаки наследуются от матери, другие от отца («смешанная наследственность»). В основе таких представлений лежало убеждение, что в потомстве наследственность родителей смешивается, сливается, растворяется. Такое представление было ошибочным. Оно не давало возможности научно аргументировать теорию естественного отбора, и на самом деле, если бы при скрещивании наследственные приспособительные признаки в потомстве не сохранялись, а «растворялись», то естественный отбор работал бы вхолостую. Чтобы освободить свою теорию естественного отбора от подобных затруднений, Дарвин выдвинул теорию наследственного определения признака отдельными единицами - теорию пангенеза. Однако она не дала правильного решения вопроса.

Успех Менделя обусловлен открытием метода генетического анализа отдельных пар наследственных признаков; Мендель разработал метод дискретного анализа наследования признаков и по существу создал научные основы генетики, открыв следующие явления:

  1. каждый наследственный признак определяется отдельным наследственным фактором, задатком; в современном представлении эти задатки соответствуют генам: «один ген - один признак», «один ген - один фермент»;
  2. гены сохраняются в чистом виде в ряду поколений, не утрачивая своей индивидуальности: это явилось доказательством основного положения генетики: ген относительно постоянен;
  3. оба пола в равной мере участвуют в передаче своих наследственных свойств потомству;
  4. редупликация равного числа генов и их редукция в мужских и женских половых клетках; это положение явилось генетическим предвидением существования мейоза;
  5. наследственные задатки являются парными, один - материнский, другой - отцовский; один из них может быть доминантным, другой - рецессивным; это положение соответствует открытию принципа аллелизма: ген представлен минимум двумя аллелями.

Таким образом, Мендель, открыв метод генетического анализа наследования отдельных пар признаков (а не совокупности признаков) и установив законы наследования, впервые постулировал и экспериментально доказал принцип дискретной (генной) детерминации наследственных признаков.

На основании изложенного нам представляется полезным различать законы, непосредственно сформулированные Менделем и относящиеся к процессу наследования, и принципы наследственности, вытекающие из работы Менделя.

К законам наследования относятся закон расщепления наследственных признаков в потомстве гибрида и закон независимого комбинирования наследственных признаков. Эти два закона отражают процесс передачи наследственной информации в клеточных поколениях при половом размножении. Их открытие явилось первым фактическим доказательством существования наследственности как явления.

Законы наследственности имеют другое содержание, и они формулируются в следующем виде:

Первый закон - закон дискретной (генной) наследственной детерминации признаков; он лежит в основе теории гена.

Второй закон - закон относительного постоянства наследственной единицы - гена.

Третий закон - закон аллельного состояния гена (доминантность и рецессивность).

Именно эти законы представляют собой главный итог работ Менделя, так как именно они отражают сущность наследственности.

Менделевские законы наследования и законы наследственности являются основным содержанием генетики. Их открытие дало современному естествознанию единицу измерения жизненных процессов - ген и тем самым создало возможности объединения естественных наук - биологии, физики, химии и математики с целью Анализа биологических процессов.

В дальнейшем при определении наследственной единицы мы будем употреблять только термин «ген». Понятия «наследственный фактор» и «наследственный задаток» громоздки, и, кроме того, вероятно, наступило время, когда наследственный фактор и ген следует различать и вложить в каждое из этих понятий свое содержание. Под понятием «ген» мы пока будем иметь в виду далее неделимую функционально целостную единицу наследственности, определяющую наследственный признак. Термин «наследственный фактор» следует толковать в более широком смысле как комплекс ряда генов и цитоплазматических влияний на наследственный признак.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Генетика как наука. Основные понятия генетики

Генетика изучает закономерности наследственности и изменчивости, которые относятся к основным свойствам живых организмов.

Наследственностью называется свойство организмов повторять в ряду поколений сходные признаки. Функциональной единицей наследственности является ген, который реализуется в признак.

Изменчивость – это способность организмов приобретать новые признаки – различия в пределах вида.

Наследование — это способ передачи наследственной информации, который может измениться в зависимости от форм размножения.

Основные закономерности наследования были открыты чешским ботаником Грегором Менделем в 1865 году, хотя в то время они не получили признания. Лишь в 1900 году те же закономерности вновь установили независимо друг от друга Гуго де Фриз в Голландии, Корренс в Германии и Чермак в Австрии.

Изучая закономерности наследования, Г. Мендель использовал гибридологический метод, суть которого состоит в следующем:

— скрещивая организмы между собой, он выделял и анализировал наследование по отдельным контрастным или альтернативным признакам (цвет желтый или зеленый),

— был проведен точный количественный учет наследования каждого альтернативного признака в ряду последующих поколений.

— было прослежено не только первое поколение, но и последующие по этому признаку.

Скрещивание, в котором родительские особи анализируется по одной альтернативной паре признаков, называется моногибридным, по двум — дигибридным, по трем и более — полигибридным.

Основные понятия генетики

В настоящее время установлено, что гены, отвечающие за признаки, находятся в хромосомах. Хромосомы в соматических клетках организма парные или гомологичные. Поэтому за развитие одного признака отвечают два гена. Гены, определяющие развитие одного и того же признака и расположенные в одних и тех же локусах гомологичных хромосом, называют аллельными. Если в обеих гомологичных хромосомах, в одних и тех же локусах, находятся идентичные аллели гена, то такой организм называется гомозиготным. В потомстве таких организмов не происходит расщепления признаков.

Организм, у которого гомологичные хромосомы несут различные аллели того или иного гена, называется гетерозиготным. В потомстве такие организмы обнаруживают расщепление признаков.

Явление преобладания признака получило название доминирования, а преобладающий признак называется доминантным. Признак, который подавляется, называется рецессивным.

Гены принято обозначать буквами латинского алфавита. Гены, относящиеся к одной аллельной паре, обозначают одной и той же буквой, но аллель доминантного состояния признака — прописной, а рецессивного — строчной. Так в зиготе и в соматических клетках всегда два аллеля одного и того же гена, поэтому генотипическую формулу по любому признаку необходимо записывать двумя буквами.

АА – особь, гомозиготная по доминантному признаку

аа – особь, гомозиготная по рецессивному признаку

Аа – особь гетерозиготная

Рецессивный аллель проявляется только в гомозиготном состоянии, а доминантный – как в гомозиготном, так и в гетерозиготном состоянии.

Совокупность всех генов в организме называется генотип. Совокупность всех признаков и свойств организма называется фенотип. Фенотип зависит от генотипа и от факторов окружающей среды.

Моногибридное скрещивание

Опыты Мендель проводил на горохе. При скрещивании сортов гороха, имеющих желтые и зеленые семена (скрещивались гомозиготные организмы или чистые линии), все потомство (т.е. гибриды первого поколения) оказалось с желтыми семенами. Противоположный признак (зеленые семена) как бы исчезает. Обнаруженная закономерность получила название правило единообразия (доминирования) гибридов первого поколения (или первый закон Г. Менделя).

Опыты по скрещиванию записывают в виде схем:

А – ген желтой окраски

а – ген зеленой окраски

Р — (parents – родители)

F — (filii – дети)

Р ♀АА х ♂аа

F1 Аа – 100% желтые

Итак, все гибриды первого поколения оказываются однородными: гетерозиготными по генотипу и доминантными по фенотипу.

Таким образом, первое правило (закон) Менделя единообразия гибридов первого поколения можно сформулировать следующим образом: при скрещивании гомозиготных особей, отличающихся друг от друга по одной паре альтернативных признаков, все потомство в первом поколении единообразно как по фенотипу, так и по генотипу

Правило расщепления. Второй закон Менделя

Если скрестить гибриды первого поколения между собой, во втором поколении появляются особи, как с доминантными, так и с рецессивными признаками, т.е. возникает расщепление в определенном численном соотношении. В опытах с горохом желтых семян оказывается в три раза больше, чем зеленых. Эта закономерность получила название второго закона (правило) Менделя, или закона (правило) расщепления.

Р ♀ Аа х ♂ Аа

G (А) (а) (А) (а)

F2 АА; Аа, Аа; аа

желтые зеленые

Расщепление по фенотипу 3:1, по генотипу 1АА:2Аа:1аа

Второй закон (правило) Менделя: при скрещивании двух гетерозиготных особей, анализируемых по одной альтернативной паре признаков (т.е. гибридов), в потомстве ожидается расщепление по фенотипу 3:1 и по генотипу 1:2:1.

Ди- и полигибридное скрещивание. Третий закон Менделя

При дигибридном скрещивании родительские организмы анализируются по двум парам альтернативных признаков. Мендель изучал такие признаки как окраску семян и их форму. При скрещивании гороха с желтыми и гладкими семенами с горохом, имеющим зеленые и морщинистые семена, в первом поколении все потомство оказалось однородным, проявились только доминантные признаки – желтый цвет и гладкая форма. Следовательно, как и при моногибридном скрещивании здесь имело место правило единообразия гибридов первого поколения или правило доминирования.

А – ген желтого цвета

а – ген зеленого цвета

В – ген гладкой формы

в – ген морщинистой формы

Р ♀ААВВ х ♂аавв

ж. гл. з. морщ.

F1 АаВв – желтые гладкие

При скрещивании гибридов первого поколения между собой произошло расщепление по фенотипу:

Р ♀ АаВв х ♂АаВв

9 частей – желтых гладких

3 части – желтых морщинистых

3 части – зеленых гладких

1 часть – зеленых морщинистых

Из этого скрещивания видно, что во втором поколении имелись не только особи с сочетанием признаков родителей, но и особи с новыми комбинациями признаков.

Кроме того, Мендель обнаружил, что каждая пара признаков (цвет и форма) дала расщепление приблизительно в отношении 3:1, то есть как при моногибридном скрещивании. Отсюда был сделан вывод, что каждая пара альтернативных признаков при ди- и полигибридном скрещивании наследуется независимо друг от друга.

Третье правило или третий закон Менделя формулируется следующим образом: при скрещивании гомозиготных особей отличающихся двумя (или более) парами альтернативных признаков, во втором поколении наблюдается независимое наследование и комбинирование признаков, если гены, определяющие их, расположены в различных гомологичных хромосомах.

Кроме законов, Мендель сформулировал две гипотезы: факторальную и гипотезу «чистоты гамет», с помощью которых он попытался объяснить установленные закономерности.

Факторальная гипотеза указывает на то, что в клетках содержится фактор (ген), который и несет признак. Родители передают потомкам не признаки, а эти факторы.

Гипотеза «чистоты гамет»: организм по каждому признаку несет два наследственных фактора (один от отца, второй от матери). Эти наследственные факторы, находясь в клетках, не сливаются друг с другом и при формировании гамет расходятся в разные гаметы.

Анализирующее скрещивание

Рецессивный аллель проявляется только в гомозиготном состоянии. Поэтому о генотипе организма проявляющего рецессивный признак можно судить по фенотипу.

Гомозиготная и гетерозиготная особи, проявляющие доминантные признаки по фенотипу неотличимы. Для определения генотипа производят анализирующее скрещивание и узнают генотип родителей по потомству.

Анализирующее скрещивание заключается в том, что особь, генотип которой не ясен, но должен быть выяснен скрещивается с рецессивной формой. Если от такого скрещивания все потомство окажется однородным, значит анализируемая особь гомозиготна, если же произойдет расщепление, то она гетерозиготна

Р ♀ АА х ♂ аа

Р ♀ Аа х ♂ аа

G (А) (а) (а)

Как видно из схемы, при анализирующем скрещивании для потомства гетерозиготной особи характерно расщепление 1:1.

Основные закономерности наследования были открыты Г. Менделем на горохе. Он осуществлял внутривидовые скрещивания форм, отличающихся по единичному числу признаков, имеющих альтернативные (контрастные) их проявления. В числе признаков, которые он использовал, были окраска семян, цветков и бобов, форма семян и бобов, расположение цветков, высота растений. Первоначально проводился гибридологический анализ форм гороха, отличавшихся по одному признаку. Скрещивания, в которые вовлекаются родительские формы, имеющие отличия по проявлениям одного признака, называются моногибридными.

При скрещивании двух исходных форм, относящихся к чистым линиям, в первом дочернем поколении, как правило, наблюдается появление потомков одинакового фенотипа. Эта закономерность известна под названием закона единообразия гибридов первого поколения. Гибриды F1 могут иметь проявление признака как одного из родителей, так и промежуточное между исходными формами выражение. При этом, если различия родительских форм определяются одним геном (моногенно), запись скрещивания выглядит следующим образом: Р АА х аа → F1Аа. Это означает, что за проявление данного признака ответствен ген А, который существует в двух разных состояниях - А и а. Такие альтернативные состояния гена называются аллелями.

Анализируя результаты моногибридных скрещиваний, Г. Мендель установил правило (иногда именуемое законом) чистоты гамет. Оно подразумевает, что любая гамета любого организма несет по одному аллелю каждого гена, аллели в них не перемешиваются. Это означает, что у особей генотипа АА формируются гаметы одного вида - А, у особей генотипа аа - также одного типа - а. Такие особи, образующие гаметы только одного сорта (по крайней мере по тому гену, который находится в центре внимания), являются гомозиготными (или гомозиготами). Таким образом, нетрудно убедиться, что чистые линии состоят из гомозиготных особей. Гибриды Рх генотипа Аа формируют гаметы двух сортов - А и а, каждый из которых «чист» в отношении аллеля А или а. Такие особи (или генотипы), образующие гаметы нескольких видов, называются гетерозиготными (или гетерозиготами). В основе закона единообразия гибридов первого поколения лежит механизм расхождения хромосом в мейозе. Каждый из аллелей лежит в своей хромосоме (или хроматиде), и при расхождении хромосом (в первом делении мейоза), а затем и хроматид (во втором делении мейоза) вместе с ними в гаплоидные клетки отходит по одному из соответствующих аллелей. Таким образом, закон единообразия гибридов первого поколения является следствием основополагающего правила чистоты гамет, которое определяет и другие законы наследования.

Аллели одного гена взаимодействуют друг с другом разными способами. Если у гетерозиготы Аа проявляется фенотипическое выражение признака, одинаковое с особями генотипа АА, то аллель А полностью доминирует над а, тогда особи АА несут доминантное проявление признака, а гомозиготы по а - рецессивное. В этом заключается еще одно правило менделизма.- правило доминирования. Если же гетерозигота имеет проявление признака, промежуточное между двумя родительскими формами (например, при скрещивании растений ночной красавицы с красными и белыми цветками образуются гибриды с розовой окраской венчика), то речь идет о неполном доминировании.

Иногда у гетерозигот проявляются признаки обоих родителей - это отсутствие доминирования, или ко доминирование.

Закон расщепления в моногибридном скрещивании

Моногибридным называется скрещивание, в котором исходные формы отличаются по одному признаку. При скрещивании гибридов первого поколения, полученных от скрещивания гомозиготных форм, обнаруживается расщепление на 3/4 особей с доминантным проявлением признака и 1/4 - с рецессивным проявлением признака.

Во втором поколении, получаемом в результате скрещивания гибридов Р1 между собой, появляется два фенотипических класса в строго определенном соотношении. Это и есть расщепление, под которым понимают наличие в потомстве нескольких фенотипов в конкретных численных соотношениях.

Гибриды первого поколения могут скрещиваться не только с себе подобными. Если гетерозиготная особь Р1 скрещивается с организмом, гомозиготным по рецессивному аллелю рассматриваемого гена, то получается расщепление: Аа х аа → 1/2 Аа: 1/2 аа.

Такое скрещивание носит название анализирующего. В анализирующем скрещивании не составляет труда установить типы образуемых гетерозиготной особью гамет и их численное соотношение, легко определить, какие организмы гетерозиготны, а какие гомозиготны по интересующему нас признаку.

Закон расщепления в моногибридном скрещивании читается и в обратном порядке: если при скрещивании двух особей получается одно из рассмотренных выше расщеплений (в Р2 - 3:1, 1:2:1, 2:1, а в анализирующем скрещивании - 1:1), то исходные родительские формы отличаются по аллелям одного гена, то есть между ними существует различие по одному гену (моногенное различие исходных форм).

Закон независимого наследования в дигибридном скрещивании

Дигибридным называется такое скрещивание, в котором исходные формы отличаются по двум признакам. По каждому из признаков родительские формы отличаются по одному гену (по признаку А - по гену А, по признаку В - по гену В). При скрещивании гибридов F1, полученных от дигибридного скрещивания, наблюдается расщепление по фенотипу: 9/16 А-В- : 3/16 А-bb: 3/ 16 ааВ- : 3/16 ааbb.

