Домой Страх Теоретический материал. Для многих начинающих исследователей статистическая обработка данных это что-то вроде завершающего аккорда при написании научн Математические статистические модели

Теоретический материал. Для многих начинающих исследователей статистическая обработка данных это что-то вроде завершающего аккорда при написании научн Математические статистические модели

Приложение 1. МЕТОДЫ СТАТИСТИЧЕСКОГО АНАЛИЗА И ПРОГНОЗИРОВАНИЯ В БИЗНЕСЕ

2. Математические модели как необходимый инструмент статистического анализа и прогнозирования в бизнесе

Начнем с простого примера демонстрирующего различия чисто статистического, чисто вероятностного и вероятностно-статистического подходов к выработке прогнозного решения. Одновременно на этом примере достаточно прозрачно видна роль математических моделей в технологии формирования прогнозного решения.

Статистический способ принятия решения. Пусть читатель представит себя бизнесменом, наблюдающим за игрой двух его приятелей-бизнесменов (А и В ) в кости. Игра идет по следующим правилам. Производится четыре последовательных бросания игральной кости. Игрок А получает одну денежную единицу от игрока В , если в результате этих четырех бросаний хотя бы один раз выпало шесть очков (назовем этот исход «шесть»), и платит одну денежную единицу игроку В в противном случае (назовем этот исход «не шесть»). После ста туров читатель должен сменить одного из игроков, причем он имеет право выбрать ситуацию, на которую он будет ставить свою денежную единицу в следующей серии туров: за появление хотя бы одной «шестерки» или против. Правильное осуществление этого выбора определяется, естественно, качеством его прогноза по поводу результата игры при ставке на исход «шесть»: если вероятность этого исхода правильно оценивается величиной, превосходящей половину, то игрок должен поставить именно на этот исход. Итак, задача наблюдателя – сделать достоверный прогноз.

Статистический способ решения этой задачи диктуется обычным здравым смыслом и заключается в следующем. Пронаблюдав сто туров игры предыдущих партнеров и подсчитав относительные частоты их выигрыша, казалось бы, естественно поставить на ту ситуацию, которая чаще возникала в процессе игры. Например, было зафиксировано, что в 52 партиях из 100 выиграл игрок В , т.е. в 52 турах из 100 «шестерка» не выпадала ни разу при четырехкратном выбрасывании кости (соответственно в остальных 48 партиях из ста осуществлялся исход «шесть»). Следовательно, делает вывод читатель, применивший статистический способ рассуждения, выгоднее ставить на исход «не шесть», т.е. на тот исход, относительная частота появления которого равна 0,52 (больше половины).

Теоретико-вероятностный способ решения . Этот способ основан на определенной математической модели изучаемого явления: полагая кость правильной (т. е. симметричной), а следовательно, принимая шансы выпадения любой грани кости при одном бросании равными между собой (другими словами, относительная частота, или вероятность, выпадения «единицы» равна относительной частоте выпадения «двойки», «тройки» и т. д. и равна 1/6), можно подсчитать вероятность P {«не шесть»} осуществления ситуации «не шесть», т. е. вероятность события, заключающегося в том, что при четырех последовательных бросаниях игральной кости ни разу не появится «шестерка». Этот расчет основан на следующих фактах, вытекающих из принятых нами предпосылок модели. Вероятность не выбросить шестерку при одном бросании кости складывается из шансов появиться в результате одного бросания «единице», «двойке», «тройке», «четверке»и «пятерке» и, следовательно, составляет (в соответствии с определением вероятности любого события) величину 5/6. Затем используем правило умножения вероятностей, в соответствии с которым вероятность наступления нескольких независимых событий равна произведению вероятностей этих событий. В нашем случае мы рассматриваем факт наступления четырех независимых событий, каждое из которых заключается в невыпадении «шестерки» при одном бросании и имеет вероятность осуществления, равную 5/6. Поэтому

Как видно, вероятность ситуации «не шесть» оказалась меньше половины, следовательно, шансы ситуации «шесть» предпочтительнее (соответствующая вероятность равна: 1-0,482 = 0,518). А значит, читатель, использовавший теоретико-вероятностный способ рассуждения, придет к диаметрально противоположному по сравнению с читателем со статистическим образом мышления решению и будет ставить в игре на ситуацию «шесть».

Вероятностно-статистический (или математико-статистический) способ принятия решения. Этот способ как бы синтезирует инструментарий двух предыдущих, так как при выработке с его помощью окончательного вывода используются и накопленные в результате наблюдения за игрой исходные статистические данные (в виде относительных частот появления ситуаций «шесть» и «не шесть», которые, как мы помним, были равны соответственно 0,48 и 0,52), и теоретико-вероятностные модельные соображения . Однако модель, принимаемая в данном случае, менее жестка, менее ограничена, она как бы настраивается на реальную действительность, используя для этого накопленную статистическую информацию . В частности, эта модель уже не постулирует правильность используемых костей, допуская, что центр тяжести игральной кости может быть и смещен некоторым особым образом. Характер этого смещения (если оно есть) должен как-то проявиться в тех исходных статистических данных, которыми мы располагаем. Однако читатель, владеющий вероятностно-статистическим образом мышления, должен отдавать себе отчет в том, что полученные из этих данных величины относительных частот исходов «шесть» и «не шесть» дают лишь некоторые приближенные оценки истинных (теоретических) шансов той и другой ситуации: ведь подбрасывая, скажем, 10 раз даже идеально симметричную монету, мы можем случайно получить семь выпадений «гербов»; соответственно относительная частота выпадения «герба», подсчитанная по этим результатам испытаний, будет равна 0,7; но это еще не значит, что истинные (теоретические) шансы (вероятности) появления «герба» и другой стороны монеты оцениваются величинами соответственно 0,7 и 0,3, – эти вероятности, как мы знаем, равны 0,5. Точно так же установленная нами в серии из ста игровых туров относительная частота исхода «не шесть» (равная 0,52) может отличаться от истинной (теоретической) вероятности того же события и, значит, может не быть достаточным основанием для выбора этой ситуации в игре!

Получается, что весь вопрос заключается в том, насколько сильно может отличаться наблюденная (в результате осуществления n испытаний) относительная частота интересующего нас события от истинной вероятности появления этого события, и как это отличие, т. е. погрешность , зависит от числа имеющихся в нашем распоряжении наблюдений (интуитивно ясно, что чем дольше мы наблюдали за игрой, т. е. чем больше общее число использованных нами наблюдений, тем больше доверия заслуживают вычисленные нами эмпирические относительные частоты , т. е. тем меньше их отличие от неизвестных нам истинных значений вероятностей ). Ответ на этот вопрос можно получить в нашем случае, если воспользоваться рядом дополнительных модельных соображений : а) предположить, что результат каждого тура никак не зависит от результатов предыдущих туров, а неизвестная нам вероятность осуществления ситуации «не шесть» остается одной и той же на протяжении всех туров игры; б) использовать тот факт, что поведение случайно меняющейся (при повторениях эксперимента) погрешности приближенно описывается законом нормального распределения вероятностей со средним значением, равным нулю, и дисперсией, равной (см. , п. 3.1.5).

Эти соображения, в частности, позволяют оценить абсолютную величину погрешности , заменяя неизвестную величину вероятности интересующего нас события (в нашем случае – исход «не шесть») относительной частотой этого события, зафиксированной в серии из испытаний (в нашем случае , а ). Если же мы смогли численно оценить абсолютную величину возможной погрешности , то естественно применить следующее правило принятия решения: если относительная частота появления исхода «не шесть» больше половины и продолжает превышать 0,5 после вычитания из нее возможной погрешности , то выгоднее ставить на «не шесть»; если относительная частота меньше половины и продолжает быть меньше 0,5 после прибавления к ней возможной погрешности , то выгоднее ставить на «шесть»; в других случаях у наблюдателя нет оснований для статистического вывода о преимуществах того или иного выбора ставки в игре (т. е. надо либо продолжить наблюдения, либо участвовать в игре с произвольным выбором ставки, ожидая, что это не может привести к сколько-нибудь ощутимому выигрышу или проигрышу).

Приближенный подсчет максимально возможной величины этой погрешности, опирающийся на модельное соображение б) (т. е. теорему Муавра-Лапласа, см. и п. 4.3), дает в рассматриваемом примере, что с практической достоверностью, а именно с вероятностью 0,95, справедливо неравенство

Возведение этого неравенства в квадрат и решение получившегося квадратного неравенства относительно неизвестного параметра дает

или, с точностью до величин порядка малости выше, чем ,

В данном случае (при и ) получаем:

Следовательно,

Таким образом, наблюдения за исходами ста партий дают нам основания лишь заключить, что интересующая нас неизвестная величина вероятности исхода «не шесть» на самом деле может быть любым числом из отрезка , т. е. может быть как величиной, меньшей 0,5 (и тогда надо ставить в игре на ситуацию «шесть»), так и величиной, большей 0,5 (и тогда надо ставить в игре на ситуацию «не шесть»).

Иначе говоря, читатель, воспользовавшийся вероятностно-статистическим способом решения задачи и указанными выше модельными предпосылками, должен прийти к следующему «осторожному» выводу: ста партий в качестве исходного статистического материала оказалось недостаточно для вынесения надежного заключения о том, какой из исходов игры является более вероятным . Отсюда решение: либо продолжить роль «зрителя» до тех пор, пока область возможных значений для вероятности , полученная из оценок вида (4), не окажется целиком лежащей левее или правее 0,5, либо вступить в игру, оценивая ее как близкую к «безобидной», т. е. к такой, в которой в длинной серии туров практически останешься «при своих».

Приведенный пример иллюстрирует роль и назначение теоретико-вероятностных и математико-статистических методов, их взаимоотношения. Если теория вероятностей предоставляет исследователю набор математических моделей , предназначенных для описания закономерностей в поведении реальных явлений или систем, функционирование которых происходит под влиянием большого числа взаимодействующих случайных факторов, то средства математической статистики позволяют подбирать среди множества возможных теоретико-вероятностных моделей ту, которая в определенном смысле наилучшим образом соответствует имеющимся в распоряжении исследователя статистическим данным , характеризующим реальное поведение конкретной исследуемой системы.

Математическая модель . Математическая модель – это некоторая математическая конструкция, представляющая собой абстракцию реального мира: в модели интересующие исследователя отношения между реальными элементами заменены подходящими отношениями между элементами математической конструкции (математическими категориями). Эти отношения, как правило, представлены в форме уравнений и (или) неравенств между показателями (переменными), характеризующими функционирование моделируемой реальной системы. Искусство построения математической модели состоит в том, чтобы совместить как можно большую лаконичность в ее математическом описании с достаточной точностью модельного воспроизводства именно тех сторон анализируемой реальности, которые интересуют исследователя.

Выше, анализируя взаимоотношения чисто статистического, чисто теоретико-вероятностного и смешанного – вероятностно-статистического способа рассуждения, мы, в действительности, пользовались простейшими моделями, а именно:

статистической частотной моделью интересующего нас случайного события, заключающегося в том, что в результате четырех последовательных бросаний игральной кости ни разу не выпадет «шестерка»; оценив по предыстории относительную частоту этого события и приняв ее за вероятность появления этого события в будущем ряду испытаний , мы, тем самым, используем модель случайного эксперимента с известной вероятностью его исхода (см. и п. 1.1.3);

теоретико-вероятностной моделью последовательности испытаний Бернулли (см. и п. 3.1.1), которая никак не связана с использованием результатов наблюдений (т. е. со статистикой); для подсчета вероятности интересующего нас события достаточно принятия гипотетического допущения о том, что используемая игральная кость идеально симметрична. Тогда в соответствии с моделью серии независимых испытаний и справедливой, в рамках этой модели, теоремой умножения вероятностей подсчитывается интересующая нас вероятность по формуле ;

вероятностно-статистической моделью , интерпретирующей оцененную в чисто статистическом подходе относительную частоту как некую случайную величину (см. и п. 2.1), поведение которой подчиняется правилам, определяемым так называемой теоремой Муавра–Лапласа; при построении этой модели были использованы как теоретико-вероятностные понятия и правила, так и статистические приемы, основанные на результатах наблюдений.

Обобщая этот пример, можно сказать, что:

вероятностная модель это математическая модель, имитирующая механизм функционирования гипотетического (не конкретного) реального явления (или системы) стохастической природы; в нашем примере гипотетичность относилась к свойствам игральной кости: она должна была быть идеально симметричной;

вероятностно-статистическая модель – э то вероятностная модель, значения отдельных характеристик (параметров) которой оцениваются по результатам наблюдений (исходным статистическим данным), характеризующим функционирование моделируемого конкретного (а не гипотетического) явления (или системы).

Вероятностно-статистическая модель, описывающая механизм функционирования экономической или социально-экономической системы, называется эконометрической .

Прогностические и управленческие модели в бизнесе . Вернемся к задачам статистического анализа механизма функционирования предприятия (фирмы) и связанным с ними прогнозами. Вновь рассматривая «фазовое пространство » этих задач, нетрудно описать общую логическую структуру необходимых для их решения моделей. Эта структура прямо следует из сформулированного выше определения стратегии бизнеса .

Для того чтобы формализовать (т. е. записать в терминах математической модели) задачи оптимального управления и построения прогноза в бизнесе, введем следующие обозначения:

– вектор-столбец результирующих показателей (объем продаж и т. п.);

– вектор-столбец «поведенческих» (управляемых) переменных (вложения в развитие основных фондов, в службы маркетинга и т. п.);

– вектор-столбец так называемых «статусных» переменных, т. е. показателей, характеризующих состояние фирмы (число работников, основные фонды, возраст фирмы и т. п.);

– вектор-столбец гео-социо-экономико-демографичес-ких характеристик внешней среды (показатели общей экономической ситуации, характеристики клиентов и поставщиков и т. п.);

– вектор-столбец случайных регрессионных остатков (подробнее о них ниже).