При этом признаки наследуются независимо друг от друга, и по каждому из них наблюдается расщепление 3/4: 1/4.

Это расщепление легко получается как комбинированное, сочетающее два моногибридных (во втором поколении каждого из которых наблюдается расщепление 3:1), при этом за каждый признак отвечает один ген:

(3/4 А- + 1/4 аа) х (3/4 В- + 1/4 bb) = 9/16 А-В- + 3/16 А-bb + 3/16 ааВ- + 1/16 ааbb.

В анализирующем скрещивании аналогично получается расщепление 1:1:1:1.

Выполнение этого закона определяется независимым характером расхождения хромосом негомологичных пар в мейозе, а также тем, что гены А и В расположены в разных (негомологичных) хромосомах. Независимое расхождение хромосом в мейозе приводит к возникновению новых сочетаний генов и признаков, которых не было у родительских организмов, - в потомстве появляются рекомбинанты (особи, несущие перекомбинированные сочетания признаков).

Так же получаются и расщепления в полигибридных скрещиваниях (скрещивания, в которых родительские формы отличаются по нескольким или многим признакам).

Все законы наследования Г. Менделя иллюстрируют постулированную им точку зрения о дискретном характере наследования: наследуется не сам признак, а определяющие его материальные факторы. Этими факторами являются гены.

Взаимодействие генов

Некоторые признаки определяются не одним геном, а одновременным действием нескольких.

В таких случаях, безусловно, наблюдается изменение и усложнение формул расщеплений и методов анализа. Гены, влияющие на развитие одного признака, называются взаимодействующими. Известно несколько видов такого взаимодействия генов: комплементарное, эпистатическое, полимерное.

Доминантные аллели обоих генов приводят к формированию нового проявления признака, взаимно дополняя друг друга (комплементируя). Если же в генотипе присутствуют лишь рецессивные аллели обоих генов, то признак не проявляется. Биохимический анализ позволяет дополнить эту схему. Окраска глаз у дрозофилы обуславливается двумя пигментами (ярко-красным и коричневым), каждый из которых образуется в отдельной цепи биосинтеза. Рецессивный аллель «b» у гомозигот прерывает синтез ярко-красного пигмента - у таких особей глаза имеют коричневую окраску, аллель «а» нарушает синтез коричневого пигмента - у гомозигот аа глаза имеют ярко-красную окраску, у особей «А-В-» имеется оба пигмента, обуславливая темно-красную окраску глаз, а у гомозигот по обоим генам «ааbb» красящих веществ в глазах нет вообще - глаза бесцветные (белые).

Взаимодействие генов (или взаимодействие неаллельных генов) приводит к расщеплениям дигенного типа. Помимо случая, рассмотренного выше, во втором поколении могут наблюдаться расщепления: 9:7, 9:6:1, 9:3:4, 12:3:1, 13:3, 15:1.

Условия выполнения законов наследования

Рассмотренные выше закономерности наследования признаков выполняются лишь при соблюдении определенных условий. Необходимо, чтобы все типы гамет образовывались с равной вероятностью, обладали одинаковой жизнеспособностью и участвовали в оплодотворении с одинаковой эффективностью, формируя все типы зигот с одинаковой частотой, зиготы же должны характеризоваться равной жизнеспособностью. Степень выраженности признака также должна быть неизменной. Невыполнение хотя бы одного из таких условий приводит к искажению расщеплений.

Например, если в моногибридном скрещивании, в котором наблюдается расщепление в F2 1/4 АА: 2/4 Аа: 1/4 аа, наблюдается избирательная гибель зигот генотипа АА, то фенотипическое расщепление будет выглядеть как 2/3 Аа: 1/3 аа.

Следует отметить, что даже если выполняются перечисленные выше условия, фактическое расщепление не всегда точно соответствует теоретически рассчитанному. Дело в том, что законы наследования, открытые Менделем, проявляются на довольно большом статистическом материале. Для их точного выполнения необходимо проанализировать выборку определенного размера. Таким образом, закономерности наследования являются биологическими по сути, но имеют статистический характер проявления.

Представления о том, что для живых существ характерны наследственность и изменчивость, сложились еще в древности. Было замечено, что при размножении организмов из поколения в поколение передается комплекс признаков и свойств, присущих конкретному виду (проявление наследственности). Однако столь же очевидно и то, что между особями одного вида существуют некоторые различия (проявление изменчивости).

Знание о наличие этих свойств использовалось при выведении новых сортов культурных растений и пород домашних животных. Исстари в сельском хозяйстве применялась гибридизация, т. е. скрещивание организмов, отличающихся друг от друга по каким-либо признакам. Однако до конца XIX в. такая работа осуществлялась методом проб и ошибок, поскольку не были известны механизмы, лежащие в основе проявления подобных свойств организмов, а существовавшие на этот счет гипотезы имели чисто умозрительный характер.

В 1866 г. вышел в свет труд Грегора Менделя, чешского исследователя, «Опыты над растительными гибридами». В нем были описаны закономерности наследования признаков в поколениях растений нескольких видов, которые Г. Мендель выявил в результате многочисленных и тщательно выполненных экспериментов. Но его исследование не привлекло внимания современников, не сумевших оценить новизну и глубину идей, опередивших общий уровень биологических наук того времени. Лишь в 1900 г., после открытия законов Г. Менделя заново и независимо друг от друга тремя исследователями (Г. де Фризом в Голландии, К. Корренсом в Германии и Э. Чермаком в Австрии), начинается развитие новой биологической науки - генетики, изучающей закономерности наследственности и изменчивости. Грегора Менделя справедливо считают основоположником этой молодой, но очень бурно развивающейся науки.

Основные понятия современной генетики.

Наследственностью называется свойство организмов повторять в ряду поколений комплекс признаков (особенности внешнего строения, физиологии, химического состава, характера обмена веществ, индивидуального развития и т. д.).

Изменчивость - явление, противоположное наследственности. Она заключается в изменении комбинаций признаков или появлении совершенно новых признаков у особей данного вида.

Благодаря наследственности обеспечивается сохранение видов на протяжении значительных промежутков (до сотен миллионов лет) времени. Однако условия окружающей среды меняются (иногда существенно) с течением времени, и в таких случаях изменчивость, приводящая к разнообразию особей внутри вида, обеспечивает его выживание. Какие-то из особей оказываются более приспособленными к новым условиям, это и позволяет им выжить. Кроме того, изменчивость позволяет видам расширять границы своего местообитания, осваивать новые территории.

Сочетание двух указанных свойств тесно связано с процессом эволюции. Новые признаки организмов появляются в результате изменчивости, а благодаря наследственности они сохраняются в последующих поколениях. Накапливание множества новых признаков приводит к возникновению других видов

Виды изменчивости

Различают наследственную и ненаследственную изменчивость.

Наследственная (генотипическая) изменчивость связана с изменением самого генетического материала. Ненаследственная (фенотипическая, модификационная) изменчивость - это способность организмов изменять свой фенотип под влиянием различных факторов. Причиной модификационной изменчивости являются изменения внешней среды обитания организма или его внутренней среды.

Норма реакции

Это границы фенотипической изменчивости признака, возникающей под действием факторов внешней среды. Норма реакции определяется генами организма, поэтому норма реакции по одному и тому же признаку у разных индивидов различна. Размах нормы реакции различных признаков также варьирует. Те организмы, у которых норма реакции шире по данному признаку, обладают более высокими адаптивными возможностями в определенных условиях среды, т. е. модификационная изменчивость в большинстве случаев носит адаптивный характер, и большинство изменений, возникших в организме при воздействии определенных факторов внешней среды, являются полезными. Однако фенотипические изменения иногда утрачивают приспособительный характер. Если фенотипическая изменчивость клинически сходна с наследственным заболеванием, то такие изменения называются фенокопией.

Комбинативная изменчивость

Связана с новым сочетанием неизменных генов родителей в генотипах потомства. Факторы комбинативной изменчивости.

1.Независимое и случайное расхождение гомологичных хромосом в анафазе I мейоза.

2.Кроссинговер.

3.Случайное сочетание гамет при оплодотворении.

4.Случайный подбор родительских организмов.

Мутации

Это редкие, случайно возникшие стойкие изменения генотипа, затрагивающие весь геном, целые хромосомы, части хромосом или отдельные гены. Они возникают под действием мутагенных факторов физического, химического или биологического происхождения.

Мутации бывают:

1) спонтанные и индуцированные;

2) вредные, полезные и нейтральные;

3) соматические и генеративные;

4) генные, хромосомные и геномные.

Спонтанные мутации - это мутации, возникшие ненаправленно, под действием неизвестного мутагена.

Индуцированные мутации - это мутации, вызванные искусственно действием известного мутагена.

Хромосомные мутации - это изменения структуры хромосом в процессе клеточного деления. Различают следующие виды хромосомных мутаций.

1.Дупликация - удвоение участка хромосомы за счет неравного кроссинговера.

2.Делеция - потеря участка хромосомы.

3.Инверсия - поворот участка хромосомы на 180°.

4.Транслокация - перемещение участка хромосомы на другую хромосому.

Геномные мутации - это изменение числа хромосом. Виды геномных мутаций.

1.Полиплоидия - изменение числа гаплоидных наборов хромосом в кариотипе. Под кариотипом понимают число, форму и количество хромосом, характерные для данного вида. Различают нуллисомию (отсутствие двух гомологичных хромосом), моносомию (отсутствие одной из гомологичных хромосом) и полисомию (наличие двух и более лишних хромосом).

2.Гетероплоидия - изменение числа отдельных хромосом в кариотипе.

Генные мутации встречаются наиболее часто.

Причины генных мутаций:

1) выпадение нуклеотида;

2) вставка лишнего нуклеотида (эта и предыдущая причины приводят к сдвигу рамки считывания);

3) замена одного нуклеотида на другой.

Передача наследственных признаков в ряду поколений особей осуществляется в процессе размножения. При половом - через половые клетки, при бесполом наследственные признаки передаются с соматическими клетками.

Единицами наследственности (ее материальными носителями) являются гены. В функциональном отношении конкретный ген отвечает за развитие какого-то признака. Это не противоречит тому определению, которое мы давали гену выше. С химической точки зрения ген - участок молекулы ДНК. Он содержит генетическую информацию о структуре синтезируемого белка (т. е. последовательности аминокислот в белковой молекуле).

Совокупность всех генов в организме определяет совокупность конкретных белков, синтезируемых в нем, что в конечном счете приводит к формированию специфических признаков.

У прокариотной клетки гены входят в состав единственной молекулы ДНК, а у эукариотной - в молекулы ДНК, заключенные в хромосомах. При этом в паре гомологичных хромосом в одних и тех же участках располагаются гены, отвечающие за развитие какого-то признака (например, окраска цветка, форма семян, цвет глаз у человека). Они получили название аллельных генов. В одну пару аллельных генов могут входить либо одинаковые (по составу нуклеотидов и определяемому ими признаку), либо отличающиеся гены.

Понятие «признак» связано с каким-то отдельным качеством организма (морфологическим, физиологическим, биохимическим), по которому мы можем отличить его от другого организма. Например: глаза голубые или карие, цветки окрашенные или неокрашенные, рост высокий или низкий, группа крови I(0) или II(A) и т. д.

Совокупность всех генов у организма называется генотипом, а совокупность всех признаков - фенотипом.

Фенотип формируется на базе генотипа в определенных условиях внешней среды в ходе индивидуального развития организмов.

Основные закономерности наследственности и изменчивости

Генетика наука, изучающая закономерности и механизмы наследственности и изменчивости

Наследственность общее свойство всех организмов сохранять и передавать из поколение в поколение признаки своего строения и жизнедеятельности

  • совокупность механизмов, обеспечивающих структурно-функциональную преемственность организмов в ряду поколений (т. е. наследование)

Наследование — процесс воспроизведения в поколениях общего плана структурно-функциональной организации и отдельных признаков у особей одного биологического вида

Изменчивость – общее свойство живых организмов приобретать отличия в строениеии и жизнедеятельности потомков от предков

v ведёт к возникновению индивидуальных различий между особями одного вида

Этапы развития генетики

  • Открытие законов наследственности. В 1856 г. Г. Мендель (чех.) выявил важнейшие законы наследственности (в работе « Опыты над растительными гибридами ») и показал, что:

* признаки определяются дискретными (отдельными) наследственными факторами, которые передаются через половые клетки

* отдельные признаки организма при скрещивании не исчезают, а сохраняются в потомстве в том же виде как и у родителей (дискретная концепция наследственности)

* каждому признаку в организме соответствуют два наследственных фактора, получаемых от женской и мужской особи

  • Официальное рождение генетики . В 1900 г. Г. де Фриз (гол.) , К. Корренс (гер.) и К. Чермак (австр.) на разных объектах независимо переоткрыли законы Менделя и признали его приоритет
  • Развитие хромосомной теории.

В!911 г. Т. Морган (США) сформулировал хромосомную теорию наследственности и экспериментально доказал, что основными носителями генов являются хромосомы, что гены в хромосомах располагаются линейно

  • Открытие нуклеиновых кислот как наследственного материала. В 1928 г. Ф. Гриффит и О. Эвери показали, что свойства от одной клетки к другой могут передаваться только с ДНК
  • Расшифровка строения молекулы ДНК. В 1953 г. Ф. Крик (англ.) и Дж. Уотсон (амер.) предложили модель двойной спирали структуры ДНК, которая многократно проверялась и была признана правильной

n Современная генетика включает несколько дисциплин: цитогенетика, онтогентика, селекция биохимическая генетика, иммуногенетика, медицинская цитогенетика, генетика человека

n Генетика тесно связана с биохимией, молекулярной биологией, цитологией, эмбриологией, теорией эволюции и т. д.

Методы генетики

1. Гибридологический метод (открыт Менделем) — выведение закономерностей наследования на основе количественного учёта (математической обработки) гибридного потомства, полученного при скрещивании родителей, отличающихся одним или несколькими признаками

  • Мендель выделял и учитывал не весь комплекс родительских признаков и их потомков, а анализировал наследование по отдельным альтернативным признакам (одному или нескольким: моно- , ди — , тригибридное, полигибридное и т. д. скрещивание)
  • Производился точный количественный учёт (математическая, статистическая обработка) наследования каждого альтернативного признака в ряду поколений
  • Исследовался аналогично характер потомства каждого гибрида в отдельности
  • Неприменим для изучения генетики человека, поскольку у него возможно только полигибридное скрещивание и чрезвычайно немногочисленное потомство

2. Генеалогический метод — составление и анализ родословных

3. Близнецовый метод — наследование признаков у близнецовс целью оценки соотносительной роли наследственности и среды в развитии признака

4. Цитогенетический метод — изучение хромосом с помощью микроскопа

5. Популяционно-статистический — изучение распространения отдельных генов или хромосомных аномалий в популяциях

6. Мутационный метод — обнаружение мутаций и их наследование в зависимости от способа размножения организма

7. Рекомбинационный метод — выявление рекомбинаций по отдельным парам генов в одной хромосоме и составление на этой основе генетических карт хромосом с указанием относительного расположения отдельных генов

8. Биохимический метод установление последовательности аминокислот в полипептидной цепи и определении мутаций на этой основе

Метод математического моделирования изучение процессов сцепления и взаимодействия генов

10. Метод гибридизации соматических клеток — культивирование соматических клеток и тканей на питательных стерильных средах

11. Дополнительные методы иммунологические, физиологические, психологические, метод условных рефлексов и т. д.

Предыдущая47484950515253545556575859606162Следующая

В этой статье кратко и понятно описываются три закона Менделя. Эти законы - основа всей генетики, создав их, Мендель фактически создал эту науку.

Здесь Вы найдёте определение каждого закона и узнаете немного нового о генетике и биологии в целом.

Перед началом чтения статьи стоит понимать, что генотип - это совокупность генов организма, а фенотип - его внешних признаков.

Кто такой Мендель и чем он занимался

Грегор Иоганн Мендель - известный австрийский биолог, родившийся в 1822 году в деревне Гинчице. Хорошо учился, но у семьи его были материальные трудности. Чтобы разобраться с ними, Иоганн Мендель в 1943 году решил стать монахом чешского монастыря в городе Брно и получил там имя Грегор.