Тогда система уравнений, на базе которых может осуществляться оптимальное управление предприятием и выполнение необходимых прогнозных расчетов , в самом общем виде может быть представлена в форме:

, (5)

где – некоторая векторнозначная ( -мерная) функция от , структура (значения параметров) которой, вообще говоря, зависит от того, на каких уровнях зафиксированы величины переменных «состояния» фирмы и «внешней среды» .

Тогда базовая проблема статистического анализа и прогнозирования в бизнесе состоит в построении наилучшей (в определенном смысле) оценки для неизвестной функции по имеющейся в распоряжении исследователя исходной статистической информации вида

где – значения соответственно поведенческих, «статусных», внешних и результирующих переменных, характеризующие -й такт времени (или измеренных на -м статистически обследованном предприятии), . Соответственно параметр (объем выборки ) интерпретируется как общая длительность наблюдений за значениями анализируемых переменных на исследуемом предприятии, если наблюдения регистрировались во времени , и как общее число статистически обследованных однотипных предприятий, если наблюдения регистрировались в пространстве (т. е., переходя от одного предприятия к другому). При этом описание функции должно сопровождаться способом расчета гарантированных погрешностей аппроксимации (ошибок прогноза ), т. е. таких векторных ( -мерных) значений и , которые для любых заданных значений и гарантировали бы выполнение неравенств (с вероятностью, не меньшей, чем , где – наперед заданная, достаточно близкая к единице положительная величина) , т.е. соответственно поведенческих (управляемых), «статусных» и переменных внешней среды для момента времени классической модели регрессии, величина тождественно равна нулю (см ).

Некоторые общие сведения о математическом инструментарии решения задач (9) и (10) см. ниже, в п. 4 .

Предыдущая

Математическая статистика – раздел прикладной математики, непосредственно примыкающий и основанный на теории вероятностей. Как и любая математическая теория, математическая статистика развивается в рамках некоторой модели, описывающей определенный круг реальных явлений. Чтобы определить статистическую модель и объяснить специфику задач математической статистики, напомним некоторые положения из теории вероятностей.

Математическая модель случайных явлений, изучаемых в теории вероятностей, основывается на понятии вероятностного пространства . При этом в каждой конкретной ситуации вероятность считается полностью известной числовой функцией на -алгебре , то есть для любого полностью определено число . Основной задачей теории вероятностей является разработка методов нахождения вероятностей различных сложных событий по известным вероятностям более простых (например, по известным законам распределения случайных величин определяются их числовые характеристики и законы распределения функций от случайных величин).

Однако на практике при изучении конкретного случайного эксперимента вероятность , как правило, неизвестна или известна частично. Можно только предположить, что истинная вероятность является элементом некоторого класса вероятностей (в худшем случае - класс всевозможных вероятностей, которые можно задать на ). Класс называют совокупностью допустимых для описания данного эксперимента вероятностей , а набор - статистической моделью эксперимента. В общем случае задачей математической статистики является уточнение вероятностной модели изучаемого случайного явления (то есть отыскание истинной или близкой к ней вероятности ), используя информацию, доставляемую наблюдаемыми исходами эксперимента, которые называют статистическими данными.

В классической математической статистике, изучением которой мы будем заниматься далее, имеют дело со случайными экспериментами, состоящими в проведении n повторных независимых наблюдений над некоторой случайной величиной , имеющей неизвестное распределение вероятностей, т.е. неизвестную функцию распределения . В этом случае множество всех возможных значений наблюдаемой случайной величины называют генеральной совокупностью , имеющей функцию распределения или распределенной согласно . Числа , являющиеся результатом независимых наблюдений над случайной величиной , называют выборкой из генеральной совокупности или выборочными (статистическими) данными. Число наблюдений называется объемом выборки.

Основная задача математической статистики состоит в том, как по выборке из генеральной совокупности, извлекая из нее максимум информации, сделать обоснованные выводы относительно неизвестных вероятностных характеристик наблюдаемой случайной величины .

Под статистической моделью, отвечающей повторным независимым наблюдениям над случайной величиной , естественно, вместо понимать набор , где - генеральная совокупность, - -алгебра борелевских подмножеств из , - класс допустимых функций распределения для данной случайной величины , которому принадлежит и истинная неизвестная функция распределения .

Часто тройку называют статистическим экспериментом.

Если функции распределения из заданы с точностью до значений некоторого параметра , то есть ( - параметрическое множество), то такая модель называется параметрической . Говорят, что в этом случае известен тип распределения наблюдаемой случайной величины, а неизвестен только параметр, от которого распределение зависит. Параметр может быть как скалярным, так и векторным.

Статистическая модель называется непрерывной или дискретной , если таковыми являются все составляющие класс функции распределения соответственно.

Пример 1 . Предположим, что распределение наблюдаемой случайной величины является гауссовским с известной дисперсией и неизвестным математическим ожиданием .

В этом случае статистическая модель является непрерывной и имеет вид:

Если и дисперсия неизвестна, то статистическая модель имеет вид:

а функция распределения имеет плотность вероятностей

Это, так называемая, общая нормальная модель, обозначаемая .

Пример 2 . Предположим, что распределение наблюдаемой случайной величины является пуассоновским с неизвестным параметром . В этом случае статистическая модель является дискретной и имеет вид: , случайными величинами (при этом говорят, что случайные величины - копии ), и который еще не принял конкретного значения в результате эксперимента. Переход от выборки конкретной к выборке случайной будет неоднократно использоваться далее при решении теоретических вопросов и задач для получения выводов, справедливых для любой выборки из генеральной совокупности.

Основные задачи, рассматриваемые в математической статистике, можно разбить на две большие группы:

1. Задачи, связанные с определением неизвестного закона распределения наблюдаемой случайной величины и параметров в него входящих (они рассматриваются в рамках статистической теории оценивания).

2. Задачи, связанные с проверкой гипотез относительно закона распределения наблюдаемой случайной величины (решаются в рамках теории проверки статистических гипотез).

Статистическое моделирование — базовый метод моделирования, заключающийся в том, что модель испытывается множеством случайных сигналов с заданной плотностью вероятности. Целью является статистическое определение выходных результатов. В основе статистического моделирования лежит метод Монте-Карло . Напомним, что имитацию используют тогда, когда другие методы применить невозможно.

Метод Монте-Карло

Рассмотрим метод Монте-Карло на примере вычисления интеграла, значение которого аналитическим способом найти не удается.

Задача 1 . Найти значение интеграла:

На рис. 21.1 представлен график функции f (x ) . Вычислить значение интеграла этой функции — значит, найти площадь под этим графиком.

Рис. 21.1. Определение значения интеграла
методом Монте-Карло

Ограничиваем кривую сверху, справа и слева. Случайным образом распределяем точки в прямоугольнике поиска. Обозначим через N 1 количество точек, принятых для испытаний (то есть попавших в прямоугольник, эти точки изображены на рис. 21.1 красным и синим цветом), и через N 2 — количество точек под кривой, то есть попавших в закрашенную площадь под функцией (эти точки изображены на рис. 21.1 красным цветом). Тогда естественно предположить, что количество точек, попавших под кривую по отношению к общему числу точек пропорционально площади под кривой (величине интеграла) по отношению к площади испытуемого прямоугольника. Математически это можно выразить так:

Рассуждения эти, конечно, статистические и тем более верны, чем большее число испытуемых точек мы возьмем.

Фрагмент алгоритма метода Монте-Карло в виде блок-схемы выглядит так, как показано на рис. 21.2 .

Рис. 21.2. Фрагмент алгоритма реализации
метода Монте-Карло

Значения r 1 и r 2 на рис. 21.2 являются равномерно распределенными случайными числами из интервалов (x 1 ; x 2) и (c 1 ; c 2) соответственно.

Метод Монте-Карло чрезвычайно эффективен, прост, но необходим «хороший» генератор случайных чисел. Вторая проблема применения метода заключается в определении объема выборки, то есть количества точек, необходимых для обеспечения решения с заданной точностью. Эксперименты показывают: чтобы увеличить точность в 10 раз, объем выборки нужно увеличить в 100 раз; то есть точность примерно пропорциональна корню квадратному из объема выборки:

Схема использования метода Монте-Карло при исследовании
систем со случайными параметрами

Построив модель системы со случайными параметрами, на ее вход подают входные сигналы от генератора случайных чисел (ГСЧ), как показано на рис. 21.3 . ГСЧ устроен так, что он выдает равномерно распределенные случайные числа r рр из интервала . Так как одни события могут быть более вероятными, другие — менее вероятными, то равномерно распределенные случайные числа от генератора подают на преобразователь закона случайных чисел (ПЗСЧ), который преобразует их в заданный пользователем закон распределения вероятности, например, в нормальный или экспоненциальный закон. Эти преобразованные случайные числа x подают на вход модели. Модель отрабатывает входной сигнал x по некоторому закону y = φ (x ) и получает выходной сигнал y , который также является случайным.

Рис. 21.3. Общая схема метода статистического моделирования

В блоке накопления статистики (БНСтат) установлены фильтры и счетчики. Фильтр (некоторое логическое условие) определяет по значению y , реализовалось ли в конкретном опыте некоторое событие (выполнилось условие, f = 1 ) или нет (условие не выполнилось, f = 0 ). Если событие реализовалось, то счетчик события увеличивается на единицу. Если событие не реализовалось, то значение счетчика не меняется. Если требуется следить за несколькими разными типами событий, то для статистического моделирования понадобится несколько фильтров и счетчиков N i . Всегда ведется счетчик количества экспериментов — N .

Далее отношение N i к N , рассчитываемое в блоке вычисления статистических характеристик (БВСХ) по методу Монте-Карло, дает оценку вероятности p i появления события i , то есть указывает на частоту его выпадения в серии из N опытов. Это позволяет сделать выводы о статистических свойствах моделируемого объекта.

Например, событие A совершилось в результате проведенных 200 экспериментов 50 раз. Это означает, согласно методу Монте-Карло, что вероятность совершения события равна: p A = 50/200 = 0.25 . Вероятность того, что событие не совершится, равна, соответственно, 1 – 0.25 = 0.75 .

Обратите внимание: когда говорят о вероятности, полученной экспериментально, то ее называют частостью ; слово вероятность употребляют, когда хотят подчеркнуть, что речь идет о теоретическом понятии.

При большом количестве опытов N частота появления события, полученная экспериментальным путем, стремится к значению теоретической вероятности появления события.

В блоке оценки достоверности (БОД) анализируют степень достоверности статистических экспериментальных данных, снятых с модели (принимая во внимание точность результата ε , заданную пользователем) и определяют необходимое для этого количество статистических испытаний. Если колебания значений частоты появления событий относительно теоретической вероятности меньше заданной точности, то экспериментальную частоту принимают в качестве ответа, иначе генерацию случайных входных воздействий продолжают, и процесс моделирования повторяется. При малом числе испытаний результат может оказаться недостоверным. Но чем более испытаний, тем точнее ответ, согласно центральной предельной теореме.

Заметим, что оценивание ведут по худшей из частот. Это обеспечивает достоверный результат сразу по всем снимаемым характеристикам модели.

Пример 1 . Решим простую задачу. Какова вероятность выпадения монеты орлом кверху при падении ее с высоты случайным образом?

Начнем подбрасывать монетку и фиксировать результаты каждого броска (см. табл. 21.1).

Таблица 21.1.
Результаты испытаний бросания монеты
Количество опытов N 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Значение счетчика
выпадения орла N о
0 0 1 1 2 3 4
Значение счетчика
выпадения решки N р
1 2 2 3 3 3 3
Частость выпадения
орла P о =N о /N
0 0 0.33 0.25 0.4 0.5 0.57
Частость выпадения
решки P р =N р /N
1 1 0.66 0.75 0.6 0.5 0.43

Будем подсчитывать частость выпадения орла как отношение количества случаев выпадения орла к общему числу наблюдений. Посмотрите в табл. 21.1. случаи для N = 1 , N = 2 , N = 3 — сначала значения частости нельзя назвать достоверными. Попробуем построить график зависимости P о от N — и посмотрим, как меняется частость выпадения орла в зависимости от количества проведенных опытов. Разумеется, при различных экспериментах будут получаться разные таблицы и, следовательно, разные графики. На рис. 21.4 показан один из вариантов.

Рис. 21.4. Экспериментальная зависимость частости появления случайного события
от количества наблюдений и ее стремление к теоретической вероятности

Сделаем некоторые выводы.

  1. Видно, что при малых значениях N , например, N = 1 , N = 2 , N = 3 ответу вообще доверять нельзя. Например, P о = 0 при N = 1 , то есть вероятность выпадения орла при одном броске равна нулю! Хотя всем хорошо известно, что это не так. То есть пока мы получили очень грубый ответ. Однако, посмотрите на график: в процессе накопления информации ответ медленно, но верно приближается к правильному (он выделен пунктирной линией). К счастью, в данном конкретном случае правильный ответ нам известен: в идеале, вероятность выпадения орла равна 0.5 (в других, более сложных задачах, ответ нам, конечно, будет неизвестен). Допустим, что ответ нам надо знать с точностью ε = 0.1 . Проведем две параллельные линии, отстоящие от правильного ответа 0.5 на расстояние 0.1 (см. рис. 21.4 ). Ширина образовавшегося коридора будет равна 0.2. Как только кривая P о (N ) войдет в этот коридор так, что уже никогда его не покинет, можно остановиться и посмотреть, для какого значения N это произошло. Это и есть экспериментально вычисленное критическое значение необходимого количества опытов N кр э для определения ответа с точностью ε = 0.1 ; ε -окрестность в наших рассуждениях играет роль своеобразной трубки точности. Заметьте, что ответы P о (91) , P о (92) и так далее уже не меняют сильно своих значений (см. рис. 21.4 ); по крайней мере, у них не изменяется первая цифра после запятой, которой мы обязаны доверять по условиям задачи.
  2. Причиной такого поведения кривой является действие центральной предельной теоремы (см. лекцию 25 и лекцию 34). Пока здесь мы сформулируем ее в самом простом варианте «Сумма случайных величин есть величина неслучайная». Мы использовали среднюю величину P о , которая несет в себе информацию о сумме опытов, и поэтому постепенно эта величина становится все более достоверной.
  3. Если проделать еще раз этот опыт сначала, то, конечно, его результатом будет другой вид случайной кривой. И ответ будет другим, хотя примерно таким же. Проведем целую серию таких экспериментов (см. рис. 21.5 ). Такая серия называется ансамблем реализаций . Какому же ответу в итоге следует верить? Ведь они, хоть и являются близкими, все же разнятся. На практике поступают по-разному. Первый вариант — вычислить среднее значение ответов за несколько реализаций (см. табл. 21.2).
Рис. 21.5. Экспериментально снятый ансамбль случайных зависимостей
частости появления случайного события от количества наблюдений