Грегор Иоганн Мендель (1822 — 1884)

Позже изучал биологию в Венском университете, а затем решил преподавать физику и природоведение в Брно. Тогда же учёный заинтересовался ботаникой. Он проводил опыты по скрещиванию гороха. На основе результатов этих опытов учёный вывел три закона наследственности, которым и посвящена эта статья.

Опубликованные в работе «Опыты с гибридами растений» в 1866 году, эти законы не получили широкой огласки, и вскоре работа была забыта. О ней вспомнили лишь после смерти Менделя в 1884 году. Вам уже известно, сколько законов он вывел. Теперь пора перейти к рассмотрению каждого.

Первый закон Менделя - закон единообразия гибридов первого поколения

Рассмотрим опыт, проведённый Менделем. Он взял два вида гороха. Эти виды различали цветом цветков. У одного они были пурпурные, а у другого - белые.

Скрестив их, учёный увидел, что у всего потомства цветки пурпурные. А горох жёлтого и зелёного цвета дал полностью жёлтое потомство. Биолог повторял эксперимент ещё много раз, проверяя наследование разных признаков, однако результат всегда был один.

На основе этих опытов учёный вывел свой первый закон, вот его формулировка: все гибриды в первом поколении всегда наследуют лишь один признак от родителей.

Обозначим ген, отвечающий за пурпурные цветки, как A, а за белые- a. Генотип одного родителя - AA (пурпурные), а второго - aa (белые). От первого родителя будет унаследован ген A, а от второго - a. Значит, генотип потомства всегда будет Aa. Ген, обозначенный заглавной буквой, называется доминантным, а строчной - рецессивным.

Если в генотипе организма содержатся два доминантных или два рецессивных гена, то его называют гомозиготным, а организм, содержащий разные гены - гетерозиготным. Если организм гетерозиготен, то рецессивный ген, обозначаемый прописной буквой, подавляется более сильным доминантным, в результате проявляется признак, за который отвечает доминантный. Значит, горох с генотипом Aa будет обладать пурпурными цветками.

Скрещивание двух гетерозиготных организмов с разными признаками - это моногибридное скрещивание.

Кодоминирование и неполное доминирование

Бывает такое, что доминантный ген не может подавить рецессивный. И тогда в организме проявляются оба родительских признака.

Такое явление можно наблюдать на примере камелии. Если в генотипе этого растения один ген отвечает за красные лепестки, а другой - за белые, то половина лепестков камелии станут красными, а остальные - белыми.

Такое явление называют кодоминированием.

Неполное доминирование - похожее явление, при котором появляется третий признак, нечто среднее между тем, что было у родителей. Например, цветок ночная красавица с генотипом, содержащим и белые, и красные лепестки, окрашивается в розовый.

Второй закон Менделя - закон расщепления

Итак, мы помним, что при скрещивании двух гомозиготных организмов всё потомство примет лишь один признак. Но что, если взять из этого потомства два гетерозиготных организма и скрестить их? Будет ли потомство единообразным?

Вернёмся к гороху. Каждый родитель с равной вероятностью передаст либо ген A, либо ген a. Тогда потомство разделится следующим образом:

  • AA - пурпурные цветки (25%);
  • aa - белые цветки (25%);
  • Aa - пурпурные цветки (50%).

Видно, что организмов с пурпурными цветками в три раза больше. Это явление расщепления. В этом и заключается второй закон Грегора Менделя: при скрещивании гетерозиготных организмов потомство расщепляется в соотношении 3:1 по фенотипу и 1:2:1 по генотипу.

Впрочем, существуют так называемые летальные гены. При их наличии происходит отклонение от второго закона. Например, потомство жёлтых мышей расщепляется в соотношении 2:1.

То же происходит и с лисицами платинового цвета. Дело в том, что если в генотипе этих (и некоторых других) организмов оба гена доминантные, то они просто погибают. В результате доминантный ген может проявляться только если организм гетерозиотен.

Закон чистоты гамет и его цитологическое обоснование

Возьмём жёлтый горох и зелёный горох, ген жёлтого цвета - доминантный, а зелёного - рецессивный. В гибриде будут содержаться оба этих гена (хотя мы увидим лишь проявление доминантного).

Известно, что от родителя к потомству гены переносятся с помощью гамет. Гамета - это половая клетка. В генотипе гибрида имеется два гена, выходит, в каждой гамете - а их две - находилось по одному гену. Слившись, они образовали генотип гибрида.

Если во втором поколении проявился рецессивный признак, характерный одному из родительских организмов, значит, выполнялись следующие условия:

  • наследственные факторы гибридов не изменялись;
  • каждая гамета содержала в себе один ген.

Второй пункт - закон чистоты гамет. Конечно, гена не два, их больше. Существует понятие аллельных генов. Они отвечают за один и тот же признак. Зная это понятие, можно сформулировать закон так: в гамету проникает по одному, случайно выбранному, гену из аллели.

Цитологическая основа данного правила: клетки, в которых находятся содержащие пары аллелей хромосомы со всей генетической информацией, делятся и образуют клетки, в которых есть лишь по одной аллели - гаплоидные клетки. В данном случае это гаметы.

Третий закон Менделя - закон независимого наследования

Выполнение третьего закона возможно при дигибридном скрещивании, когда исследуется не один признак, а несколько. В случае с горохом это, например, цвет и гладкость семян.

Гены, отвечающие за цвет семян, обозначим как A (жёлтый) и a (зелёный); за гладкость - B (гладкие) и b (морщинистые). Попробуем провести дигибридное скрещивание организмов с разными признаками.

Первый закон не нарушается при таком скрещивании, то есть гибриды будут одинаковы и по генотипу (AaBb), и по фенотипу (с жёлтыми гладкими семенами).

Каким же будет расщепление во втором поколении? Чтобы это узнать, необходимо выяснить, какие гаметы могут выделить родительские организмы. Очевидно, это AB, Ab, aB и ab. После этого строится схема, называемая решёткой Пиннета.

По горизонтали перечисляются все гаметы, которые может выделить один организм, а по вертикали - другой. Внутри решётки записывается генотип организма, который появился бы при данных гаметах.

AB Ab aB ab
AB AABB AABb AaBB AaBb
Ab AABb AAbb AaBb Aabb
aB AaBB AaBb aaBB aaBb
ab AaBb Aabb aaBb aabb

Если изучить таблицу, можно прийти к выводу, что расщепление гибридов второго поколения по фенотипу происходит в соотношении 9:3:3:1. Это понял и Мендель, проведя несколько экспериментов.

Помимо этого он также пришёл к выводу, что то, какой из генов одной аллели (Aa) попадёт в гамету, не зависит от другой аллели (Bb), то есть существует только независимое наследование признаков. Это и есть его третий закон, называемый законом независимого наследования.

Заключение

Три закона Менделя - основные генетические законы. Благодаря тому, что один человек решил поэкспериментировать с горохом, биология получила новый раздел - генетику.

С её помощью учёные со всего мира научились множеству вещей, начиная предотвращением болезней, заканчивая генной инженерией. Генетика - это один из самых интересных и перспективных разделов биологии.

Генетика - наука о закономерностях наследственности и изменчивости. Датой «рождения» генетики можно считать 1900 год, когда Г. Де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии независимо друг от друга «переоткрыли» законы наследования признаков, установленные Г. Менделем еще в 1865 году.

Наследственность - свойство организмов передавать свои признаки от одного поколения к другому.

Изменчивость - свойство организмов приобретать новые по сравнению с родителями признаки. В широком смысле под изменчивостью понимают различия между особями одного вида.

Признак - любая особенность строения, любое свойство организма. Развитие признака зависит как от присутствия других генов, так и от условий среды, формирование признаков происходит в ходе индивидуального развития особей. Поэтому каждая отдельно взятая особь обладает набором признаков, характерных только для нее.

Фенотип - совокупность всех внешних и внутренних признаков организма.

Ген - функционально неделимая единица генетического материала, участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК. В широком смысле ген - участок ДНК, определяющий возможность развития отдельного элементарного признака.

Генотип - совокупность генов организма.

Локус - местоположение гена в хромосоме.

Аллельные гены - гены, расположенные в идентичных локусах гомологичных хромосом.

Гомозигота - организм, имеющий аллельные гены одной молекулярной формы.

Гетерозигота - организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой - рецессивным.

Рецессивный ген - аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.

Доминантный ген - аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.

Методы генетики

Основным является гибридологический метод - система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений. Впервые разработан и использован Г. Менделем. Отличительные особенности метода: 1) целенаправленный подбор родителей, различающихся по одной, двум, трем и т. д. парам контрастных (альтернативных) стабильных признаков; 2) строгий количественный учет наследования признаков у гибридов; 3) индивидуальная оценка потомства от каждого родителя в ряду поколений.

Скрещивание, при котором анализируется наследование одной пары альтернативных признаков, называется моногибридным , двух пар - дигибридным , нескольких пар - полигибридным . Под альтернативными признаками понимаются различные значения какого-либо признака, например, признак - цвет горошин, альтернативные признаки - желтый цвет, зеленый цвет горошин.

Кроме гибридологического метода, в генетике используют: генеалогический - составление и анализ родословных;цитогенетический - изучение хромосом; близнецовый - изучение близнецов; популяционно-статистический метод - изучение генетической структуры популяций.

Генетическая символика

Предложена Г. Менделем, используется для записи результатов скрещиваний: Р - родители; F - потомство, число внизу или сразу после буквы указывает на порядковый номер поколения (F 1 - гибриды первого поколения - прямые потомки родителей, F 2 - гибриды второго поколения - возникают в результате скрещивания между собой гибридов F 1); × - значок скрещивания; G - мужская особь; E - женская особь; A - доминантный ген, а - рецессивный ген; АА - гомозигота по доминанте, аа - гомозигота по рецессиву, Аа - гетерозигота.

Закон единообразия гибридов первого поколения, или первый закон Менделя

Успеху работы Менделя способствовал удачный выбор объекта для проведения скрещиваний - различные сорта гороха. Особенности гороха: 1) относительно просто выращивается и имеет короткий период развития; 2) имеет многочисленное потомство; 3) имеет большое количество хорошо заметных альтернативных признаков (окраска венчика - белая или красная; окраска семядолей - зеленая или желтая; форма семени - морщинистая или гладкая; окраска боба - желтая или зеленая; форма боба - округлая или с перетяжками; расположение цветков или плодов - по всей длине стебля или у его верхушки; высота стебля - длинный или короткий); 4) является самоопылителем, в результате чего имеет большое количество чистых линий, устойчиво сохраняющих свои признаки из поколения в поколение.

Опыты по скрещиванию разных сортов гороха Мендель проводил в течение восьми лет, начиная с 1854 года. 8 февраля 1865 года Г. Мендель выступил на заседании Брюннского общества естествоиспытателей с докладом «Опыты над растительными гибридами», где были обобщены результаты его работы.

Опыты Менделя были тщательно продуманы. Если его предшественники пытались изучить закономерности наследования сразу многих признаков, то Мендель свои исследования начал с изучения наследования всего лишь одной пары альтернативных признаков.

Мендель взял сорта гороха с желтыми и зелеными семенами и произвел их искусственное перекрестное опыление: у одного сорта удалил тычинки и опылил их пыльцой другого сорта. Гибриды первого поколения имели желтые семена. Аналогичная картина наблюдалась и при скрещиваниях, в которых изучалось наследование других признаков: при скрещивании растений, имеющих гладкую и морщинистую формы семян, все семена полученных гибридов были гладкими, от скрещивания красноцветковых растений с белоцветковыми все полученные - красноцветковые. Мендель пришел к выводу, что у гибридов первого поколения из каждой пары альтернативных признаков проявляется только один, а второй как бы исчезает. Проявляющийся у гибридов первого поколения признак Мендель назвал доминантным, а подавляемый - рецессивным.

При моногибридном скрещивании гомозиготных особей , имеющих разные значения альтернативных признаков, гибриды являются единообразными по генотипу и фенотипу.

Генетическая схема закона единообразия Менделя

(А - желтый цвет горошин, а - зеленый цвет горошин)

Закон расщепления, или второй закон Менделя

Г. Мендель дал возможность самоопылиться гибридам первого поколения. У полученных таким образом гибридов второго поколения проявился не только доминантный, но и рецессивный признак. Результаты опытов приведены в таблице.

Признаки Доминантные Рецессивные Всего
Число % Число %
Форма семян 5474 74,74 1850 25,26 7324
Окраска семядолей 6022 75,06 2001 24,94 8023
Окраска семенной кожуры 705 75,90 224 24,10 929
Форма боба 882 74,68 299 25,32 1181
Окраска боба 428 73,79 152 26,21 580
Расположение цветков 651 75,87 207 24,13 858
Высота стебля 787 73,96 277 26,04 1064
Всего: 14949 74,90 5010 25,10 19959

Анализ данных таблицы позволил сделать следующие выводы:

  1. единообразия гибридов во втором поколении не наблюдается: часть гибридов несет один (доминантный), часть - другой (рецессивный) признак из альтернативной пары;
  2. количество гибридов, несущих доминантный признак, приблизительно в три раза больше, чем гибридов, несущих рецессивный признак;
  3. рецессивный признак у гибридов первого поколения не исчезает, а лишь подавляется и проявляется во втором гибридном поколении.

Явление, при котором часть гибридов второго поколения несет доминантный признак, а часть - рецессивный, называютрасщеплением . Причем, наблюдающееся у гибридов расщепление не случайное, а подчиняется определенным количественным закономерностям. На основе этого Мендель сделал еще один вывод: при скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в определенном числовом соотношении.

При моногибридном скрещивании гетерозиготных особей у гибридов имеет место расщепление по фенотипу в отношении 3:1, по генотипу 1:2:1.

Генетическая схема закона расщепления Менделя

(А - желтый цвет горошин, а - зеленый цвет горошин):

P ♀Aa
желтые
× ♂Aa
желтые
Типы гамет A a A a
F 2 AA
желтые
Aa
желтые
75%
Aa
желтые
aa
зеленые
25%

Закон чистоты гамет

С 1854 года в течение восьми лет Мендель проводил опыты по скрещиванию растений гороха. Им было выявлено, что в результате скрещивания различных сортов гороха друг с другом гибриды первого поколения обладают одинаковым фенотипом, а у гибридов второго поколения имеет место расщепление признаков в определенных соотношениях. Для объяснения этого явления Мендель сделал ряд предположений, которые получили название «гипотезы чистоты гамет», или «закона чистоты гамет». Мендель предположил, что:

  1. за формирование признаков отвечают какие-то дискретные наследственные факторы;
  2. организмы содержат два фактора, определяющих развитие признака;
  3. при образовании гамет в каждую из них попадает только один из пары факторов;
  4. при слиянии мужской и женской гамет эти наследственные факторы не смешиваются (остаются чистыми).

В 1909 году В. Иогансен назовет эти наследственные факторы генами, а в 1912 году Т. Морган покажет, что они находятся в хромосомах.

Для доказательства своих предположений Г. Мендель использовал скрещивание, которое сейчас называют анализирующим (анализирующее скрещивание - скрещивание организма, имеющего неизвестный генотип, с организмом, гомозиготным по рецессиву). Наверное, Мендель рассуждал следующим образом: «Если мои предположения верны, то в результате скрещивания F 1 с сортом, обладающим рецессивным признаком (зелеными горошинами), среди гибридов будут половина горошин зеленого цвета и половина горошин - желтого». Как видно из приведенной ниже генетической схемы, он действительно получил расщепление 1:1 и убедился в правильности своих предположений и выводов, но современниками он понят не был. Его доклад «Опыты над растительными гибридами», сделанный на заседании Брюннского общества естествоиспытателей, был встречен полным молчанием.

Цитологические основы первого и второго законов Менделя

Во времена Менделя строение и развитие половых клеток не было изучено, поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.

Явления доминирования и расщепления признаков, наблюдавшиеся Менделем, в настоящее время объясняются парностью хромосом, расхождением хромосом во время мейоза и объединением их во время оплодотворения. Обозначим ген, определяющий желтую окраску, буквой А , а зеленую - а . Поскольку Мендель работал с чистыми линиями, оба скрещиваемых организма - гомозиготны, то есть несут два одинаковых аллеля гена окраски семян (соответственно, АА и аа ). Во время мейоза число хромосом уменьшается в два раза, и в каждую гамету попадает только одна хромосома из пары. Так как гомологичные хромосомы несут одинаковые аллели, все гаметы одного организмы будут содержать хромосому с геном А , а другого - с геном а .