Мы поставили несколько экспериментов и определяли каждый раз, сколько необходимо было сделать опытов, то есть N кр э . Было проделано 10 экспериментов, результаты которых были сведены в табл. 21.2. По результатам 10-ти экспериментов было вычислено среднее значение N кр э .

Таблица 21.2.
Экспериментальные данные
необходимого количества бросков монеты
для достижения точности ε = 0.1
при вычислении вероятности выпадения орла
Опыт N кр э
1 288
2 95
3 50
4 29
5 113
6 210
7 30
8 42
9 39
10 48
Среднее N кр. э 94

Таким образом, проведя 10 реализаций разной длины, мы определили, что достаточно в среднем было сделать 1 реализацию длиной в 94 броска монеты.

Еще один важный факт. Внимательно рассмотрите график на рис. 21.5 . На нем нарисовано 100 реализаций — 100 красных линий. Отметьте на нем абсциссу N = 94 вертикальной чертой. Есть какой-то процент красных линий, которые не успели пересечь ε -окрестность, то есть (P эксп – ε P теор ≤ P эксп + ε ), и войти в коридор точности до момента N = 94 . Обратите внимание, таких линий 5. Это значит, что 95 из 100, то есть 95%, линий достоверно вошли в обозначенный интервал.

Таким образом, проведя 100 реализаций, мы добились примерно 95%-ного доверия к полученной экспериментально величине вероятности выпадения орла, определив ее с точностью 0.1. Для сравнения полученного результата вычислим теоретическое значение N кр т теоретически. Однако для этого придется ввести понятие доверительной вероятности Q F , которая показывает, насколько мы готовы верить ответу. Например, при Q F = 0.95 мы готовы верить ответу в 95% случаев из 100. Формула теоретического расчета числа экспериментов, которая будет подробно изучаться в лекции 34 , имеет вид: N кр т = k (Q F ) · p · (1 – p )/ε 2 , где k (Q F ) — коэффициент Лапласа, p — вероятность выпадения орла, ε — точность (доверительный интервал). В табл. 21.3 показаны значения теоретической величины количества необходимых опытов при разных Q F (для точности ε = 0.1 и вероятности p = 0.5 ).

Как видите, полученная нами оценка длины реализации, равная 94 опытам очень близка к теоретической, равной 96. Некоторое несовпадение объясняется тем, что, видимо, 10 реализаций недостаточно для точного вычисления N кр э . Если вы решите, что вам нужен результат, которому следует доверять больше, то измените значение доверительной вероятности. Например, теория говорит нам, что если опытов будет 167, то всего 1-2 линии из ансамбля не войдут в предложенную трубку точности. Но имейте в виду, количество экспериментов с ростом точности и достоверности растет очень быстро.

Второй вариант, используемый на практике — провести одну реализацию и увеличить полученное для нее N кр э в 2 раза . Это считают хорошей гарантией точности ответа (см. рис. 21.6 ).

Рис. 21.6. Иллюстрация экспериментального определения N кр э по правилу «умножь на два»

Если присмотреться к ансамблю случайных реализаций , то можно обнаружить, что сходимость частости к значению теоретической вероятности происходит по кривой, соответствующей обратной квадратичной зависимости от числа экспериментов (см. рис. 21.7 ).

Рис. 21.7. Иллюстрация скорости схождения экспериментально получаемой частости
к теоретической вероятности

Это действительно так получается и теоретически. Если изменять задаваемую точность ε и исследовать количество экспериментов, требуемых для обеспечения каждой из них, то получится табл. 21.4.

Построим по табл. 21.4 график зависимости N кр т (ε ) (см. рис. 21.8 ).

Рис. 21.8. Зависимость числа экспериментов, требуемых для достижения
заданной точности ε при фиксированном Q F = 0.95

Итак, рассмотренные графики подтверждают приведенную выше оценку:

Заметим, что оценок точности может быть несколько. Некоторые из них будут еще обсуждаться в лекции 34 .

Пример 2. Нахождение площади фигуры методом Монте-Карло . Определите методом Монте-Карло площадь пятиугольника с координатами углов (0, 0), (0, 10), (5, 20), (10, 10), (7, 0).

Нарисуем в двухмерных координатах заданный пятиугольник, вписав его в прямоугольник, чья площадь, как нетрудно догадаться, составляет (10 – 0) · (20 – 0) = 200 (см. рис. 21.9 ).

Рис. 21.9. Иллюстрация к решению задачи
о площади фигуры методом Монте-Карло

Используем таблицу случайных чисел для генерации пар чисел R , G , равномерно распределенных в интервале от 0 до 1. Число R X (0 ≤ X ≤ 10) , следовательно, X = 10 · R . Число G будет имитировать координату Y (0 ≤ Y ≤ 20) , следовательно, Y = 20 · G . Сгенерируем по 10 чисел R и G и отобразим 10 точек (X ; Y ) на рис. 21.9 и в табл. 21.5.

Таблица 21.5.
Решение задачи методом Монте-Карло
Номер точки R G X Y Точка (X; Y) попала в прямоугольник? Точка (X; Y) попала в пятиугольник?
1 0.8109 0.3557 8.109 7.114 Да Да
2 0.0333 0.5370 0.333 10.740 Да Нет
3 0.1958 0.2748 1.958 5.496 Да Да
4 0.6982 0.1652 6.982 3.304 Да Да
5 0.9499 0.1090 9.499 2.180 Да Нет
6 0.7644 0.2194 7.644 4.388 Да Да
7 0.8395 0.4510 8.395 9.020 Да Да
8 0.0415 0.6855 0.415 13.710 Да Нет
9 0.5997 0.1140 5.997 2.280 Да Да
10 0.9595 0.9595 9.595 19.190 Да Нет
Всего: 10 6

Статистическая гипотеза заключается в том, что количество точек, попавших в контур фигуры, пропорционально площади фигуры: 6:10 = S :200 . То есть, по формуле метода Монте-Карло, получаем, что площадь S пятиугольника равна: 200 · 6/10 = 120 .

Проследим, как менялась величина S от опыта к опыту (см. табл. 21.6).