При оплодотворении мужская и женская гаметы сливаются, и их хромосомы объединяются в одной зиготе. Получившийся от скрещивания гибрид становится гетерозиготным, так как его клетки будут иметь генотип Аа ; один вариант генотипа даст один вариант фенотипа - желтый цвет горошин.

У гибридного организма, имеющего генотип Аа во время мейоза, хромосомы расходятся в разные клетки и образуется два типа гамет - половина гамет будет нести ген А , другая половина - ген а . Оплодотворение - процесс случайный и равновероятный, то есть любой сперматозоид может оплодотворить любую яйцеклетку. Поскольку образовалось два типа сперматозоидов и два типа яйцеклеток, возможно возникновение четырех вариантов зигот. Половина из них - гетерозиготы (несут гены А и а ), 1/4 - гомозиготы по доминантному признаку (несут два гена А ) и 1/4 - гомозиготы по рецессивному признаку (несут два гена а ). Гомозиготы по доминанте и гетерозиготы дадут горошины желтого цвета (3/4), гомозиготы по рецессиву - зеленого (1/4).

Закон независимого комбинирования (наследования) признаков, или третий закон Менделя

Организмы отличаются друг от друга по многим признакам. Поэтому, установив закономерности наследования одной пары признаков, Г. Мендель перешел к изучению наследования двух (и более) пар альтернативных признаков. Для дигибридного скрещивания Мендель брал гомозиготные растения гороха, отличающиеся по окраске семян (желтые и зеленые) и форме семян (гладкие и морщинистые). Желтая окраска (А ) и гладкая форма (В ) семян - доминантные признаки, зеленая окраска (а ) и морщинистая форма (b ) - рецессивные признаки.

Скрещивая растение с желтыми и гладкими семенами с растением с зелеными и морщинистыми семенами, Мендель получил единообразное гибридное поколение F 1 с желтыми и гладкими семенами. От самоопыления 15-ти гибридов первого поколения было получено 556 семян, из них 315 желтых гладких, 101 желтое морщинистое, 108 зеленых гладких и 32 зеленых морщинистых (расщепление 9:3:3:1).

Анализируя полученное потомство, Мендель обратил внимание на то, что: 1) наряду с сочетаниями признаков исходных сортов (желтые гладкие и зеленые морщинистые семена), при дигибридном скрещивании появляются и новые сочетания признаков (желтые морщинистые и зеленые гладкие семена); 2) расщепление по каждому отдельно взятому признаку соответствует расщеплению при моногибридном скрещивании. Из 556 семян 423 были гладкими и 133 морщинистыми (соотношение 3:1), 416 семян имели желтую окраску, а 140 - зеленую (соотношение 3:1). Мендель пришел к выводу, что расщепление по одной паре признаков не связано с расщеплением по другой паре. Для семян гибридов характерны не только сочетания признаков родительских растений (желтые гладкие семена и зеленые морщинистые семена), но и возникновение новых комбинаций признаков (желтые морщинистые семена и зеленые гладкие семена).

При дигибридном скрещивании дигетерозигот у гибридов имеет место расщепление по фенотипу в отношении 9:3:3:1, по генотипу в отношении 4:2:2:2:2:1:1:1:1, признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

Р ♀АABB
желтые, гладкие
× ♂aаbb
зеленые, морщинистые
Типы гамет AB ab
F 1 AaBb
желтые, гладкие, 100%
P ♀АaBb
желтые, гладкие
× ♂AаBb
желтые, гладкие
Типы гамет AB Ab aB ab AB Ab aB ab

Генетическая схема закона независимого комбинирования признаков:

AB Ab aB ab
AB AABB
желтые
гладкие
AABb
желтые
гладкие
AaBB
желтые
гладкие
AaBb
желтые
гладкие
Ab AABb
желтые
гладкие
AАbb
желтые
морщинистые
AaBb
желтые
гладкие
Aabb
желтые
морщинистые
aB AaBB
желтые
гладкие
AaBb
желтые
гладкие
aaBB
зеленые
гладкие
aaBb
зеленые
гладкие
ab AaBb
желтые
гладкие
Aabb
желтые
морщинистые
aaBb
зеленые
гладкие
aabb
зеленые
морщинистые

Анализ результатов скрещивания по фенотипу: желтые, гладкие - 9/16, желтые, морщинистые - 3/16, зеленые, гладкие - 3/16, зеленые, морщинистые - 1/16. Расщепление по фенотипу 9:3:3:1.

Анализ результатов скрещивания по генотипу: AaBb - 4/16, AABb - 2/16, AaBB - 2/16, Aabb - 2/16, aaBb - 2/16, ААBB - 1/16,Aabb - 1/16, aaBB - 1/16, aabb - 1/16. Расщепление по генотипу 4:2:2:2:2:1:1:1:1.

Если при моногибридном скрещивании родительские организмы отличаются по одной паре признаков (желтые и зеленые семена) и дают во втором поколении два фенотипа (2 1) в соотношении (3 + 1) 1 , то при дигибридном они отличаются по двум парам признаков и дают во втором поколении четыре фенотипа (2 2) в соотношении (3 + 1) 2 . Легко посчитать, сколько фенотипов и в каком соотношении будет образовываться во втором поколении при тригибридном скрещивании: восемь фенотипов (2 3) в соотношении (3 + 1) 3 .

Если расщепление по генотипу в F 2 при моногибридном поколении было 1:2:1, то есть было три разных генотипа (3 1), то при дигибридном образуется 9 разных генотипов - 3 2 , при тригибридном скрещивании образуется 3 3 - 27 разных генотипов.

Третий закон Менделя справедлив только для тех случаев, когда гены анализируемых признаков находятся в разных парах гомологичных хромосом.

Цитологические основы третьего закона Менделя

Пусть А - ген, обусловливающий развитие желтой окраски семян, а - зеленой окраски, В - гладкая форма семени, b - морщинистая. Скрещиваются гибриды первого поколения, имеющие генотип АаВb . При образовании гамет из каждой пары аллельных генов в гамету попадает только один, при этом в результате случайного расхождения хромосом в первом делении мейоза ген А может попасть в одну гамету с геном В или с геном b , а ген а - с геном В или с геном b . Таким образом, каждый организм образует четыре сорта гамет в одинаковом количестве (по 25%): АВ , Ab , aB , ab . Во время оплодотворения каждый из четырех типов сперматозоидов может оплодотворить любую из четырех типов яйцеклеток. В результате оплодотворения возможно появление девяти генотипических классов, которые дадут четыре фенотипических класса.

Сцепленное наследование

В 1906 году У. Бэтсон и Р. Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве, гибриды всегда повторяли признаки родительских форм. Стало ясно, что не для всех признаков характерно независимое распределение в потомстве и свободное комбинирование.

Каждый организм имеет огромное количество признаков, а число хромосом невелико. Следовательно, каждая хромосома несет не один ген, а целую группу генов, отвечающих за развитие разных признаков. Изучением наследования признаков, гены которых локализованы в одной хромосоме, занимался Т. Морган . Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила.

Дрозофила каждые две недели при температуре 25 °С дает многочисленное потомство. Самец и самка внешне хорошо различимы - у самца брюшко меньше и темнее. Они имеют всего 8 хромосом в диплоидном наборе, достаточно легко размножаются в пробирках на недорогой питательной среде.

Скрещивая мушку дрозофилу с серым телом и нормальными крыльями с мушкой, имеющей темную окраску тела и зачаточные крылья, в первом поколении Морган получал гибриды, имеющие серое тело и нормальные крылья (ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обусловливающий развитие нормальных крыльев, - над геном недоразвитых). При проведении анализирующего скрещивания самки F 1 с самцом, имевшим рецессивные признаки, теоретически ожидалось получить потомство с комбинациями этих признаков в соотношении 1:1:1:1. Однако в потомстве явно преобладали особи с признаками родительских форм (41,5% - серые длиннокрылые и 41,5% - черные с зачаточными крыльями), и лишь незначительная часть мушек имела иное, чем у родителей, сочетание признаков (8,5% - черные длиннокрылые и 8,5% - серые с зачаточными крыльями). Такие результаты могли быть получены только в том случае, если гены, отвечающие за окраску тела и форму крыльев, находятся в одной хромосоме.

1 - некроссоверные гаметы; 2 - кроссоверные гаметы.

Если гены окраски тела и формы крыльев локализованы в одной хромосоме, то при данном скрещивании должны были получиться две группы особей, повторяющие признаки родительских форм, так как материнский организм должен образовывать гаметы только двух типов -АВ и аb , а отцовский - один тип - аb . Следовательно, в потомстве должны образовываться две группы особей, имеющих генотип ААВВ иааbb . Однако в потомстве появляются особи (пусть и в незначительном количестве) с перекомбинированными признаками, то есть имеющие генотип Ааbb и ааВb . Для того, чтобы объяснить это, необходимо вспомнить механизм образования половых клеток - мейоз. В профазе первого мейотического деления гомологичные хромосомы конъюгируют, и в этот момент между ними может произойти обмен участками. В результате кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В , появляются гаметы Аb и аВ , и, как следствие, в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов. Но, поскольку кроссинговер происходит при образовании небольшой части гамет, числовое соотношение фенотипов не соответствует соотношению 1:1:1:1.

Группа сцепления - гены, локализованные в одной хромосоме и наследующиеся совместно. Количество групп сцепления соответствует гаплоидному набору хромосом.

Сцепленное наследование - наследование признаков, гены которых локализованы в одной хромосоме. Сила сцепления между генами зависит от расстояния между ними: чем дальше гены располагаются друг от друга, тем выше частота кроссинговера и наоборот. Полное сцепление - разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются так близко друг к другу, что кроссинговер между ними становится невозможным. Неполное сцепление - разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются на некотором расстоянии друг от друга, что делает возможным кроссинговер между ними.

Независимое наследование - наследование признаков, гены которых локализованы в разных парах гомологичных хромосом.

Некроссоверные гаметы - гаметы, в процессе образования которых кроссинговер не произошел.

Образуются гаметы:

Кроссоверные гаметы - гаметы, в процессе образования которых произошел кроссинговер. Как правило кроссоверные гаметы составляют небольшую часть от всего количества гамет.

Образуются гаметы:

Нерекомбинанты - гибридные особи, у которых такое же сочетание признаков, как и у родителей.

Рекомбинанты - гибридные особи, имеющие иное сочетание признаков, чем у родителей.

Расстояние между генами измеряется в морганидах - условных единицах, соответствующих проценту кроссоверных гамет или проценту рекомбинантов. Например, расстояние между генами серой окраски тела и длинных крыльев (также черной окраски тела и зачаточных крыльев) у дрозофилы равно 17%, или 17 морганидам.

У дигетерозигот доминантные гены могут располагаться или в одной хромосоме (цис-фаза ), или в разных (транс-фаза ).

1 - Механизм цис-фазы (некроссоверные гаметы); 2 - механизм транс-фазы (некроссоверные гаметы).

Результатом исследований Т. Моргана стало создание им хромосомной теории наследственности :

  1. гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов; набор генов каждой из негомологичных хромосом уникален;
  2. каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;
  3. гены расположены в хромосомах в определенной линейной последовательности;
  4. гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;
  5. сцепление генов может нарушаться в процессе кроссинговера, что приводит к образованию рекомбинантных хромосом; частота кроссинговера зависит от расстояния между генами: чем больше расстояние, тем больше величина кроссинговера;
  6. каждый вид имеет характерный только для него набор хромосом - кариотип.

Генетика пола

Хромосомное определение пола

Большинство животных являются раздельнополыми организмами. Пол можно рассматривать как совокупность признаков и структур, обеспечивающих способ воспроизводства потомства и передачу наследственной информации. Пол чаще всего определяется в момент оплодотворения, то есть в определении пола главную роль играет кариотип зиготы. Кариотип каждого организма содержит хромосомы, одинаковые у обоих полов, - аутосомы, и хромосомы, по которым женский и мужской пол отличаются друг от друга, - половые хромосомы. У человека «женскими» половыми хромосомами являются две Х -хромосомы. При образовании гамет каждая яйцеклетка получает одну из Х -хромосом. Пол, у которого образуются гаметы одного типа, несущие Х -хромосому, называется гомогаметным. У человека женский пол является гомогаметным. «Мужские» половые хромосомы у человека - Х -хромосома и Y -хромосома. При образовании гамет половина сперматозоидов получает Х -хромосому, другая половина - Y -хромосому. Пол, у которого образуются гаметы разного типа, называется гетерогаметным. У человека мужской пол - гетерогаметный. Если образуется зигота, несущая две Х -хромосомы, то из нее будет формироваться женский организм, если Х -хромосому и Y -хромосому - мужской.

У животных можно выделить следующие четыре типа хромосомного определения пола .

  1. Женский пол - гомогаметен (ХХ ), мужской - гетерогаметен (ХY ) (млекопитающие, в частности, человек, дрозофила).

    Генетическая схема хромосомного определения пола у человека:

    Р ♀46, XX × ♂46, XY
    Типы гамет 23, X 23, X 23, Y
    F 46, XX
    женские особи, 50%
    46, XY
    мужские особи, 50%

    Генетическая схема хромосомного определения пола у дрозофилы:

    Р ♀8, XX × ♂8, XY
    Типы гамет 4, X 4, X 4, Y
    F 8, XX
    женские особи, 50%
    8, XY
    мужские особи, 50%
  2. Женский пол - гомогаметен (ХХ ), мужской - гетерогаметен (Х0 ) (прямокрылые).

    Генетическая схема хромосомного определения пола у пустынной саранчи:

    Р ♀24, XX × ♂23, X0
    Типы гамет 12, X 12, X 11, 0
    F 24, XX
    женские особи, 50%
    23, X0
    мужские особи, 50%
  3. Женский пол - гетерогаметен (ХY ), мужской - гомогаметен (ХХ ) (птицы, пресмыкающиеся).

    Генетическая схема хромосомного определения пола у голубя:

    Р ♀80, XY × ♂80, XX
    Типы гамет 40, X 40, Y 40, X
    F 80, XY
    женские особи, 50%
    80, XX
    мужские особи, 50%
  4. Женский пол - гетерогаметен (Х0 ), мужской - гомогаметен (ХХ ) (некоторые виды насекомых).

    Генетическая схема хромосомного определения пола у моли:

    Р ♀61, X0 × ♂62, XX
    Типы гамет 31, X 30, Y 31, X
    F 61, X0
    женские особи, 50%
    62, XX
    мужские особи, 50%

Наследование признаков, сцепленных с полом

Установлено, что в половых хромосомах находятся гены, отвечающие не только за развитие половых, но и за формирование неполовых признаков (свертываемость крови, цвет зубной эмали, чувствительность к красному и зеленому цвету и т.д.). Наследование неполовых признаков, гены которых локализованы в Х - или Y -хромосомах, называют наследованием, сцепленным с полом .

Изучением наследования генов, локализованных в половых хромосомах, занимался Т. Морган.

У дрозофилы красный цвет глаз доминирует над белым. Реципрокное скрещивание - два скрещивания, которые характеризуются взаимно противоположным сочетанием анализируемого признака и пола у форм, принимающих участие в этом скрещивании. Например, если в первом скрещивании самка имела доминантный признак, а самец - рецессивный, то во втором скрещивании самка должна иметь рецессивный признак, а самец - доминантный. Проводя реципрокное скрещивание, Т. Морган получил следующие результаты. При скрещивании красноглазых самок с белоглазыми самцами в первом поколении все потомство оказывалось красноглазым. Если скрестить между собой гибридов F 1 , то во втором поколении все самки оказываются красноглазыми, а среди самцов - половина белоглазых и половина красноглазых. Если же скрестить между собой белоглазых самок и красноглазых самцов, то в первом поколении все самки оказываются красноглазыми, а самцы белоглазыми. В F 2 половина самок и самцов - красноглазые, половина - белоглазые.

Объяснить полученные результаты наблюдаемого расщепления по окраске глаз Т. Морган смог, только предположив, что ген, отвечающий за окраску глаз, локализован в Х -хромосоме (Х А - красный цвет глаз, Х а - белый цвет глаз), а Y -хромосома таких генов не содержит.

Схема половых хромосом человека и сцепленных с ними генов:
1 - Х-хромосома; 2 - Y-хромосома.