Таблица 21.6.
Оценка точности ответа
Количество испытаний N Оценка вероятности попадания случайной точки в испытуемую область Оценка площади S методом Монте-Карло
1 1/1 = 1.00 200
2 1/2 = 0.50 100
3 2/3 = 0.67 133
4 3/4 = 0.75 150
5 3/5 = 0.60 120
6 4/6 = 0.67 133
7 5/7 = 0.71 143
8 5/8 = 0.63 125
9 6/9 = 0.67 133
10 6/10 = 0.60 120

Поскольку в ответе все еще меняется значение второго разряда, то возможная неточность составляет пока больше 10%. Точность расчета может быть увеличена с ростом числа испытаний (см. рис. 21.10 ).

Рис. 21.10. Иллюстрация процесса сходимости определяемого
экспериментально ответа к теоретическому результату

4.1.1. Статистическая модель. При статистическом (стохастическом) моделировании основными объектами моделирования являются случайные события, случайные величины и случайные функции.

При проведении экспериментов исследователь фиксирует появление или не появления интересующих событий, а также осуществляет измерения значений параметров, которые носят случайный характер и по своей сути являются значениями реализации некоторой случайной величины.

Статистическое моделирование дает возможность не проводя реальных экспериментов над исследуемым объектом (что в большинстве случаев требует больших материальных и финансовых затрат) получать соответствующую информацию о появлении или не появлении тех или иных событий происходящих в реальном объекте. о выборочных значениях случайных величин на основе имеющихся вероятностных характеристик моделируемых событий и случайных величин. Данный вид моделирования предполагает проведение предварительного сбора информации о моделируемых показателях и дальнейшей статистической обработки полученных результатов с целью получения обоснованных статистических оценок, требуемых для моделирования вероятностных характеристик.

Стохастические модели применяются в основном в двух случаях:

1) объект моделирования плохо изучен – не имеется достаточно хорошо разработанных количественных закономерностей, описывающих рассматриваемые процессы и явления, а так же нет возможности найти приемлемое аналитическое решение данной проблемы;

2) моделируемый объект изучен достаточно хорошо в детерминированном плане, но без учета случайных факторов, оказывающих влияние на изучаемые процессы и явления.

В первом случае на основе словесного описания исследуемого объекта производится выбор количественных показателей с расчетом их физической размерности состоящих из двух групп. Одна из групп рассматривается в качестве входных величин модели, а другая – выходных величин. Далее, применяя научные теоретические результаты полученные другими исследователями в данной области и возможно применяя ряд необходимых допущений, а так же возможно уже имеемые экспериментальные данные о входных и выходных величинах (например, об их законах распределения) устанавливают детерминированные или стохастические зависимости между входными выходными величинами модели. Совокупность полученных соотношений между входными и выходными величинами (обычно записываются в виде уравнений) называют статистической моделью.

В ходе реализации статистической модели на основе выбранных законов распределения случайных величин и выбранными вероятностями моделируемых событий методами математической статистики определяются выборочные до экспериментальные значения случайных величин и квазиэмпирические последовательности появления или не появления моделируемых событий. Далее, по уравнениям модели определяют соответствующие выборочные значения ее выходных величин. А многократная реализация построенной модели позволяет исследователю построить модельную выборку ее выходных величин, которая вновь подвергается статистическому анализу (корреляционному, регрессивному, дисперсионному, спектральному) с целью получения оценок характеристик выходных параметров модели или проверки выдвигаемых гипотез. На основе полученных результатов делаются заключения по объекту исследования, а также обоснования по практическому применению построенной модели.

Методы статистического моделирования широко применяются при решении задач массового обслуживания, теории оптимизации, теории управления, теоретической физике и т.д.

Теоретической основой метода статистического моделирования на компьютере являются предельные теоремы теории вероятностей.

4.1.2. Неравенство Чебышева . Для неотрицательной функции случайной величины и выполняется неравенство

.

4.1.3. Теорема Бернулли . Если проводятся независимых испытаний, в каждом из которых некоторое событие осуществляется с вероятностью , то относительная чистота появления события ( число благоприятных исходов испытания) при сходится по вероятности к , т.е. при

4.1.4. Теорема Пуассона . Если проводятся независимых испытаний и вероятность осуществления события в том испытании равна , то относительная чистота появления события ( число благоприятных исходов испытания) при сходится по вероятности к среднему из вероятностей , т.е. при

4.1.5. Теорема Чебышева . Если в независимых испытаниях наблюдаются значения случайной величины , то при среднее арифметическое значений случайной величины сходится по вероятности к ее математическому ожиданию , т.е. при

4.1.6. Обобщенная теорема Чебышева . Если независимые случайные величины с математическими ожиданиями и дисперсиями ограниченными сверху одним и тем же числом, то при среднее арифметическое значений случайной величины сходится по вероятности к среднему арифметическому их математических ожиданий

4.1.7. Теорема Маркова .. Теорема Чебышева будет справедлива и для зависимых случайных величин , если

4.1.8. Центральная предельная теорема . Если независимые одинаково распределенные случайные величины с математическое ожидание и дисперсию , то при закон распределения суммы неограниченно приближается к нормальному закону распределения

где функция Лапласа

4.1.9. Теорема Лапласа . Если в каждом из независимых испытаний событие появляется с вероятностью , то

Статистическое наблюдение.

Сущность статистического наблюдения.

Начальным этапом всякого статистического исследования служит планомерный, научно организованный сбор данных о явлениях и процессах общественной жизни, называемый статистическим наблюдением. Значение этого этапа исследования определяется тем, что использование лишь вполне объективной и достаточно полной, полученной в результате статистического наблюдения, на последующих этапах в состоянии обеспечить научно обоснованные выводы о характере и закономерностях развития изучаемого объекта. Статистическое наблюдение осуществляется путем оценки и регистрации признаков единиц изучаемой совокупности в соответствующих учетных документах. Полученные таким образом данные представляют собой факты, так или иначе характеризующие явления общественной жизни. Использование аргументации, основанной на фактах, не противоречит применению теоретического анализа, поскольку всякая теория в конечном счете основывается на фактическом материале. Доказательная способность фактов еще больше возрастает в результате статистической обработки, обеспечивающей их систематизацию, представление в сжатом виде. Статистическое наблюдение следует отличать от других форм наблюдений, осуществляемых в повседневной жизни, основанных на чувственном восприятии. Статистическим можно назвать лишь такое наблюдение, которое обеспечивает регистрацию устанавливаемых фактов в учетных документах для последующего их обобщения. Конкретными примерами статистического наблюдения служит систематическое собирание сведений, например на машиностроительных предприятиях о количестве произведенных машин и узлов, издержках производства, прибыли и т. д. Статистическое наблюдение должно удовлетворять довольно жестким требованиям: 1. Наблюдаемые явления должны иметь определенное народнохозяйственное значение, научную либо практическую ценность, выражать определенные социально-экономические типы явлений. 2. Статистическое наблюдение должно обеспечить сбор массовых данных, в которых отражается вся совокупность фактов, относящихся к рассматриваемому вопросу, поскольку общественные явления находятся в постоянном изменении, развитии, имеют различные качественные состояния.

Неполные данные, недостаточно разносторонне характеризующие процесс, приводят к тому, что из их анализа делаются ошибочные выводы. 3. Многообразие причин и факторов, определяющих развитие социальных и экономических явлений, предопределяет ориентацию статистического наблюдения наряду со сбором данных, непосредственно характеризующих изучаемый объект, на учет фактов и событий, под влиянием которых осуществляется изменение его состояний. 4. Для обеспечения достоверности статистических данных на стадии статистического наблюдения необходима тщательная проверка качества собираемых фактов. Строгая достоверность его данных- одна их важнейших характеристик статистического наблюдения. Дефекты статистической информации, выражающиеся в ее недостоверности, не могут быть устранены в процессе дальнейшей обработки, поэтому их появление затрудняет принятие научно обоснованных решений и сбалансированность экономики. 5. Статистическое наблюдение должно проводиться на научной основе по заранее разработанным системе, плану и правилам (программе), обеспечивающим строго научное решение всех программно-методологических и организационных вопросов.

Программно-методологическое обеспечение статистического наблюдения.

Подготовка к статистическому наблюдению, обеспечивающая успех дела, предполагает необходимость своевременного решения ряда методологических вопросов, связанных с определением задач, цели, объекта, единицы наблюдения, разработкой программы и инструментария, определением способа сбора статистических данных. Задачи статистического наблюдения непосредственно вытекают из задач статистического исследования и состоят, в частности, в получении массовых данных непосредственно о состоянии изучаемого объекта, в учете состояния явлений, оказывающих влияние на объект, изучении данных о процессе развития явлений. Цели наблюдения определяются, прежде всего, нуждами информационного обеспечения для экономического и социального развития общества. Поставленные перед государственной статистикой цели уточняются и конкретизируются ее руководящими органами, в результате чего определяются направления и масштаб работы. В зависимости от цели решается вопрос об объекте статистического наблюдения, т.е. что именно следует наблюдать. Под объектом понимается совокупность вещественных предметов, предприятий, трудовых коллективов, лиц и т.д., посредством которых осуществляются явления и процессы, подлежащие статистическому исследованию. Объектами наблюдения в зависимости от целей могут выступать, в частности, массы единиц производственного оборудования, продукции, товарно материальных ценностей, населенных пунктов, районов, предприятий, организаций и учреждений различных отраслей народного хозяйства, население и отдельные его категории и т.д. Установление объекта статистического наблюдения связано с определением его границ на основе соответствующего критерия, выраженного некоторым характерным ограничительным признаком, называемым цензом. Выбор ценза оказывает существенное влияние на формирование однородных совокупностей, обеспечивает невозможность смешения различных объектов либо недоучета некоторой части объекта. Сущность объекта статистического наблюдения уясняется полнее при рассмотрении единиц, из которых он состоит: Единицами наблюдения служат первичные элементы объекта статистического наблюдения, являющиеся носителями регистрируемых признаков.

От единицы наблюдения следует отличать отчетную единицу. Отчетной единицей служит такая единица статистического наблюдения, от которой в установленном порядке получают информацию, подлежащую регистрации. В ряде случаев оба понятия совпадают, но нередко они имеют и вполне самостоятельное значение. Учесть все множество признаков, характеризующих объект наблюдения, оказывается невозможным и нецелесообразным, поэтому при разработке плана статистического наблюдения следует тщательно и квалифицированно решать вопрос о составе признаков, подлежащих регистрации в соответствии с поставленной целью. Перечень признаков, формулируемых в виде вопросов, обращаемых к единицам совокупности, на которые должно дать ответ статистическое исследование, представляет собой программу статистического наблюдения.

Чтобы получить исчерпывающую характеристику изучаемого явления, в составе программы должен быть учтен весь круг его существенных признаков. Однако проблематичность практического осуществления этого принципа обусловливает необходимость включения в программу лишь наиболее существенных признаков, выражающих социально-экономические типы явления, его важнейшие черты, свойства и взаимосвязи. Объем программы регламентируется величиной ресурсов, имеющихся в распоряжении статистических органов, сроками получения результатов, требованиями к степени детализации разработок и т.д. Содержание программы определяется характером и свойствами изучаемого объекта, целями и задачами исследования. К числу общих требований к составлению программы относится недопустимость включения в ее состав вопросов, на которые затруднительно получить точные, вполне достоверные ответы, дающие объективную картину той или иной ситуации. При рассмотрении некоторых наиболее важных признаков в состав программы принято включать контрольные вопросы, служащие для согласованности получаемых сведений. Чтобы усилить взаимопроверку вопросов и аналитичность программы наблюдения, взаимосвязанные вопросы располагаются в определенной последовательности, иногда в блоках взаимосвязанных признаков.

Вопросы программы статистического наблюдения должны быть сформулированы четко, ясно, лаконично, не допуская возможности различных их истолкований. В программе нередко приводится перечень возможных вариантов ответов, посредством которых уточняется смысловое содержание вопросов. Методологическое обеспечение статистического наблюдения предполагает, что одновременно с программой наблюдения составляется и программа ее разработки. Задачи исследования формулируются в перечне обобщающих статистических показателей. Эти показатели должны быть получены в результате обработки собранного материала, признаков, с которыми корреспондируется каждый показатель, и макетов статистических таблиц, где представлены результаты обработки первичной информации. Программа разработки, выявляя недостающую информацию, позволяет уточнить программу статистического наблюдения. Проведение статистического наблюдения предполагает необходимость подготовки соответствующего инструментария: формуляров и инструкции по их заполнению. Статистический формуляр - это первичный документ, в котором фиксируются ответы на вопросы программы по каждой из единиц совокупности. Формуляр, таким образом, - это носитель первичной информации. Для всех формуляров характерны некоторые обязательные элементы: содержательная часть, включающая перечень вопросов программы, свободная графа либо несколько граф для записи ответов и шифров (кодов) ответов, титульная и адресная печати. Статистические формуляры в целях обеспечения единства трактовки их содержательной части обычно сопровождаются инструкцией, т.е. письменными указаниями и разъяснениями к заполнению бланков статистического наблюдения. Инструкция разъясняет цель статистического наблюдения, характеризует его объект и единицу, время и продолжительность наблюдения, порядок оформления документации, сроки представления результатов. Однако главное назначение инструкции состоит в разъяснении содержания вопросов программы, как следует давать на них ответы и заполнять формуляр.

Виды и способы статистического наблюдения.

Успех дела сбора качественных и полных исходных данных с учетом требования экономного расходования материальных, трудовых и финансовых ресурсов во многом определяется решением вопроса о выборе вида, способа и организационной формы статистического наблюдения.

Виды статистического наблюдения.