У людей мужчина получает Х -хромосому от матери, Y -хромосому - от отца. Женщина получает одну Х -хромосому от матери, другую Х -хромосому от отца. Х -хромосома - средняя субметацентрическая, Y -хромосома - мелкая акроцентрическая; Х -хромосома и Y -хромосома имеют не только разные размеры, строение, но и по большей части несут разные наборы генов. В зависимости от генного состава в половых хромосомах человека можно выделить следующие участки: 1) негомологичный участок Х -хромосомы (с генами, имеющимися только в Х -хромосоме); 2) гомологичный участок Х -хромосомы и Y -хромосомы (с генами, имеющимися как в Х -хромосоме, так и в Y -хромосоме); 3) негомологичный участок Y -хромосомы (с генами, имеющимися только в Y -хромосоме). В зависимости от локализации гена в свою очередь выделяют следующие типы наследования.

Тип наследования Локализация генов Примеры
Х -сцепленный рецессивный Гемофилия, разные формы цветовой слепоты (протанопия, дейтеронопия), отсутствие потовых желез, некоторые формы мышечной дистрофии и пр.
Х -сцепленный доминантный Негомологичный участок Х -хромосомы Коричневый цвет зубной эмали, витамин D устойчивый рахит и пр.
Х-Y -сцепленный (частично сцепленный с полом) Гомологичный участок Х - и Y -хромосом Синдром Альпорта, общая цветовая слепота
Y -сцепленный Негомологичный участок Y -хромосомы Перепончатость пальцев ног, гипертрихоз края ушной раковины

Большинство генов, сцепленных с Х -хромосомой, отсутствуют в Y -хромосоме, поэтому эти гены (даже рецессивные) будут проявляться фенотипически, так как они представлены в генотипе в единственном числе. Такие гены получили название гемизиготных. Х -хромосома человека содержит ряд генов, рецессивные аллели которых определяют развитие тяжелых аномалий (гемофилия, дальтонизм и пр.). Эти аномалии чаще встречаются у мужчин (так как они гемизиготны), хотя носителем генов, обусловливающих эти аномалии, чаще бывает женщина. Например, если Х А X A Y

F 2 X A X A X А X a
♀ норм. сверт. крови
50%
X А Y
♂ норм. сверт. крови
25%
X a Y
♂ гемофилики
25%

Закономерности наследственности. Законы Г. Менделя, их статистический характер и цитологические основы

Основные закономерности наследственности установил выдающийся чешский ученый Грегор Мендель. Свои исследования Г. Мендель начал с моногибридного скрещивания, при котором родительские особи отличаются по состоянию одного признака. Выбранный им горох посевной - само-запильна растение, поэтому потомки каждой особи являются чистыми линиями. Вместе горох можно искусственно перекрестно опылить, что делает возможным гибридизацию и получения гетерозиготных (гибридных) форм. Как материнские (Р) были взяты растения чистой линии с желтым цветом семян, а родительской (Р) - с зеленым цветом. В результате такого скрещивания семена растений (гибридов первого поколения - F1) оказалось однообразным - желтого цвета. То есть в фенотипе гибридов F1 проявились лишь доминантные признаки.

Однообразие первого гибридного поколения и выявления у гибридов только доминантного признака называется законом доминирования или И законом Менделя.

Расщепление - явление проявления обоих состояний признаки во втором поколении гибридов (F2), обусловлено различием аллельных генов, которые их определяют.

Есть самоопыляющиеся растения F1 с желтыми семенами дают потомства с желтым и с зелеными семенами; рецессивный признак не исчезает, а только временно подавляется, вновь появляется в F2 в соотношении 1/4 часть зеленых семян и 3/4 - желтых. То есть точно - 3:1.

Проявление в фенотипе четверти гибридов второго поколения рецессивного признака, а трех четвертых - доминантной, получила название закона расщепления, II закона Менделя.

В дальнейшем Г. Мендель усложнил условия в опытах - использовал растения, которые отличались различными состояниями двух (Дигибридное скрещивание) или большего числа признаков (полигибридное скрещивания). При скрещивании растений гороха с желтыми гладкими семенами и морщинистыми зелеными - все гибриды первого поколения имели гладкие желтые семена - проявление И закона Менделя - единообразия гибридов первого поколения. Но среди гибридов F2 оказалось четыре фенотипа.

На основании полученных результатов Г. Мендель сформулировал закон независимого комбинирования состояний признаков (закон независимого наследования признаков). Это ІІІ закон Менделя. При ди-или полигибридном скрещивании расщепления состояний каждого признака у потомков происходит независимо от других. Для дигибридном скрещивания характерно расщепление по фенотипу 9:3:3:1, причем появляются группы с новыми сочетанием признаков.

Неполное доминирование - промежуточный характер наследования. Существуют аллели, которые лишь частично доминируют над рецессивными. Тогда гибридная особь имеет степень признака в фенотипе, что отличает ее от родительских. Это явление получило название неполного доминирования.

Методы проверки генотипа гибридных особей

Как известно, при полном доминировании особи с доминантным и гетерозиготным набором хромосом фенотипически одинаковы. Определить их генотип возможно с помощью анализирующего скрещивания. Оно базируется на том, что особи, гомозиготные по рецессивным признаком , всегда подобные фенотипически. Это скрещивание рецессивного гомозиготной особи с особью с доминантным признаком , но неизвестным генотипом.

При получении однообразной F1 каждая родительская особь образует только один тип гамет. Итак, доминантная особь гомозиготной по генотипу (АА).

Если при скрещивании особи с доминантным признаком с особью с рецессивной гомозиготной признаком полученное потомство имеет расщепление 1:1, то исследуемая особь с доминантным признаком гетерозиготная (Аа).

  1. Особенности метода гибридологического анализа. Законы Менделя.
  2. Типы взаимодействия генов.
  3. Сцепленное наследование признаков.
  4. Цитоплазматическое наследование.

Метод гибридологического анализа , заключающийся в скрещивании и последующем учете расщеплений (соотношений фенотипических и генотипических разновидностей потомков), был разработан чешским естествоиспытателем Г. Менде­лем (1865). К особенностям этого метода относят: 1) учет при скрещивании не всего многообразного комплекса признаков у родителей и потомков, а анализ наследования отдельных, выделяемых исследователем альтернативных признаков ; 2) количе­ственный учет в ряду последовательных поколений гибридных растений, различающихся по отдельным признакам; 3) индивиду­альный анализ потомства от каждого растения.

Работая с самоопыляющимися растениями гороха садового, Г.Мендель выбрал для эксперимента сорта (чистые линии), отличающиеся друг от друга альтернативными проявлениями признаков. Полученные данные Мендель обработал математически, в результате чего раскрылась четкая закономерность наследования отдельных признаков родительских форм их потомками в ряде последующих поколений. Эту закономерность Мендель сформулировал в виде правил наследственности, получивших позднее название законов Менделя .

Скрещивание двух организмов называют гибридизацией. Моногибридным (моногенным ) называют скрещивание двух организмов, при котором прослеживают наследование одной пары альтернативных проявлений какого-либо признака (развитие этого признака обусловлено парой аллелей одного гена). Гибриды первого поколения являются единообразными по исследуемому признаку. В F1 проявляется лишь один из пары альтернативных вариантов признака цвета семян, названный доминантным. Эти результаты иллюстрируют первый закон Менделя - закон единообразия гибридов первого поколения, а также правило доминирования.

Первый закон Менделя можно сформулировать следующим образом: при скрещивании гомозиготных особей, отличающихся одной или несколькими парами альтернативных признаков, все гибриды первого поколения окажутся по этим признакам едино­образными. У гибридов проявятся доминантные признаки родите­лей.

Во втором поколении обнаружилось расщепление по исследуемому признаку

Соотношение потомков с доминантным и рецессивным проявлением признака оказалось близко к ¾ к ¼. Таким образом, второй закон Менделя можно сформулировать следующим образом: при моногибридном скрещивании гетерозигот­ных особей (гибридов F1) во втором поколении наблюдается расщепление по вариантам анализируемого признака в отношении 3:1 по фенотипу и 1:2:1 по генотипу. Чтобы объяснить распределение признаков у гибридов после­довательных поколений, Г. Мендель предположил, что каждый наследственный признак зависит от наличия в соматических клетках двух наследственных факторов, полученных от отца и матери. К настоящему времени установлено, что наследственные факторы Менделя соответствуют генам - локусам хромосом.

Гомозиготные растения с желтыми семенами (АА) образуют гаметы одного сорта с аллелем А; растения с зелеными семенами (аа) образуют гаметы с а. Таким образом, пользуясь современной терминологией, гипоте­зу «чистоты гамет » можно сформулировать следующим образом: "В процессе образования половых клеток в каждую гамету попадает только один ген из аллельной пары, потому что, в процессе мейоза в гамету попадает одна хромосома из пары гомологичных хромосом.

Скрещивание, при котором прослеживается наследование по двум парам альтернативных признаков, называют дигибридным , по нескольким парам признаков- полигибридным . В опытах Менделя при скрещивании сорта гороха, имевшего желтые (А) и гладкие (В) семена, с сортом гороха с зелеными (а) и морщинистыми (Ь) семенами, гибриды F1 имели желтые и гладкие семена, т.е. проявились доминантные признаки (гибриды едино­образны).

Гибридные семена второго поколения (F2) распределились на четыре фенотипические группы в соотношении: 315 - с гладкими желтыми семенами, 101 - с морщинистыми желтыми, 108- с гладкими зелеными, 32 - с зелеными морщинистыми семенами. Если число потомков в каждой группе разделить на число потомков в самой малочисленной группе, то в F2 соотношение фенотипических классов составит приблизительно 9:3:3:1. Итак, согласно третьему закону Менделя , гены разных аллельных пар и соответствующие им признаки передаются потомству независимо друг от друга, комбинируясь во всевозмож­ных сочетаниях.

При полном доминировании одного аллеля над другим гетерозиготные особи фенотипически неотличимы от гомозиготных по доминантному аллелю и различить их можно только с помощью гибридологического анализа, т.е. по потомству, которое получается от определенного типа скрещивания, получившего название анализирующего . Анализирующим является такой тип скрещивания, при котором испытуемую особь с доминантным признаком скрещивают с особью, гомозиготной по рецессивному аплелю.

Если доминантная особь гомозиготна, потомство от такого скрещивания будет единообразным и расщепления не произойдет. В том случае, если особь с доминантным признаком гетерозиготна, расщепление произойдет в отношении 1:1 по фенотипу и генотипу.

Взаимодействие генов

В отдельных случаях действие разных генов относительно независимо, но, как правило, проявление признаков есть результат взаимодействия продуктов разных генов. Эти взаимодействия могут быть связаны как с аллельными , так и с неаллельными генами.

Взаимодействие между аллельными генами осуществляется в виде трех форм: полное доминирование, неполное доминирование и независимое проявление (кодоминирование).

Ранее были рассмотрены опыты Менделя, выявившие полное доминирование одного аллеля и рецессивность другого. Неполное доминирование наблюдается в том случае, когда один ген из пары аллелей не обеспечивает образование в достаточном для нормального проявления признака его белкового продукта. При этой форме взаимодействия генов все гетерозиготы и гомозиготы значительно отличаются по фенотипу друг от друга. При кодоминирсвании у гетерозиготных организмов каждый из аллельных генов вызывает формирование в фенотипе контролируемого им признака. Примером этой формы взаимогействия аллелей служит наследование групп крови человека по системе АВО, детерминируемых геном I. Существует три аллеля этого гена Iо,Iа,IЬ, определяющие антигены групп крови. Наследование групп крови иллюстрирует также явление множественного аллелизма: в генофондах популяций человека ген I существует в виде трех разных аллелей, которые комбинируются у отдельных индивидуумов только попарно.

Взаимодействие неаллельных генов. В ряде случаев на один признак организма могут влиять две (или более) пары неаллельных генов. Это приводит к значитель­ным численным отклонениям фенотипических (но не генотипических) классов от установленных Менделем при дигибридном скрещивании. Взаимодействие неаллельных генов подразделяют на основные формы: комплементарность, эпистаз, полимерию.

При комплементарном взаимодействии признак проявляется лишь в случае одновременного присутствия в генотипе организма двух доминантных неаллельных генов. Примером комплементар­ного взаимодействия может служить скрещивание двух различных сортов душистого горошка с белыми лепестками цветков.

Следующим видом взаимодействия неаллельных генов является эпистаз, при котором ген одной аллельной пары подавляет действие гена другой пары. Ген, подавляющий действие другого, называется эпистатическим геном (или супрессором). Подавля­емый ген носит название гипостатического. Эпистаз может быть доминантным и рецессивным. Примером доминантного эпистаза служит наследование окраски оперения кур. Ген С в доминантной форме определяет нормальную продукцию пигмента, но домина­нтный аллель другого гена I является его супрессором. В результате этого куры, имеющие в генотипе доминантный аллель гена окраски, в присутствии супрессора оказываются белыми. Эпистатическое действие рецессивного гена иллюстрнрует наследование окраски шерсти у домовых мышей. Окраска агути (рыжевато-серая окраска шерсти) определяется доминантным геном А. Его рецессивный аллель а в гомозиготном состоянии обусловливает черную окраску. Доминантный ген другой пары С определяет развитие пигмента, гомозиготы по рецессивному аллелю с являются альбиносами с белой шерстью и красными глазами (отсутствие пигмента в шерсти и радужной оболочке глаз).

Наследование признака, передача и развитие которого, обусловлены, как правило, двумя аллелями одного гена, называют моногенным . Кроме того известны гены из разных аллельных пар (их называют полимернымиили полигенами ), примерно одинаково влияющие на признак.

Явление одновременного действия на признак нескольких неаллельных однотипных генов получило название полимерии. Хотя полимерные гены не являются аллельными, но так как они определяют развитие одного признака, их обычно обозначают одной буквой А (а), цифрами указывая число аллельных пар. Действие полигенов чаще всего бывает суммирующим.

Сцепленное наследование

Анализ наследования од­новременно нескольких признаков у дрозофилы, проведенный Т. Морганом, показал, что результаты анализирующего скрещивания гибридов F1 иногда отличаются от ожидаемых в случае их незави­симого наследования. У потомков такого скрещивания вместо свободного комбинирования признаков разных пар наблюдали, тенденцию к наследованию преимущественно родительских соче­таний признаков. Такое наследование признаков было названо сцепленным. Сцепленное наследование объясняется расположением соответствующих генов в одной и той же хромосоме. В составе последней они передаются из поколения в поколение клеток и организмов, сохраняя сочетание аллелей родителей.

Зависимость сцепленного наследования признаков от локали­зации генов в одной хромосоме дает основание рассматривать хромосомы как отдельные группы сцепления. Анализ наследования призна­ка окраски глаз у дрозофилы в лаборатории Т. Моргана выявил некоторые особенности, заставившие выделить в качестве отдель­ного типа наследования признаков сцепленное с полом наследование .

Зависимость результатов эксперимента от того, кто из родителей являлся носителем доминантного варианта признака, позволила высказать предположение, что ген, определяющий окраску глаз у дрозофилы, расположен в Х-хромосоме и не имеет гомолога в У-хромосоме. Все особенности сцепленного с полом наследования объясняются неодинаковой дозой соответствующих генов у пред­ставителей разного - гомо- и гетерогаметного пола. Х-хромосома присутствует в кариотипе каждой особи, поэтому признаки, определяемые генами этой хромосомы, формируются у представителей как женского, так и мужского пола. Особи гомогаметного пола получают эти гены от обоих родителей и через свои гаметы передают их всем потомкам. Представители гетерогаметного пола получают единственную X-хромосому от гомогаметного родителя и передают ее своему гомогаметному потомству. У млекопитающих (в том числе и человека) мужской пол получает Х-сцепленные гены от матери и передает их дочерям. При этом мужской пол никогда не наследует отцовского Х-сцепленного признака и не передает его своим сыновьям

Активно функционирующие гены У-хромосомы, не имеющие аллелей в Х-хромосоме, присутствуют в генотипе только гетерогаметного пола, причем в гемизиготном состоянии. Поэтому они проявляются фенотипически и передаются из поколения в поколение лишь у представителей гетерогаметного пола. Так, у человека признак гипертрихоза ушной раковины («во­лосатые уши») наблюдается исключительно у мужчин и наследуется от отца к сыну.

Мы начнем с изложения законов Менделя, затем поговорим про Моргана, и в конце скажем, зачем генетика нужна сегодня, чем она помогает и каковы ее методы.

В 1860-х годах монах Мендель занялся исследованием наследования признаков. Этим занимались и до него, и впервые об этом говорится в Библии. В Ветхом завете говорится о том, что если владелец скота хотел получить определенную породу, то он одних овец кормил ветками очищенными, если хотел получить потомство с белой шерстью, и неочищенными, если хотел получить шкуру скота черной. То есть как наследуются признаки волновало людей еще до написания Библии. Почему же до Менделя никак не могли найти законы передачи признаков в поколениях?

Дело в том, что до него исследователи выбирали совокупность признаков одного индивида, с которыми было сложнее разбираться, нежели с одним признаком. До него передача признаков рассматривалась часто как единый комплекс (типа - у нее лицо бабушкино, хотя отдельных признаков тут очень много). А Мендель регистрировал передачу каждого признака в отдельности, независимо от того, как передались потомкам другие признаки.

Важно, что Мендель выбрал для исследования признаки, регистрация которых была предельно простой. Это признаки дискретные и альтернативные:

  1. дискретные (прерывистые) признаки: данный признак либо присутствует, либо отсутствует. Например, признак цвета: горошина либо зеленая, либо не зеленая.
  2. альтернативные признаки: одно состояние признака исключает наличие другого состояния. Например, состояние такого признака как цвет: горошина либо зеленая, либо желтая. Оба состояния признака в одном организме проявиться не могут.

Подход к анализу потомков был у Менделя такой, который до него не применяли. Это количественный, статистический метод анализа: все потомки с данным состоянием признака (например - горошины зеленые) объединялись в одну группу и подсчитывалось их число, которое сравнивали с числом потомков с другим состоянием признака (горошины желтые).

В качестве признака Мендель выбрал цвет семян посевного гороха, состояние которого было взаимоисключающим: цвет или желтый, или зеленый. Другой признак - форма семян. Альтернативные состояния признака - форма или морщинистая или гладкая. Оказалось, что эти признаки стабильно воспроизводятся в поколениях, и проявляются либо в одном состоянии, либо в другом. В общей сложности Мендель исследовал 7 пар признаков, следя за каждым по отдельности.

При скрещивании Мендель исследовал передачу признаков от родителей к их потомкам. И вот что он получил. Один из родителей давал в череде поколений при самоопылении только морщинистые семена, другой родитель - только гладкие семена.

Горох - самоопылитель. Для того, чтобы получить потомство от двух разных родителей (гибриды), ему нужно было сделать так, чтобы растения не самоопылялись. Для этого он удалял у одного родительского растения тычинки, и переносил на него пыльцу с другого растения. В этом случае образовавшиеся семена были гибридными. Все гибридные семена в первом поколении оказались одинаковыми. Все они оказались гладкими. Проявившееся состояние признака мы называем доминантным (значение корня этого слова - господствующий). Другое состояние признака (морщинистые семена) у гибридов не обнаруживалось. Такое состояние признака мы называем рецессивным (уступающим).

Мендель скрестил растения первого поколения внутри себя и посмотрел на форму получившихся горошин (это было второе поколение потомков скрещивания). Основная часть семян оказалась гладкой. Но часть была морщинистой, точно такой же у исходного родителя (если б мы говорили про собственную семью, то сказали бы, что внук был точно в дедушку, хоть у папы с мамой этого состояния признака не было совсем). Он провел количественное исследование того, какая доля потомков относится к одному классу (гладкие - доминантные), а какая к другому классу (морщинистые - рецессивные). Оказалось, что морщинистых семян получилась примерно четверть, а три четверти - гладких.

Мендель провел такие же скрещивания гибридов первого поколения по всем остальным признакам: цвету семян, окраски цветка и др. Он увидел, что соотношение 3:1 сохраняется.

Мендель провел скрещивание и в одном направлении (папа с доминантным признаком, мама - с рецессивным) и в другом (папа с рецессивным признаком, мама с доминантным). При этом качественные и количественные результаты передачи признаков в поколениях были одинаковыми. Из этого можно сделать вывод, что и женские и отцовские задатки признака вносят одинаковый вклад в наследование признака у потомства.

То, что в первом поколении проявляется признак только одного родителя, мы называем законом единообразия гибридов первого поколения или законом доминирования.

То, что во втором поколении вновь появляются признаки и одного родителя (доминантный) и другого (рецессивный) позволило Менделю предположить, что наследуется не признак как таковой, а задаток его развития (то, что мы сейчас называем геном). Он также предположил, что каждый организм содержит пару таких задатков для каждого признака. От родителя к потомку переходит только один из двух задатков. Задаток каждого типа (доминантный или рецессивный) переходит к потомку с равной вероятностью. При объединении у потомка двух разных задатков (доминантный и рецессивный) проявляется только один из них (доминантный, он обозначается большой буквой А). Рецессивный задаток (он обозначается малой буквой а) у гибрида не исчезает, поскольку проявляется в виде признака в следующем поколении.

Так как во втором поколении появился точно такой же организм, как и родительский, Мендель решил, что задаток одного признака «не замазывается», при объединении с другим, он остается таким же чистым. В последствии было выяснено то, что от данного организма передается только половина его задатков - половые клетки, они называются гаметами, несут только один из двух альтернативных признаков.

У человека насчитывается около 5 тыс. морфологических и биохимических признаков, которые наследуются достаточно четко по Менделю. Судя по расщеплению во втором поколении, альтернативные задатки одного признака комбинировались друг с другом независимо. То есть доминантный признак мог проявиться при комбинациях типа Аа , аА и АА , а рецессивный только в комбинации аа .

Повторим, что Мендель предположил, что наследуется не признак, а задатки признака (гены) и что эти задатки не смешиваются, поэтому этот закон называется законом чистоты гамет. Через исследование процесса наследования можно было сделать выводы о некоторых характеристиках наследуемого материала, то есть что задатки стабильны в поколениях, сохраняют свои свойства, что задатки дискретны, то есть определяются только одно состояние признака, то, что их два, они комбинируются случайно и т.д.

Во времена Менделя еще ничего не было известно о мейозе, хотя про ядерное строение клетки уже знали. То, что в ядре содержится вещество, названное нуклеином, стало известно только через пару лет после открытия законов Менделя, причем это открытие с ним никак не было связано.

Все выводы вышеизложенного материала можно сформулировать следующим образом:

1) Каждый наследственный признак определяется отдельным наследственным фактором, задатком; в современном представлении эти задатки соответствуют генам;

2) Гены сохраняются в чистом виде в ряду поколений, не утрачивая своей индивидуальности: это явилось доказательством основного положения генетики: ген относительно постоянен;

3) Оба пола в равной мере участвуют в передаче своих наследственных свойств потомству;

4) Редупликация равного числа генов и их редукция в мужских и женских половых клетках; это положение явилось генетическим предвидением существования мейоза;

5) Наследственные задатки являются парными, один - материнский, другой - отцовский; один из них может быть доминантным, другой - рецессивным; это положение соответствует открытию принципа аллелизма: ген представлен минимум двумя аллелями.

К законам наследования относятся закон расщепления наследственных признаков в потомстве гибрида и закон независимого комбинирования наследственных признаков. Эти два закона отражают процесс передачи наследственной информации в клеточных поколениях при половом размножении. Их открытие явилось первым фактическим доказательством существования наследственности как явления.

Законы наследственности имеют другое содержание, и они формулируются в следующем виде:

  • Первый закон - закон дискретной (генной) наследственной детерминации признаков; он лежит в основе теории гена.
  • Второй закон - закон относительного постоянства наследственной единицы - гена.
  • Третий закон - закон аллельного состояния гена (доминантность и рецессивность).

То, что законы Менделя связаны с поведением хромосом при мейозе, было обнаружено в начале ХХ века во время повторного открытия законов Менделя сразу тремя группами ученых независимо друг от друга. Как вам уже известно, особенность мейоза заключается в том, что число хромосом в клетке уменьшается вдвое, хромосомы могут меняться своими частями при мейозе. Такая особенность характеризует ситуацию с жизненным циклом у всех эукариот.

Для того, чтобы проверить предположение о наследовании задатков в таком виде, как мы уже говорили, Мендель провел также скрещивание потомков первого поколения, имеющие желтые семена с родительскими зелеными (рецессивными). Скрещивание на рецессивный организм он назвал анализирующим. В результате он получил расщепление один к одному: (Аа х аа = Аа + Аа + аа + аа ). Таким образом, Мендель подтвердил предположение, что в организме первого поколения есть задатки признаков каждого из родителей в соотношении 1 к 1. Состояние, когда оба задатка признака одинаковы, Мендель назвал гомозиготным, а когда разные - гетерозиготным.


Мендель учитывал результаты, полученные на тысячах семян, то есть он проводил статистические исследования, которые отражают биологическую закономерность. Открытые им самые законы будут действовать и на других эукариотах, например грибах. Здесь показаны грибы, у которых четыре споры, получаемые в результате одного мейоза, остаются в общей оболочке. Анализирующее скрещивание у таких грибов приводит к тому, в одной оболочке присутствуют 2 споры с признаком одного родителя и две с признаком другого. Таким образом, расщепление 1:1 в анализирующем скрещивании отражает биологическую закономерность расщепления задатков одного признака в каждом мейозе, которая будет выглядеть как закономерность статистическая, если все споры смешать.

То, что у родителей были разные состояния одного признака, говорит о том, что задатки к развитию признака могут как-то меняться. Эти изменения называются мутациями. Мутации бывают нейтральными: форма волос, цвет глаз и др. Некоторые мутации приводят к изменениям, нарушающим нормальное функционирование организма. Это коротконогость у животных (крупный рогатый скот, овцы и др.), безглазость и бескрылость у насекомых, бесшерстность у млекопитающих, гигантизм и карликовость.

Некоторые мутации могут быть и безвредными, например бесшерстность у людей, хотя все приматы имеют волосяной покров. Но иногда встречаются изменения интенсивности волосяного покрова на теле и у людей. Н.И.Вавилов назвал такое явление законом гомологических рядов наследственной изменчивости: то есть признак, типичный только для одного из двух родственных видов, может быть обнаружен с какой-то частотой и у особей родственного вида.

На этом слайде показано то, что мутации могут быть достаточно заметными, мы видим негритянскую семью, в которой родился белый негр - альбинос. У него дети, скорее всего, будут пигментированными, поскольку мутация эта рецессивная, а частота ее встречаемости низка.

Мы говорили до этого о признаках, которые проявляются полностью. Но это не для всех признаков так. Например, фенотип гетерозигот может быть промежуточным между доминантным и рецессивным признаком родителей. Так, окраска плода у баклажан в первом поколении меняется с темно-синей на менее интенсивную фиолетовую. При этом во втором поколении расщепление по наличию окраски осталось 3:1, но если учитывать интенсивность окраски расщепление стало 1:2:1 (цвет темно-синий - АА , фиолетовый - 2Аа и белый - аа , соответственно) В данном случае видно, что проявление признака зависит от дозы доминантного аллеля. Расщепление по фенотипу соответствует расщеплению по генотипу: классы АА , Аа и аа , в соотношении 1:2:1.

Еще раз выделим роль Менделя в развитии науки. Никто до него не размышлял, что вообще могут существовать задатки признаков. Считалось, что в каждом из нас сидит маленький человечек, внутри его - еще маленький человечек и т.д. Зачатие имеет к его появлению какое-то отношение, но по механизму, готовый маленький человечек уже присутствует с самого начала своего роста. Такими были доминирующие представления, у которых, безусловно, был недостаток - по этой теории, при большом числе поколений гомункулус должен был получиться по размеру меньше элементарной частицы, но тогда про частицы еще не знали J.

Откуда Мендель знал, какой признак является доминантным, а какой рецессивным? Ничего такого он не знал, просто взял некоторый принцип организации опыта. Удобно, что признаки, за которыми он наблюдал, были разными: рост, размер, цвет цветка, цвет боба и т.д. У него не было априорной модели механизма наследования, он вывел ее из наблюдения за передачей признака в поколениях. Еще одна особенность его метода. Он получил, что доля особей с рецессивным признаком во втором поколении составляет четверть от всего потомства. То есть вероятность того, что данная горошина зеленая - 1/4. Допустим получилось в среднем по 4 горошины в одном стручке. Будет ли в каждом стручке (это потомство от двух и только от двух родителей) 1 горошина зеленая и 3 желтых? Нет. Например, вероятность того, что там будет 2 зеленых горошины равна 1/4 х 1/4 = 1/16, а того, что все четыре зеленые - 1/256. То есть, если взять кучу бобов, с четырьмя горошинами в каждом, то у каждой 256-ой все горошины будут с рецессивными признаками, то есть зелеными. Мендель анализировал потомство множества одинаковых пар родителей. О скрещивании было рассказано, потому что они показывают, что законы Менделя проявляются как статистические, а в основе имеют биологическую закономерность - 1:1. То есть гаметы разных типов в КАЖДОМ мейозе у гетерозиготы образуются в равном соотношении - 1:1, а закономерности проявляется статистически, поскольку анализируются потомки сотен мейозов - Мендель анализировал более 1000 потомков в скрещивании каждого типа.

Сначала Мендель исследовал наследование одной пары признаков. Затем он задался вопросом, что будет происходить, если одновременно наблюдать за двумя парами признаков. Выше на рисунке, в правой части проиллюстрировано такое исследование по дум парам признаков - цвету горошин и форме горошин.

Родители одного типа давали при самоопылении горошины желтые и круглой формы. Родители другого типа давали при самоопылении горошины зеленые и морщинистой формы. В первом поколении он получил все горошины желтые, а по форме - круглые. Получившееся расщепление во втором поколении удобно рассмотреть с помощью решетки Пенета. Получили расщепление по признакам 9:3:3:1 (желтые и круглые: желтые и морщинистые: зеленые и круглые: зеленые и морщинистые). Расщепление по каждой паре признаков происходит независимо друг от друга. Соотношение 9жк + 3жм + 3зк + 1зм соответствует независимой комбинации результатов двух скрещиваний (3ж + 1з) х (3к + 1 м). То есть и задатки признаков этих пар (цвет и форма) комбинируются независимо.

Посчитаем, сколько разных фенотипических классов мы получили. У нас было 2 фенотипических класса: желтые и зеленые; и по другому признаку 2 фенотипических класса: круглые и морщинистые. А всего будет 2*2=4 фенотипических класса, что мы и получили выше. Если рассматривать три признака, то фенотипических классов будет 2 3 =8 классов. Мендель доходил до дигибридных скрещиваний. Задатки всех признаков, к счастью Менделя, находились у гороха на разных хромосомах, а всего хромосом у гороха - 7 пар. Поэтому, оказалось, что он взял признаки, которые комбинировались независимо в потомстве.

У человека 23 пары хромосом. Если рассмотреть какой-то один гетерозиготный признак для каждой хромосомы, может у человека может наблюдаться 2 23 ~ 8*10 6 фенотипических классов в потомстве одной супружеской пары. Как упоминалось на первой лекции, каждый из нас содержит между папиными и мамиными хромосомами порядка 1 различия на 1000 позиций, то есть всего порядка миллиона различий между папиными и мамиными хромосомами. То есть каждый из нас является потомком миллионногибридного скрещивания, при котором число фенотипических классов составляет 2 1000000 . Практически это число фенотипических классов в потомстве одной пары не реализуется, потому что хромосом у нас всего 23, а не миллион. Получается, что 8*10 6 - это нижний предел величины возможного разнообразия в потомстве данной супружеской пары. Исходя из этого, можно понять, что не может быть двух абсолютно одинаковых людей. Вероятность мутации данного нуклеотида в ДНК за одно поколение составляет около 10 -7 - 10 -8 , то есть на весь геном (3*10 9) получится около 100 изменений de novo между родителем и ребенком. А всего отличий в папиной половинке вашего генома от маминой половинки - около 1 000 000. Это значит, что старые мутации в вашем геноме гораздо более частые, чем вновь возникшие (в 10 000 раз).

Также Мендель проводил анализирующее скрещивание - скрещивание с рецессивной гомозиготой. У потомка первого поколения комбинация генов имеет вид АаВ b . Если скрестить его с представителем с полностью рецессивным набором генов (aabb ), то получится четыре возможных класса, которые будут находиться в соотношении 1:1:1:1, в отличие от рассмотренного выше скрещивания, когда мы получили расщепление 9:3:3:1.