Необходимость выбора того или иного варианта сбора статистических данных, в наибольшей мере соответствующего условиям решаемой задачи, определяется наличием нескольких видов наблюдения, различающихся прежде всего по признаку характера учета фактов во времени. Систематическое наблюдение, осуществляемое непрерывно и обязательно по мере возникновения признаков явления, называется текущим. Текущее наблюдение проводится на основе первичных документов, содержащих информацию, необходимую для достаточно полной характеристики изучаемого явления. Статистическое наблюдение, проводимое через некоторые равные промежутки времени, называется периодическим. Примером может служить перепись населения. Наблюдение, проводимое время от времени, без соблюдения строгой периодичности либо в разовом порядке, называется единовременным. Виды статистического наблюдения дифференцируются с учетом различия информации по признаку полноты охвата совокупности. В связи с этим различают сплошное и не сплошное наблюдения. Сплошным называют наблюдение, учитывающее все без исключения единицы изучаемой совокупности. Не сплошное наблюдение заведомо ориентируется на учет некоторой, как правило, достаточно массовой части единиц наблюдения, позволяющей тем не менее получить устойчивые обобщающие характеристики все статистической совокупности. В статистической практике применяются различные виды не сплошного наблюдения: выборочное, способ основного массива, анкетное и монографическое. Качество не сплошного наблюдения уступает результатам сплошного, однако в ряде случаев статистическое наблюдение вообще оказывается возможным только как не сплошное. Для получения представительной характеристики всей статистической совокупности по некоторой части ее единиц применяют выборочное наблюдение, основанное на научных принципах формирования выборочной совокупности. Случайный характер отбора единиц совокупности гарантирует беспристрастность результатов выборки, предупреждает их тенденциозность. По способу основного массива производится отбор наиболее крупных, наиболее существенных единиц совокупности, преобладающих в общей их массе по изучаемому признаку. Специфическим видом статистического наблюдения служит монографическое описание, представляющее собой детальное обследование отдельного, но весьма типичного объекта, обусловливающего интерес и с точки зрения изучения всей совокупности.

Способы статистического наблюдения.

Дифференциация разновидностей статистического наблюдения возможна также в зависимости от источников и способов получения первичной информации. В связи с этим различают непосредственное наблюдение, опрос и документальное наблюдение. Непосредственным называют наблюдение, осуществляемое путем подсчета, измерения значений признаков, снятия показаний приборов специальными лицами, осуществляющими наблюдениями, иначе говоря- регистраторами. Достаточно часто ввиду невозможности применения иных способов статистическое наблюдение осуществляется путем опроса по некоторому перечню вопросов. Ответы фиксируются в специальном формуляре. В зависимости от способов получения ответов различают экспедиционный и корреспондентский способы, а также способ саморегистрации. Экспедиционный способ опроса осуществляется в устной форме специальным лицом (счетчиком, экспедитором), заполняющим одновременно формуляр или бланк обследования.

Корреспондентский способ опроса организуется путем рассылки статистическими органами бланков обследования некоторому соответствующим образом подготовленному кругу лиц, называемых корреспондентами. Последние обязаны согласно договоренности заполнить бланк и вернуть его в статистическую организацию. Проверка правильности заполнения формуляров имеет место при опросе способом саморегистрации. Опросные листы заполняют, как и при корреспондентском способе, сами опрашиваемые, но их раздачу и сбор, а также инструктаж и контроль правильности заполнения осуществляют счетчики.

Основные организационные формы статистического наблюдения.

Все разнообразие видов и способов наблюдения осуществляется на практике посредством двух основных организационных форм: отчетности и специально организованного наблюдения. Статистическая отчетность - основная форма статистического наблюдения в социальном обществе, охватывающая все предприятия, организации и учреждения производственной и непроизводственной сфер. Отчетность- это систематическое представление в установленные сроки учетно-статистической документации в виде отчетов, всесторонне характеризующих итоги работы предприятий и учреждений в течение отчетных периодов. Отчетность непосредственно связана с первичными и бухгалтерскими учетными документами, базируется на них и представляет собой их систематизацию, т.е. результат обработки и обобщения. Отчетность осуществляется по строго установленной форме, утверждаемой Госкомстатом России. Перечень всех форм с указанием их реквизитов (принадлежностей) называется табелем отчетности. Каждая из форм отчетности должна содержать следующие сведения: наименование; номер и дату утверждения; наименование предприятия, его адрес и подчиненность; адреса, в которые представляется отчетность; периодичность, дату представления, способ передачи; содержательную часть в виде таблицы; должностной состав лиц, ответственных за разработку и достоверность отчетных данных, т.е. обязанных подписать отчет. Многообразие условий производственного процесса в различных отраслях материального производства, специфичность воспроизводственного процесса в локальных условиях, учет значимости тех или иных показателей обусловливают различие видов отчетности. Различают, прежде всего, типовую и специализированную отчетность. Типовая отчетность имеет одинаковую форму и содержание для всех предприятий либо учреждений отрасли народного хозяйства. Специализированная отчетность выражает специфические для отдельных предприятий отрасли моменты. По принципу периодичности отчетность подразделяется на годовую и текущую: квартальную, месячную, двухнедельную, недельную. В зависимости от способа передачи информации различают почтовую и телеграфную отчетность. Статистические переписи служат второй по значению организационной формой статистического наблюдения. Перепись представляет собой специально организованное статистическое наблюдение, направленное на учет численности и состава определенных объектов (явлений), а также установление качественных характеристик их совокупностей на некоторый момент времени. Переписи представляют статистическую информацию, не предусмотренную отчетностью, а в ряде случаев существенно уточняют данные текущего учета.

Для обеспечения высокого качества результатов статистических переписей осуществляется комплекс подготовительных работ. Содержание организационных мероприятий по подготовке переписей, осуществляемых согласно требованиям и правилам статистической науки, излагается в специально разрабатываемом документе, называемом организационном планом статистического наблюдения. В организационном плане должны найти решение вопросы о субъекте (исполнителе) статистического наблюдения, о месте, времени, сроках и порядке проведения, об организации переписных участков, о подборе и подготовке счетных работников, обеспечении их необходимой учетной документацией, о проведении ряда других подготовительных работ и т.д. Субъектом наблюдения выступает организация (учреждение) либо его подразделение, ответственное за наблюдение, организующее его проведение, а также непосредственно выполняющие функции по сбору и обработке статистических данных. Вопрос о месте наблюдения (месте регистрации фактов) возникает преимущественно при проведении статистико-социологических исследований и решается в зависимости от цели исследования.

Время наблюдения представляет собой период времени, в течение которого должна быть начата и завершена работа по регистрации и проверке полученных данных. Время наблюдения выбирается на основе критерия минимальной пространственной мобильности изучаемого объекта. От времени наблюдения следует отличать критический момент, к которому приурочены собранные данные.

Понятие статистического наблюдения - довольно интересная тема для рассмотрения. Статистические наблюдения используются практически везде, где только можно обусловить их применение. Вместе с тем, несмотря на обширную область применения, статистические наблюдения являются довольно-таки сложным предметом и ошибки нередки. Однако в целом статистические наблюдения как предмет для рассмотрения представляют собой большой интерес.

Новое на сайте

>

Самое популярное