Ниже показаны некоторые статистические критерии - какие соотношения чисел следует считать соответствующими ожидаемым, скажем, 3:1. Например, для 3:1 - из четырехсот горошин вряд ли получится точно 300 к 100. Если получится, к примеру, 301 к 99, то это отношение наверное можно считать равным 3 к 1. А 350 к 50 уже, наверное, не равно 3 к 1.

Статистический тест хи-квадрат (χ 2) используется для проверки гипотезы соответствия наблюдаемого распределения ожидаемому. Произносится эта греческая буква в русском языке как «хи», а в английском - как «чи» (chi).

Величина χ 2 рассчитывается как сумма квадратов отклонений наблюдаемых величин от ожидаемой, деленных на ожидаемую величину. Затем по специальной таблице для данного значения χ 2 находят величину вероятности того, что такое различие между наблюдаемой и ожидаемой величиной является случайным. Если вероятность оказывается меньше 5% то отклонение считается не случайным (цифра в пять процентов выбрана по договоренности).


Всегда ли будет проявляться какой-либо наследственно предопределенный признак? Ведь это предположение по умолчанию лежит в основе интерпретации данных полученных Менделем.

Оказывается, это может зависеть от многих причин. Есть такая наследуемая черта у человека - шестипалость. Хотя у нас, как и у всех позвоночных, пальцев в норме пять.

Вероятность проявления задатка признака в виде наблюдаемого признака (здесь - шестипалость) может быть меньше 100%. На фотографии у человека на обеих ногах по 6 пальцев. А у его близнеца этот признак не обязательно проявится. Доля индивидов с данным генотипом, у которых проявляется соответствующий фенотип, была названа пенетрантностью (этот термин ввел российский генетик Тимофеев-Ресовский).

В некоторых случаях шестой палец может быть просто обозначен некоторым кожным приростом. Степень выраженности признака у индивида Тимофеев-Ресовский предложил называть экспрессивностью.

Особенно ясно не 100% связь генотипа с фенотипом прослеживается при исследовании идентичных близнецов. Генетическая конституция у них один в один, а признаки у них совпадают в разной степени. Ниже представлена табличка, в которой представлено совпадение признаков для близнецов идентичных и неидентичных. В качестве признаков в этой таблице взяты различные болезни.


Признак, который присутствует у большинства особей в естественных условиях обитания, называется диким типом. Наиболее распространенный признак часто оказывается доминантным. Такая связь может иметь приспособительное значение, полезное для вида. У человека доминантными признаками являются, к примеру, черные волосы, темные глаза, кудрявые волосы. Кстати, поскольку соответствующие гены находятся на разных хромосомах, то может получиться кудрявый негр, который будет блондином - ничто это не запрещает.

Почему так получается, что в при моногибридном скрещивании трем генотипическим классам в потомстве второго поколения соответствует в некоторых случаях три фенотипических класса (баклажаны синие фиолетовые и белые), а в другом случае - два класса (желтая или зеленая горошина)? Почему в одном случае проявление доминантного признака неполное, а в другом - полное? Можно провести аналогию с фотопленкой. В зависимости от количества света, кадр может получиться совсем прозрачным, серым и совсем черным. То же самое - с генами. Например, есть у кукурузы ген Y, который определяет образование витамина А. Когда доза гена Y на клетку растет от одного до трех, то линейно изменяется активность фермента, который он кодирует и, в данном случае, усиливается образование витамина А и окраска зерна. (У кукурузы основная часть зерна - эндосперм. В каждой клетке эндосперма три генома - два от мамы и один от папы). То есть, многие признаки зависят от дозы аллеля количественно. Чем больше копий аллеля нужного типа, тем больше будет величина контролируемого им признака. Такая связь постоянно используется в биотехнологии.


Мендель мог благополучно свои законы и не открыть. Исследования на горохе позволили Менделю открыть свои законы, потому что горох - самоопыляемое растение, а потому без принуждения - гомозиготный. При самоопылении доля гетерозигот уменьшается пропорционально двум в степени номера поколения. В этом заключалось везение Менделя - если бы доля гетерозигот была большой, то никаких бы закономерностей не наблюдалось. Когда он затем взял перекрестные опылители, то закономерности нарушились, что сильно расстроило Менделя, потому что он подумал, что открыл нечто частное. Оказалось, что нет.


Выше было рассказано о наследовании признаков качественных, а обычно большинство признаков - количественные. Их генетический контроль достаточно сложен. Количественные признаки описываются через среднюю величину значения признака и размахом варьирования, которая называется нормой реакции. И величина средней, и норма реакции - это видоспецифические показатели, которые зависят как от генотипа, так и от условий среды. К примеру, продолжительность жизни человека. Хоть в Библии и написано, что пророки жили по 800 лет, но сейчас ясно, что больше 120-150 лет никто не живет. А, мышь, например, живет два года, хотя она тоже млекопитающее. Наш рост, наш вес - это все количественные признаки. Нет людей 3-4 метрового роста, хотя слоны, к примеру, есть. У каждого вида своя средняя по каждому количественному признаку и свой размах его варьирования.


Закономерности наследования открыты при исследовании качественных признаков.

Большинство наших признаков - количественные.

Величины значений признаков в представительной выборке особей данного вида характеризуются определенной средней и широтой ее варьирования, которая называется нормой реакции и зависит как от генотипа, так и от условий формирования признака.

Тема 4.2 Основные закономерности

наследственности

Терминология 1. Альтернативные – контрастные признаки. 2. Чистые линии – растения, в ряду которых при самоопылении не наблюдается расщепления. 3. Гибридиологический метод – получение гибридного потомства и его анализ. 4. Родительские особи – Р. 5. Мужские особи – ♂. 6. Женские особи – ♀. 7. Скрещивание – X. 8. Гибриды F 1 , F 2 , F n . 9. Моногибридное – скрещивание особей с одним контрастным признаком. Закономерности наследования признаков Количественные закономерности наследования признаков открыл чешский ботаник-любитель Г. Мендель. Поставив цель выяснить закономерности наследования признаков, он, прежде всего, обратил внимание на выбор объекта исследования. Для своих опытов Г. Мендель выбрал горох – те его сорта, которые чётко отличались друг от друга по целому ряду признаков. Одним из самых существенных моментов во всей работе было определение числа признаков, по которым должны различаться скрещиваемые растения. Г. Мендель впервые осознал, что начав с самого простого случая – различия родителей по одному-единственному признаку и постепенно усложняя задачу, можно надеяться распутать весь клубок закономерностей передачи признаков из поколения в поколение, т.е. их наследования. Здесь выявилась строгая математичность его мышления. Именно такой подход позволил Г. Менделю чётко планировать дальнейшее усложнение экспериментов. В этом отношении Мендель стоял выше всех современных ему биологов. Другой важной особенностью его исследований было то, что он выбрал для экспериментов организмы, относящиеся к чистым линиям, т.е. такие растения, в ряду поколений которых при самоопылении не наблюдалось расщепления по изучаемому признаку. Не менее важно и то, что он наблюдал за наследованием альтернативных, т.е. контрастных признаков. Например, цветки одного растения были пурпурные, а другого – белыми, рост растения высокий или низкий, бобы гладкие или морщинистые т.д. Сравнивая результаты опытов и теоретические расчёты, Г. Мендель особенно подчёркивал среднестатистический характер открытых им закономерностей. Таким образом, метод скрещивания особей, отличающихся альтернативными признаками, т.е. гибридизации, с последующим строгим учётом распределения родительских признаков у потомков, получил название гибридиологического. Закономерности наследования признаков, выявление Г. Менделем и подтверждение многими биологами на самых разных объектах, в настоящее время формулируют в виде законов, носящих всеобщий характер. Закон единообразия первого поколения гибридов Моногибридное скрещивание. Для иллюстрации закона единообразия первого поколения – первого закона Менделя, воспроизведём его опыты по моногибридному скрещиванию растений гороха. Моногибридным называется скрещивание двух организмов, отличающихся друг от друга по одной паре альтернативных признаков. Следовательно, при таком скрещивании прослеживаются закономерности наследования только двух вариантов признака, развитие которого обусловлено парой аллельных генов. Например, признак – цвет семян, варианты – жёлтый или зелёный. Все остальные признаки, свойственные данным организмам, во внимание не принимаются. Если скрестить растения гороха с жёлтыми и зелёными семенами, то у всех полученных в результате этого скрещивания потомков – гибридов семена будут жёлтыми. Такая же картина наблюдается при скрещивании растений, имеющих гладкую и морщинистую форму семян – все семена у гибридов будут гладкими. Следовательно, у гибрида первого поколения из каждой пары альтернативных признаков проявляется только один. Второй признак как бы исчезает, не проявляется. Преобладание у гибрида признака одного из родителей Мендель назвал доминированием. Признак, проявляющийся у гибрида первого поколения и подавляющий развитие другого признака, был назван доминантным, противоположный, т.е. подавляемый признак – рецессивным. Доминантный признак принято обозначать прописной буквой (А), рецессивный – строчной (а). Мендель использовал в опытах растения, относящиеся к разным чистым линиям, или сортам, потомки которых в длинном ряду поколений были сходны с родителями. Следовательно, у этих растений оба аллельных гена одинаковы. Таким образом, если в генотипе организма есть два одинаковых аллельных гена, т.е. два абсолютно идентичных по последовательности нуклеотидов гена, такой организм называется гомозиготным. Организм может быть гомозиготным по доминантным (АА) или рецессивным (аа) генам. Если же аллельные гены отличаются друг от друга по последовательности нуклеотидов, например, один доминантный, а другой рецессивный (Аа) такой организм называется гетерозиготным. Первый закон Менделя называют также законом доминирования или единообразия, так как все особи первого поколения имеют одинаковое проявление признака, присущего одному из родителей. Формулируется он так: При скрещивании двух организмов, относящихся к разным чистым линиям (двух гомозигот), отличающихся друг от друга по паре альтернативных признаков, всё первое поколение гибридов (F 1) окажется единообразным и будет нести признак одного родителя. В отношении окраски Мендель установил, что красный или чёрный цвет будет доминировать над белым, промежуточными цветами будут розовый и серый, разной насыщенности. Мендель предложил графические обозначения признаков: Р – родители, ♂ – мужская особь, ♀ – женская особь,
, – гаметы, X – скрещивание, F 1 , F 2 , F n – потомство. Первый закон Менделя представлен на рисунке 1.

Рисунок 1. Первый закон Менделя

Всё потомство имеет одинаковую промежуточную окраску, что не противоречит первому закону Менделя.

Контрольные вопросы

1. Биологический материал Менделя. 2. Альтернативные признаки в опытах Менделя. 3. Чистые линии и их определение. 4. Сущность гибридиологического метода. 5. Моногибридное скрещивание. 6. Доминантные и рецессивные признаки. 7. Аллельные гены. 8. Первый закон Менделя. Закон единообразия.

Тема 4.2.1 Неполное доминирование генов

Терминология 1. Аллельные гены – гены, расположенные в одинаковых локусах гомологичных хромосом. 2. Доминантный признак – подавляющий развитие другого. 3. Рецессивный признак – подавляемый. 4. Гомозигота – зигота имеющая одинаковые гены. 5. Гетерозигота – зигота имеющая разные гены. 6. Расщепление – расхождение признаков в потомстве. 7. Кроссинговер – перехлест хромосомы. В гетерозиготном состоянии доминантный ген не всегда полностью подавляет проявление рецессивного гена. В ряде случаев гибрид F 1 не воспроизводит полностью не одного из родительских признаков и выражение признака носит промежуточный характер с большим или меньшим уклонением к доминантному или рецессивному состоянию. Но все особи этого поколения проявляют единообразие по данному признаку. Промежуточный характер наследования в предыдущей схеме не противоречит первому закону Менделя, так как все потомки F 1 единообразны. Неполное доминирование – широко распространённое явление. Оно обнаружено при изучении наследования окраски цветка у львиного зева, строения перьев птиц, окраска шерсти крупного рогатого скота и овец, биохимических признаков у человека и т.д. Множественный аллелизм. До сих пор разбирались примеры, в которых один и тот же ген был представлен двумя аллелями – доминантной (А) и рецессивной (а). Эти два состояния гена возникают вследствие мутирования. Ген может мутировать неоднократно. В результате возникает несколько вариантов аллельных генов. Совокупность этих аллельных генов, определяющих многообразие вариантов признака, называется серией аллельных генов. Возникновение такой серии вследствие неоднократного мутирования одного гена называется множественным аллелизмом или множественным аллеломорфизмом. Ген А может мутировать в состояние а 1 , а 2 , а 3 , а n . Ген В, находящийся в другом локусе – в состояние b 1 , b 2 , b 3 , b n . Например, у мухи дрозофилы известна серия аллелей по гену окраски глаз, состоящая из 12 членов: красная, коралловая, вишнёвая, абрикосовая и т.д. до белой, определяемым рецессивным геном . У кроликов существует серия множественных аллелей по окраске шерсти. Это обусловливает развитие сплошной окраски или отсутствие пигментации (альбинизм). Члены одной серии аллелей могут находиться в разных доминантно-рецессивных отношениях друг с другом. Следует помнить, что в генотипе диплоидных организмов могут находиться только два гена из серии аллелей. Остальные аллели данного гена в разных сочетаниях попарно входят в генотипы других особей данного вида. Таким образом, множественный аллелизм характеризует разнообразие генофонда, т.е. совокупность всех генов, входящих в состав генотипов определённой группы особей или целого вида. Другими словами, множественный аллелизм является видовым, а не индивидуальным признаком. Второй закон Менделя – Закон расщепления Если потомков первого поколения, одинаковых по изучаемому признаку, скрестить между собой, то во втором поколении признаки обоих родителей появляются в определённом числовом соотношении: 3 / 4 особей будут иметь доминантный признак, 1 / 4 – рецессивный. По генотипу в F 2 окажется 25% особей, гомозиготных по доминантным аллелям, 50% организмов будут гетерозиготны и 25% потомства составят гомозиготные по рецессивным аллелям организмы. Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть – рецессивный, называется расщеплением. Следовательно, расщепление – это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении. Таким образом, второй закон Менделя (см. рис.2) можно сформулировать следующим образом: при скрещивании двух потомков первого поколения между собой (двух гетерозигот) во втором поколении наблюдается расщепление в определённом числовом соотношении: по фенотипу 3:1, по генотипу 1:2:1.


Рисунок 2. Второй закон Менделя

При неполном доминировании в потомстве гибридов F 2 , расщепление по генотипу и фенотипу совпадает (1:2:1). Закон чистоты гамет Этот закон отражает сущность процесса образования гамет в мейозе. Мендель предположил, что наследственные факторы (гены) при образовании гибридов не смешиваются, а сохраняются в неизменном виде. В теле гибрида F, от скрещивания родителей, различающихся по альтернативным признакам, присутствуют оба фактора – доминантный и рецессивный. В виде признака проявляется доминантный наследственный фактор, рецессивный же подавляется. Связь между поколениями при половом размножении осуществляется через половые клетки – гаметы. Следовательно, необходимо допустить, что каждая гамета несёт только один фактор из пары. Тогда при оплодотворении слияние двух гамет, каждая из которых несёт рецессивный наследственный фактор, будет приводить к образованию организма с рецессивным признаком, проявляющимся фенотипически. Слияние же гамет, несущих по доминантному фактору, или же двух гамет, одна из которых содержит доминантный, а другая рецессивный фактор, будет приводить к развитию организма с доминантным признаком. Таким образом, появление во втором поколении (F 2) рецессивного признака одного из родителей (Р) может иметь место только при соблюдении двух условий: 1. Если у гибридов наследственные факторы сохраняются в неизменном виде. 2. Если половые клетки содержат только один наследственный фактор из аллельной пары. Расщепление признаков в потомстве при скрещивании гетерозиготных особей, Мендель объяснил тем, что гаметы генетически чисты, т.е. несут только один ген из аллельной пары. Закон чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один ген из аллельной пары (из каждой аллельной пары). Цитологическим доказательством закона чистоты гамет является поведение хромосомы в мейозе: в первом мейотическом делении в разные клетки попадают гомологичные хромосомы, а в анафазе второго – дочерние хромосомы, которые вследствие кроссинговера могут содержать разные аллели одного и того же гена. Известно, что в каждой клетке организма имеется совершенно одинаковый диплоидный набор хромосом. Две гомологичные хромосомы содержат два одинаковых аллельных гена. Образование генетически «чистых» гамет показано на схеме на рисунке 3.


Рисунок 3. Образование «чистых» гамет

При слиянии мужских и женских гамет образуется гибрид, имеющий диплоидный набор хромосом (см. рис.4).

Рисунок 4. Образование гибрида

Как видно из схемы, половину хромосом зигота получает от отцовского организма, половину – от материнского. В процессе образования гамет у гибрида гомологичные хромосомы во время первого мейотического деления так же попадают в разные клетки (см. рис.5).

Рисунок 5. Образование двух сортов гамет

Образуется два сорта гамет по данной аллельной паре. Таким образом, цитологической основой закона чистоты гамет, а так же расщепление признаков у потомства при моногибридном скрещивании является расхождение гомологических хромосом и образование гаплоидных клеток в мейозе. Анализирующее скрещивание Разработанный Менделем гибридиологический метод изучения наследственности позволяет установить, гомозиготен или гетерозиготен организм, имеющий доминантный фенотип по исследуемому гену. Чиста ли порода? Для этого скрещивают особь с неизвестным генотипом и организм, гомозиготный по рецессивной аллели, имеющий рецессивный фенотип. Если доминантная особь гомозиготна, потомство от такого скрещивания будет единообразным и расщепления не произойдёт (см. рис.6).

Рисунок 6. Скрещивание доминантных особей.

Иная картина получится, если исследуемый организм гетерозиготен (см. рис.7).


Рисунок 7. Скрещивание гетерозиготеных особей.

Расщепление произойдёт в отношении 1:1 по фенотипу. Такой результат скрещивая – доказательство образования у одного из родителей двух сортов гамет, т.е. его гетерозиготность – не чистая порода (см. рис. 8).


Рисунок 8. Расщепление произойдёт в отношении 1:1 по фенотипу.

Контрольные вопросы

1. Неполное доминирование и его проявление в природе. 2. Сущность множественного аллелизма. 3. II-закон Менделя. Закон расщепления. 4. Закон чистоты гамет. 5. Цитологические доказательства закона чистоты гамет. 6. Анализирующее скрещивание, его сущность и значение.

Тема 4.2.2 III закон Менделя - закон независимого

комбинирования признаков

Терминология 1. Дигибритное скрещивание – скрещивание по двум контрастным признакам. 2. Дигетерозиготные организмы – организмы гетерозиготные по двум парам аллельных генов. 3. Решетка Паннета – графический метод подсчета результатов скрещивания. 4. Рекомбинация – перекомбинирование признаков. 5. Кроссинговер – появление новых признаков при перехлесте хромосом. 6. Морганида – расстояние между генами. Дигибридное и полигибридное скрещивание Организмы отличаются друг от друга по многим признакам. Установить закономерности наследования двух и более пар альтернативных признаков можно путём дигибридного или полигибридного скрещивания. Для дигибридного скрещивания, Мендель использовал гомозиготные растения гороха, отличающиеся по двум парам признаков – окраске семян (жёлтые и зелёные) и форме семян (гладкие и морщинистые). Доминантными были – жёлтая окраска (А) и гладкая форма семян (В). Каждое растение образует один сорт гамет по изучаемым аллелям. При слиянии гамет всё потомство будет единообразным (см. рис.9).


Рисунок 9. Слияние гамет

Организмы, гетерозиготные по двум парам аллельных генов, называются дигетерозиготными. При образовании гамет у гибрида из каждой пары аллельных генов в гамету попадает только один, при этом вследствие случайности расхождения отцовских и материнских хромосом в первом делении мейоза, ген А может попасть в одну гамету с геном В или с геном b, точно так же, как ген а может объединиться в одной гамете с геном В или с геном b (см. рис.10).


Рисунок 10. Образование гамет у гибрида

Таблица 1.

Обработка результатов дигибридного скрещивания

AB AABB AABb AaBB AaBb
Ab AABb AAbb AaBb Aabb
aB AaBB AaBb aaBB aaBb
ab AaBb Aabb aaBb aabb
↓ → А – жёлтая окраска. а – зелёная окраска. В – круглая форма. b – морщинистая форма. Поскольку в каждом организме образуется много половых клеток, в силу статистических закономерностей у гибрида образуется четыре сорта гамет в одинаковом количестве (по 25%) АВ, Аb, аВ, аb. Во время оплодотворения, каждая из четырёх типов гамет одного организма случайно встречается с любой из гамет другого организма. Все возможные сочетания мужских и женских гамет можно легко установить с помощью решетки Паннета. По вертикали и горизонтали выписаны гаметы родителей. В квадратах – генотипы зигот, образующиеся при слиянии гамет. Видно, что по фенотипу потомство делится на четыре группы: 9 жёлтых гладких, 3 жёлтых морщинистых, 3 зелёных гладких, 1 жёлтая морщинистая. Если учитывать результаты расщепления по каждой паре признаков в отдельности, то получится, что отношение числа гладких к числу морщинистых для каждой пары равно 3:1. Таким образом, в дигибридном скрещивании каждая пара признаков при расщеплении в потомстве ведёт себя так же, как в моногибридном скрещивании, т.е. независимо от другой пары признаков. При оплодотворении гаметы соединяются по правилам случайных сочетаний, но с равной вероятностью для каждой. В образующихся зиготах возникают различные комбинации генов. Независимое распределение генов в потомстве и возникновение различных комбинаций этих генов при дигибридном скрещивании возможно лишь в том случае, если пары аллельных генов расположены в разных парах гомологичных хромосом. Третий закон Менделя , или закон независимого комбинирования, можно сформулировать следующим образом: при скрещивании двух гомозиготных особей, отличающихся друг от друга по двум парам альтернативных признаков, гены и соответствующие признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях. Третий закон применим лишь к наследованию аллельных пар, находящихся в разных парах гомологичных хромосом. На законах Менделя основан анализ расщепления и в более сложных случаях – при различии особей по трём и более парам признаков. Если родительские особи различаются по одной паре признаков, во втором поколении наблюдается расщепление признаков в отношении 3:1, для дигибридного скрещивания это будет (3:1) 2 или 9:3:3:1, для тригибридного (3:1) 3 и т.д. Можно также рассчитать число сортов гамет, образующихся у гибридов, по формуле 2 n , где n – число пар генов, по которым различаются родительские особи.

Законы наследования признаков Г. Менделя описывают первичные принципы передачи наследственных характеристик от родительских организмов к их детям; эти принципы лежат в основе классической генетики. Эти законы были открыты Менделем в результате скрещивания организмов (в данном случае, растений) с различными генотипами. Обычно описывают одно правило и два закона.

Правило единообразия гибридов первого поколения

При скрещивании посевного гороха с устойчивыми признаками - пурпурными и белыми цветками, Мендель заметил, что взошедшие гибриды были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыты, использовал другие признаки. Например, если он скрещивал горох с жёлтыми и зелёными семенами, у потомков семена были жёлтыми, при скрещивании гороха с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким.

Итак, гибриды первого поколения всегда приобретают один из родительских признаков . Один признак (более силь­ный, доминантный) всегда подавляет другой (более слабый, рецессивный). Такое явление называется полным доминированием .

Если применить вышеуказанное правило к человеку, скажем, на примере карих и голубых глаз , то оно объясняется сле­дующим образом. Если у одного гомозиготного родителя в геноме оба гена определяют карий цвет глаз (обозначим такой генотип как АА ), а у другого, тоже гомозиготного, оба гена определяют голубой цвет глаз (обозначим такой генотип как аа ), то гаплоидные гаметы, продуцируемые ими, всегда будут нести либо ген А , либо а (см. схему ниже).

Схема передачи признаков при скрещивании гомозиготных организмов

Тогда все дети будут иметь генотип Аа , но у всех глаза будут карие, поскольку ген карих глаз доминирует над геном голубых глаз.

Теперь рассмотрим, что произойдёт, если скрещиваются гетерозиготные организмы (или гибриды первого поколения). В этом случае произойдёт расщепление признаков в определённых количественных отношениях.

Закон расщепления признаков, или Первый закон Менделя

Если гетерозиготных потомков первого поколения, одинаковых по изучаемому признаку, скрестить между собой, то во втором поколении признаки обоих родителей появляются в определённом численном соотноше­нии: 3/4 особей будут иметь доминантный признак, 1/4 - рецессивный (см. схему ниже).

Схема наследования признаков при скрещивании гетерозиготных организмов

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть - рецессивный, называется расщеплением . Как мы понимаем, рецессивный признак у гибридов первого поколения не ис­чез, а был всего лишь подавлен и проявился во втором гибридном по­колении. Мендель первым понял, что при образовании гибридов наследственные факторы не смеши­ваются и не «размываются», а со­храняются в неизменном виде. В гибридном организме присутствуют оба фактора (гена), но в виде при­знака проявляет себя только доми­нантный наследственный фактор.

Связь между поколениями при по­ловом размножении осуществляется через половые клетки, каждая гамета несёт только один фактор из па­ры. Слияние двух гамет, каждая из которых несёт один рецессив­ный наследственный фактор, приведёт к появлению организма с рецессивным признаком. Слияние гамет, каждая из которых несёт доминантный фактор, или же двух гамет, одна из которых содержит доминантный, а другая рецессивный фактор, приводит к развитию организма с доминантным признаком.

Расщепление при скрещивании гетерозиготных особей Мендель объяснил тем, что гаметы несут только один ген из аллельной пары (закон чистоты гамет ). Действительно, такое возможно только если гены остаются неизменными и гаметы содержат только по одному гену из пары. Изучать соотношения признаков удобно при помощи так называемой решётки Пеннета:

А (0,5) а (0,5)
А (0,5) АА (0,25) Аа (0,25)
а (0,5) Аа (0,25) аа (0,25)

В силу статистической вероятности при достаточно большом количестве гамет в потомстве 25% генотипов будут гомозиготными доминантными, 50% - гетерозиготными, 25% - гомозиготными рецессивными, т. е. устанавливается математическое соотношение 1АА :2Аа :1аа . Соответственно, по фенотипу потомство второго поколения при моногибридном скрещивании распределяется в отношении 3:1 - 3 части особей с доминантным признаком, 1 часть особей с рецессивным.

Не следует забывать, что распределение генов и их попадание в гаметы носит вероятностный характер. Подход к анализу потомков был у Менделя количественный, статистический: все потомки с данным состоянием призна­ка (например - горошины гладкие или морщинистые) объединялись в одну груп­пу, подсчитывалось их число, которое сравнивали с числом потомков с другим состоянием признака (горошины морщинистые). Такой попарный анализ обес­печил успех его наблюдений. В случае с человеком наблюдать такое распреде­ление бывает очень сложно - нужно, чтобы у одной пары родителей была хотя бы дюжина детей, что бывает довольно редким явлением в современном обществе. Так что вполне может случиться, что у кареглазых родителей рождается один единственный ребенок, и тот голубоглазый, что, на первый взгляд, нарушает все законы генетики. В то же время, если экспериментиро­вать с дрозофилой или лабораторными мышами, менделевские законы наблю­дать довольно легко.

Следует сказать, что в известном смысле Менделю повезло - он с самого начала избрал в качестве объекта подходящее растение - цветной горошек. Если бы ему попались, например, такие растения как ночная красавица или львиный зев, то результат был бы непред­сказуем. Дело в том, что у львиного зева гетерозиготные растения, полученные при скрещивании гомозиготных растений с красными и белыми цветками, имеют розовые цветки. При этом ни один из аллелей не может быть назван ни доминантным, ни рецессивным. Такое явление можно объяснить тем, что сложные биохимические процессы, обусловленные разной работой аллелей, не обязательно приводят к альтернативным взаимоисключающим результатам. Результат может быть и промежуточным, в зависимости от особенностей обмена веществ в данном организме, в котором всегда есть множество вариантов, шунтирующих механизмов или параллельно существующих процессов с различными внешними проявлениями.

Это явление называется неполным доминированием или кодоминированием, оно достаточно часто встречается, в том числе и у человека. Примером является система групп крови человека MN (заметим попутно, что это лишь одна из систем, существует множество классификаций групп крови). В своё время Ландштейнер и Левин объяснили это явление тем, что эритро­циты могут нести на своей поверхности либо один антиген (М), либо другой (N), либо оба вместе (МN). Если в двух первых случаях мы имеем дело с гомозиготами (ММ и NN), то при гетерозиготном состоянии (МN) проявляют себя оба аллеля, при этом оба проявляются (доминируют), отсюда и название - кодоминирование.

Закон независимого наследования признаков, или Второй за­кон Менделя

Этот закон описывает распределение признаков при так называемом дигибридном и полигибридном скрещивании, т. е. когда скрещива­емые особи отличаются по двум и более признакам. В опытах Менде­ля скрещивались растения, отличающиеся по нескольким парам признаков, таким как: 1) белые и пурпурные цветы, и 2) жёлтые или зелёные семена. При этом наследование каждого признака следовало первым двум законам, и признаки комбинировались независимо друг от друга . Как и положено, первое поколение после скрещивания об­ладало доминантным фенотипом по всем признакам. Второе поколе­ние следовало формуле 9:3:3:1, то есть 9/16 экземпляров были с пурпурными цветами и жёлтыми горошинами, 3/16 - с белыми цвета­ми и жёлтыми горошинами, ещё 3/16 - с пурпурными цветами и зелё­ными горошинами и, наконец, 1/16 - с белыми цветами и зелёными горошинами. Это происходило потому, что Мендель удачно выбрал признаки, гены которых находились на разных хромосомах гороха. Второй закон Менделя выполняется как раз только в случаях, когда анализируемые пары генов расположены на разных хромосомах. По правилу частоты гамет признаки комбинируются независимо друг от друга, а если они находятся на разных хромосомах, то и наследование признаков происходит независимо.

1-й и 2-й законы Менделя универсальны, а вот из 3-го закона постоянно встречаются исключения. Причина этого становится понятной, если вспомнить, что в одной хромосоме находится множество генов (у человека - от нескольких сотен до тысячи и более). Если же гены находятся на одной и той же хромосоме, то может иметь место сцепленное наследование . В этом случае признаки передаются попарно или группами. Гены, находящиеся на одной хромосоме, получили в генетике название группы сцепления . Чаще всего вместе передаются признаки, определяемые генами, находящимися на хромосоме близко друг к другу. Такие гены называются тесно сцепленными . В то же время, иногда сцепленно наследуются гены, расположенные далеко друг от друга. Причиной такого разного поведения генов является особое явление обмена материалом между хромосомами во время гаметообразования, в частности, на стадии профа­зы первого деления мейоза.

Это явление было детально изучено Барбарой Мак-Клинток (Нобелевская премия по физиологии и медицине в 1983 г.) и получило название кроссинговера. Кроссинговер - это не что иное, как обмен гомологичными участ­ками между хромосомами. Получается, что каждая конкретная хромосома при передаче из поколения в поколение не остаётся неизменной, она может «прихватить с собой» гомологичный участок из своей парной хромосомы, отдав той, в свою очередь, участок своей ДНК.

В случае человека довольно трудно бывает установить сцепление генов, а также выявить кроссинговер из-за невозможности произволь­ных скрещиваний (нельзя же заставить людей давать потомство в соответствии с какими-то научными задачами!), поэтому такие данные получены в основном на растениях, насекомых и животных. Тем не менее, благодаря исследованию многодетных се­мей, в которых присутствуют несколько поколений, известны приме­ры аутосомного сцепления (т. е. совместной передачи генов, расположенных на аутосомах) и у человека. Например, существует тесное сцепление между генами, контролирующими резус-фактор (Rh) и систему антигенов групп крови MNS. У человека более известны случаи сцепления тех или иных признаков с полом, т. е. в связи с половыми хромосомами.

Кроссинговер в целом усиливает комбинативную изменчивость , т. е. способствует большему многообразию человеческих генотипов. В связи с этим, этот процесс имеет большое значение для. Используя тот факт, что чем дальше друг от друга расположены на одной хромосоме гены, тем в большей степени они подвержены кроссинговеру, Альфред Стертевант построил первые карты хромосом дрозофилы. Сегодня получены полные физические карты всех человеческих хромосом, т. е. известно, в какой последовательности и какие гены на них расположены.

Новое на сайте

>

Самое популярное